Multivariable Control (ME-422) - Exercise session 6B

Prof. G. Ferrari Trecate

In this set of exercises, you will learn to design different control strategies for controlling the lateral dynamics of a JAS 39 Gripen aircraft flying at an altitude of 500 m with a speed of 730 $\frac{\text{km}}{\text{h}}$.

A folder containing all the necessary files for simulating the system is provided in Moodle.

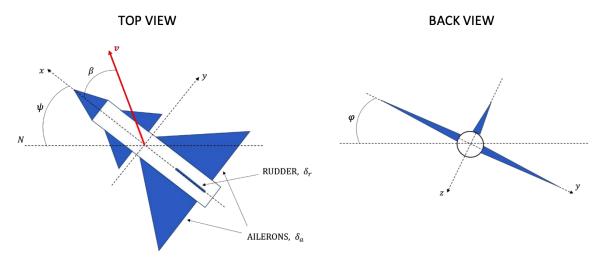


Figure 1: Top and back view of the Gripen aircraft

Linearized system model The continuous-time linearized dynamics of the aircraft are described by the state-space equations:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \tag{1}$$

where $x \in \mathbb{R}^7$, $u \in \mathbb{R}^2$ and $y \in \mathbb{R}^2$. Table 1 summarizes the physical meaning of the different state coordinates, whereas Table 2 defines the control variables. The measured signals (outputs) are $y_1 = x_4 = \varphi$ and $y_2 = x_5 = \psi$. The values of the matrices A, B and C are defined in the gripen_data.mat file. Assume that the system is initialized with:

$$\bar{v}_y = 10 \, \frac{\mathrm{m}}{\mathrm{s}} \,, \quad \bar{p} = \bar{r} = \frac{\pi}{180} \, \frac{\mathrm{rad}}{\mathrm{s}} \,, \quad \bar{\varphi} = \frac{\pi}{36} \, \mathrm{rad} \,, \quad \bar{\psi} = \frac{\pi}{18} \, \mathrm{rad} \quad \mathrm{and} \quad \bar{\delta_a} = \bar{\delta_r} = 0 \, \mathrm{rad} \,.$$

1. Load gripen_data.mat in Matlab to define the matrices of the linearized model of the Gripen.

	Physical variable	Description (see Figure 1)	Units
x_1	v_y	$v_y \approx \beta v$ where v is the velocity	$\frac{\mathrm{m}}{\mathrm{s}}$
$ x_2 $	p	roll angular rate	$\frac{\text{rad}}{\text{s}}$
$ x_3 $	r	turning angular rate	$\frac{\text{rad}}{\text{s}}$
$ x_4 $	arphi	roll angle	rad
$ x_5 $	ψ	course angle	rad
$ x_6 $	δ_a	aileron angle	rad
$ x_7 $	δ_r	rudder angle	rad

Table 1: States of the Gripen system

	Physical variable	Description (see Figure 1)	Units
u_1	δ_a^{cmd}	aileron command angle	rad
u_2	δ_r^{cmd}	rudder command angle	rad

Table 2: Control variables

- 2. Discretize the continuous time model with sampling time $T_s \in \{0.5, 0.05, 0.005\}$ using both the exact and the forward Euler discretization methods.
 - (a) Is stability always preserved? Verify your answer by simulating both the continuous-time and the discrete-time models using Simulink. To do this, assume that $u_1 = u_2 = 0$. Hint: use the Simulink blocks (discrete) state space and zero-order hold.
- 3. Choose a suitable value for T_s by analyzing the poles of the continuous-time system.