
Multivariable Control (ME-422) - Exercise session 8

SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the system {
x+

1 = (1− α)x1 + βx2 − u+ d

x+
2 = αx1 + (1− β)x2

y = x1

where d(k) is a disturbance. Using eigenvalue assignment, we want to design a controller for tracking
a constant reference y0(k) without offset, when the disturbance is constant but unknown.

(a) Check for which parameter values α, β ∈ R the problem can be solved.

(b) For α = 1
2 β = 1

2 , design the controller.
Hint: First include the integrator dynamics and formulate the dynamics of the augmented
system, i.e., system that includes the plant and integrator dynamics. Then, for the augmented
system, design a stabilizing state-feedback controller assuming that its states can be measured.

Solution:

(a) LTI model is given by

x+ = Ax+Bu+Md

y = Cx+Nd

where the matrices are

A =

[
1− α β
α 1− β

]
B =

[
−1
0

]
C =

[
1 0

]
M =

[
1
0

]
N = 0.

Since the disturbance is constant and unknown, we design a controller with integral action for
offset-free tracking. One necessary condition to be able to reject disturbance is

det

([
A− I B
C 0

])
6= 0

det

−α β −1
α −β 0
1 0 0

 = (−1)3+1 det

([
β −1
−β 0

])
= −β 6= 0

This condition is satisfied only if β 6= 0. The second necessary condition is that the pair (A,B)
is reachable. This yields

Mr =
[
B AB

]
=

[
−1 α− 1
0 −α

]
rank(Mr) = 2 only when α 6= 0.

Therefore, offset-free tracking can only be achieved for parameter values α 6= 0 and β 6= 0.

Now, we can specify the integrator dynamics as

v(k + 1) = v(k) +
(
y0(k)− y(k)

)
= v(k) +

(
y0(k)− Cx(k)−Nd(k)

)
w(k) = v(k)
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which yields the extended system with state η =
[
x1 x2 v

]T
and dynamics

η+ = Āη + B̄u+ M̄d

w = C̄η + N̄d
(1)

with matrices defined as

Ā =

[
A 0
−C I

]
=

1− α β 0
α 1− β 0
−1 0 1

 B̄ =

[
B
0

]
=

−1
0
0

 M̄ =

[
M
−N

]
=

1
0
0


C̄ =

[
0 I

]
=
[
0 0 1

]
N̄ = 0

(2)

by taking y0 = 0 without loss of generality, since the system is LTI.

(b) Note the structure of the system with a controller having integrator given in Figure 1b, which
was shown in lecture.

Also note that the integrator action given with controller block R1 in the figure is captured
via the dynamics of integration variable v(k), and the dynamics of the augmented system with
inputs (u(k), d(k)) and output w(k) is given in (1) with matrices in (2) where α = β = 1

2 .

In order to design the controller R2, we first check if the pair
(
Ā, B̄

)
is reachable. This is

equivalent to checking the reachability of pair (A,B), as shown in the lecture. Consequently,
the value of the parameter α = 1

2 6= 0 ensures that the system is reachable; therefore, we can
design a stabilizing feedback controller for the augmented system.

Now, we will design the controller block R2 that will stabilize this augmented system. There-
fore, select a state-feedback control law u(k) = Kη(k) with K ∈ R1×3. Replacing this into the
augmented system dynamics, we get

η+ =
(
Ā+ B̄K

)︸ ︷︷ ︸
Ācl

η + M̄d

w = C̄η

where the objective is to choose the feedback gain K such that the closed-loop system matrix
Ācl is stable. Then, techniques used in Lecture 6 on designing feedback controllers can be used
to design K matrix.

2. Consider the system in the previous problem, but now assume that the disturbance is measured.
For α = 1

2 , β = 1
2 , after verifying the necessary assumptions, design a feedforward compensator.

Figure 1: Feedforward Compensator Control Scheme

Figure 1 illustrates the control scheme you will need to design: first design K and H matrices, and
then design stabilizing controller R to stabilize the system with inputs (∂u, d) and output e. To
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achieve the second objective, first build a Luenberger observer with eigenvalues in 0.5 and 0.6 in
order to estimate the states ∂x and then design a state feedback controller ∂u(k) = K1∂x̂(k) with
eigenvalues in 0.2 and 0.3.

Solution: The design can be done only if

det (Σ) 6= 0 Σ =

[
A− I B
C 0

]
.

As shown in the previous exercise, this condition is verified for α = β = 1
2 . Moreover, for constant

y0 and d, there is a single equilibrium state x̂ and corresponding equilibrium input

ū =
[
0 I

]
Σ−1

[
0
I

]
︸ ︷︷ ︸

K

y0 +
[
0 I

]
Σ−1

[
−M
−N

]
︸ ︷︷ ︸

H

d

One has
K = 0 H = 1.

