
Multivariable Control (ME-422) - Exercise session 6

SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the MIMO DT LTI system

x+ =

0 2 3
0 −2 4
0 0 3

x+

1 0
1 0
0 1

[u1
u2

]

(a) Is it possible to assign the eigenvalues using a scalar channel? If yes, design a state-feedback
controller assigning the eigenvalues in 1

2 , 1
3 , and 1

4 .
Hint: Relevant MATLAB commands are ctrb and place.

(b) Use the probabilistic approach seen in the lectures for assigning the eigenvalues.

Solution:

(a) Using only the first channel corresponds to setting B1 =

1
1
0

. One has

Mr = ctrb(A,B1) =

1 2 −4
1 −2 4
0 0 0


which has rank 2 < 3. The system is not reachable from the first channel.

Using only the second control input corresponds to setting B2 =

0
0
1

. One has

Mr = ctrb(A,B2) =

0 3 17
0 4 4
1 3 9


which has rank 3. The system is reachable from the second channel. Now, it is possible to set

the feedback control law to u = Kx = K1K2x where we set K1 =

[
0
1

]
such that the system

corresponds to

x+ = (A+BK1︸ ︷︷ ︸
,B2

K2)x = (A+B2K2)x A ∈ R3×3, B2 ∈ R3×1.

Now, it is possible to use Ackermann’s formula for the design of K2. Having already found
Mr above, let us find the desired characteristic polynomical of the system as

pD(λ) = (λ− 1

2
)(λ− 1

3
)(λ− 1

4
) = λ3 +

(
−26

24

)
︸ ︷︷ ︸

ã2

λ2 +

(
9

24

)
︸ ︷︷ ︸

ã1

λ+

(
− 1

24

)
︸ ︷︷ ︸

ã0

. (1)

1



Then, we evaluate this polynomical for the matrix A as

pD(A) = A3 + ã2A
2 + ã1A+ ã0I =

−0.0417 13.0833 17.7083
0 −13.1250 25.1667
0 0 18.333

 .
We can now calculate K2 using Ackermann’s formula as

K2 = −
[
0 0 1

]
M−1

r pD(A) =
[
0.0030 −1.6376 0.0833

]
.

Therefore, the feedback control law is given by

Kx = K1K2x =

[
0 0 0

0.0030 −1.6376 0.0833

]
.

Checking the eigenvalues of the closed-loop system gives

eig(A+BK1K2) =

0.25
0.33
0.5

 .
(b) For the probabilistic approach, we will first select random matrices K1 ∈ R2×3 and K2 ∈ R2×1

using MATLAB’s rand command. One possible choice of K1 and K2 matrices is

K1 =

[
0.2785 0.9575 0.1576
0.5469 0.9649 0.9706

]
K2 =

[
0.9572
0.4854

]
for which, the feedback control law is u = K1x+K2v, v ∈ R. The new augmented system has
the dynamics

x+ = (A+BK1)︸ ︷︷ ︸
A1

x+BK2︸ ︷︷ ︸
B1

v.

We then calculate the reachability matrix as

Mr =
[
B1 A1B1 A2

1B1

]
=

0.9572 4.6300 15.7495
0.9572 1.2867 13.9768
0.4854 3.3742 17.1714

 .
The pair (A1, B1) is reachable because rank(Mr) = 3. Then, one can use Ackermann’s formula
to design matrix K3 ∈ R1×3 such that v = K3x as

K3 = −
[
0 0 1

]
M−1

r pD(A1)

where pD(A1) is the calculation of characteristic equation in (1) with matrix λ = A1. We have

K3 =
[
−0.3913 0.5777 −4.7421

]
and the feedback control law is defined as u = (BK1 + BK2K3)x. The eigenvalues of the
closed loop system

x+ = (A+BK1 +BK2K3)x

are now placed at 1
2 , 1

3 , and 1
4 .

2. Inverted Pendulum on Cart
In this exercise, you will discretize, simulate, and control a cart with an inverted pendulum on top.
This exercise will be mainly based on MATLAB and Simulink. A folder containing all the necessary
files for simulating the system is provided in Moodle; you will only have to familiarize with the
simulation file and implement into it the controllers that you design.

(a) Download the file Inverted+pendulum+2018-1+no+solutions.zip and unzip it. Read the doc-
ument Inverted+Pendulum+description.pdf, which describes the dynamics of the system.
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(b) Run the initialization file pendulum sys init.m.

• Open the file pendulum openloop anim.mdl. If you have the “Simulink 3D Animation”
toolbox installed, you will see the pendulum animation. Otherwise, comment the block
named “VR visualization” to run a simulation. Values of variables will be still visible in
the scope blocks.
Hint: To install, under the “APPS” tab in the MATLAB windows, select “Get More
Apps” and search for the toolbox.

• Linearize the system around the obtained equilibrium. To do that, run the Simulink file
pendulum openloop anim.mdl. Thanks to the “Time-Based Linearization” block you will
find, in the workspace, the structure “pendulum openloop anim Time Based Linearization”
with the matrices of the linearized system.

• Run a simulation, add a perturbation V = 0.0001 to the input and observe the result.
Then, run a second simulation with V = 0 in order to store the correct linearized model
in the workspace, before you proceed with the rest of the exercise.

• Explore the Simulink blocks. In particular, zooming into the subsystem block, the initial
state for a simulation is stored in the “integrator” block.

(c) Using MATLAB, discretize the system with sampling time T = 0.1s and exact discretization.

Hint: Use the MATLAB function c2d.

(d) Assume that the state is fully accessible. After checking if the discretized system is reachable,
design a controller that assigns its eigenvalues in e−2T , e−2.5T , e−3T , and e−4T .

Hint: To compute the reachability matrix, use the MATLAB function ctrb(A,B). To calcu-
late the pole placement gain, you can use the MATLAB function place(A,B,P), where P is
a vector containing the values of the desired poles.

The simulation file pole placement pendulum anim.slx simulates how the closed-loop system
reacts to pulse disturbances (of amplitude 5) on the nominal voltage V = 0, for a given
choice of feedback gain K. Run this model with the K matrix you calculated to check the
performance of the controller against disturbance. Note that the pendulum nonlinear model
is present in the loop.

• Increase the pulse amplitude to 20 and repeat the simulation.

(e) Design a new controller assigning the eigenvalues in e−10T , e−3T , e−6.5T , and e−6T .

Run a simulation and compare with the previous regulator. Keep increasing the disturbance
amplitude. Which controller provides better performance? Can you say intuitively? Why?

Solution: See the MATLAB file Ex6.m.
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