Multivariable Control (ME-422) - Exercise session 6

Prof. G. Ferrari Trecate

1. Consider the MIMO DT LTI system

$$x^{+} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & -2 & 4 \\ 0 & 0 & 3 \end{bmatrix} x + \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

(a) Is it possible to assign the eigenvalues using a scalar channel? If yes, design a state-feedback controller assigning the eigenvalues in $\frac{1}{2}$, $\frac{1}{3}$, and $\frac{1}{4}$.

Hint: Relevant MATLAB commands are ctrb and place.

(b) Use the probabilistic approach seen in the lectures for assigning the eigenvalues.

2. Inverted Pendulum on Cart

In this exercise, you will discretize, simulate, and control a cart with an inverted pendulum on top. This exercise will be mainly based on MATLAB and Simulink. A folder containing all the necessary files for simulating the system is provided in Moodle; you will only have to familiarize with the simulation file and implement into it the controllers that you design.

- (a) Download the file Inverted+pendulum+2018-1+no+solutions.zip and unzip it. Read the document Inverted+Pendulum+description.pdf, which describes the dynamics of the system.
- (b) Run the initialization file pendulum_sys_init.m.
 - Open the file <code>pendulum_openloop_anim.mdl</code>. If you have the "Simulink 3D Animation" toolbox installed, you will see the pendulum animation. Otherwise, comment the block named "VR_visualization" to run a simulation. Values of variables will be still visible in the scope blocks.

Hint: To install, under the "APPS" tab in the MATLAB windows, select "Get More Apps" and search for the toolbox.

- Linearize the system around the obtained equilibrium. To do that, run the Simulink file <code>pendulum_openloop_anim.mdl</code>. Thanks to the "Time-Based Linearization" block you will find, in the workspace, the structure "pendulum_openloop_anim_Time_Based_Linearization" with the matrices of the linearized system.
- Run a simulation, add a perturbation V = 0.0001 to the input and observe the result. Then, run a second simulation with V = 0 in order to store the correct linearized model in the workspace, before you proceed with the rest of the exercise.
- Explore the Simulink blocks. In particular, zooming into the subsystem block, the initial state for a simulation is stored in the "integrator" block.
- (c) Using MATLAB, discretize the system with sampling time T=0.1s and exact discretization. **Hint:** Use the MATLAB function c2d.
- (d) Assume that the state is fully accessible. After checking if the discretized system is reachable, design a controller that assigns its eigenvalues in e^{-2T} , $e^{-2.5T}$, e^{-3T} , and e^{-4T} .

Hint: To compute the reachability matrix, use the MATLAB function ctrb(A, B). To calculate the pole placement gain, you can use the MATLAB function place(A, B, P), where P is a vector containing the values of the desired poles.

The simulation file $pole_placement_pendulum_anim.slx$ simulates how the closed-loop system reacts to pulse disturbances (of amplitude 5) on the nominal voltage V=0, for a given choice of feedback gain K. Run this model with the K matrix you calculated to check the

performance of the controller against disturbance. Note that the pendulum nonlinear model is present in the loop.

- Increase the pulse amplitude to 20 and repeat the simulation.
- (e) Design a new controller assigning the eigenvalues in e^{-10T} , e^{-3T} , $e^{-6.5T}$, and e^{-6T} . Run a simulation and compare with the previous regulator. Keep increasing the disturbance amplitude. Which controller provides better performance? Can you say intuitively? Why?