According to the control scheme is given in Figure 1, next step is to design the stabilizing regulator
R, which acts on the system

∂P :

{
∂x(k + 1) = A∂x(k) +B∂u(k)

e(k) = −C∂x(k)

where ∂x(k) = x(k)− x̄, ∂u = u(k)− ū, and e(k) = y0 − y(k). This can be done by developing an
observer coupled with a state-feedback controller. For this design to be possible, we need the pair
(A,B) to be reachable and the pair (A,C) to be observable. The first condition is already shown
in the solution of the previous exercise. Similarly, the pair (A,C) is observable as

Mo =

[
C
CA

]
=

[
1 0
1
2

1
2

]
rank(Mo) = 2.

Thanks to this, we can design a Luenberger observer as

∂x̂(k + 1) = A∂x̂(k) +B∂u(k) + L (e(k)− ê(k))

ê(k) = −C∂x̂(k)

where observer gain L is designed using place command of MATLAB so as to set the eigenvalues
of A+ LC to the desired values 0.5 and 0.6:

L =

[
0.1
−0.5

]
Then, one can design the controller K1 using the same MATLAB command such that the eigen-
values of A+BK1 are set to the desired values 0.2 and 0.3, when using a state feedback controller
∂u = K1∂x̂:

K1 =
[
0.5 0.62

]
3. Inverted Pendulum on Cart

In this exercise, you will design a controller for offset-free tracking of output variable for the cart-
pendulum system. This is the same system that you have seen in the previous exercise session. All
the files that you will need for the simulation are provided on Moodle.

Download the file Inverted+pendulum+2018-3+no+solutions.zip and unzip it. Consider the in-
verted pendulum described in the file Inverted+Pendulum+description.pdf and already used in the
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Figure 2: Cart-pendulum system.

previous exercise session. See Figure 2 for the schematic description of the system.

By discretizing, with sampling period T = 0.1s, the model obtained through linearization about
the equilibrium corresponding to the vertical position, one obtains

x+ =


1 0.0824 −0.0087 −0.0003
0 0.6692 −0.1652 −0.0087
0 0.0178 1.0582 0.1019
0 0.3367 1.1652 1.0582


︸ ︷︷ ︸

Ad

x+


0.0009
0.0165
−0.0009
−0.0168


︸ ︷︷ ︸

Bd

u
(3)

(a) Set the angular position of the pendulum as the output of the system. Is it possible to track
a setpoint y0(k) ∈ R, k = 0, 1, . . . by adding integral action? If not, why?

(b) Set the cart position as the output and design an offset-free controller for tracking a reference
position y0(k) ∈ R, k = 0, 1, . . . . Check the conditions guaranteeing that this goal is achievable.
To stabilize the extended system, you can assume the whole state is measured, hence avoiding
to introduce an observer, and design a controller assigning the closed-loop eigenvalues in e−2T ,
e−2.5T , e−3T , e−4T , and e−10T .

(c) Implement the controller in simulink file pole placement integrator pendulum anim nosol.slx
and verify stability by running simulations for different combinations of the reference inputs.
Remember to run the initialization file pendulum sys init.m prior to running the simulation.
Hint: In order to implement the integrator dynamics in discrete time, you can use either
Discrete State-Space block or Discrete-Time Integrator block in Simulink. If using the latter
option, double-click the block to open the Block Parameters menu and make sure to select
one of the Accumulation methods as the Integrator Method option.

Solution:

(a) Taking the angular position of the pendulum as the output corresponds to selecting an output
matrix C1 =

[
0 0 1 0

]
. Then, we see that the system (Ad, Bd, C1, 0) gives

det(Σ1) = det

([
Ad − I Bd

C1 0

])

= det




0 −0.0824 0.0087 0.0003 0.0009
0 0.3308 0.1652 0.0087 0.0165
0 −0.0178 −0.0582 −0.1019 −0.0009
0 −0.3367 −1.1652 −0.0582 −0.0168
0 0 1 0 0


 = 0
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and therefore does not satisfy the necessary condition det(Σ) 6= 0. Thus, the control design to
achieve offset-free tracking is not possible.

Physical Intuition: In steady state, for keeping a pendulum angle θ̄ 6= 0, the cart has to
drift continuously. But, in this case, the cart position becomes unbounded, which contradicts
stability of the closed-loop system and the definition of steady state, i.e., x̂(k + 1) = x̂(k).

(b) Taking the position of the cart as the output corresponds to selecting an output matrix
C2 =

[
1 0 0 0

]
. Then, we see that the system (Ad, Bd, C2, 0) gives

det(Σ2) = det

([
Ad − I Bd

C2 0

])

= det




0 −0.0824 0.0087 0.0003 0.0009
0 0.3308 0.1652 0.0087 0.0165
0 −0.0178 −0.0582 −0.1019 −0.0009
0 −0.3367 −1.1652 −0.0582 −0.0168
1 0 0 0 0


 = −1.6330× 10−4 6= 0

and therefore satisfies the necessary condition det(Σ) 6= 0. Thus, the control design to achieve
offset-free tracking is possible.

For achieving offset-free tracking, we will implement a controller with integrator. See the
MATLAB file Ex8.m for the solution.

(c) See the MATLAB file Ex8.m and the Simulink file pole placement integrator pendulum anim sol.slx
for the solution.
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