
Multivariable Control (ME-422) - Exercise session 4

Prof. G. Ferrari Trecate

1 Model Order Reduction: Theory

Consider a discrete time-invariant state-space model, given by:

G :

{
x+ = Ax+Bu , x(0) = x0,

y = Cx+Du,
(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp. The model order is the dimension of x, denoted by n, and is a measure of
the state-space model’s complexity. It is more challenging to analyze, understand, and simulate higher-
order models, i.e., models with a larger n. It is also easier to design a controller for a simpler model of
a lower order. Therefore, approximating a high-order model with a reduced-order one while preserving
some pivotal model characteristics can make working with it more convenient. This technique is called
model order reduction.

A reduced order system is a state-space system Gr:

Gr :

{
z+ = Arz +Bru , z(0) = z0,

yr = Crz +Dru,
(2)

such that z ∈ Rr, where r < n, and yr ∈ Rp. Note that the same input u is applied to both G and Gr.
A good reduced-model, Gr, produces trajectories yr which are close to the trajectories of the original

model, y. Depending on the criterion used to evaluate the resemblance between G and Gr, several MOD
methods have been developed. In this exercise, we study two such methods, both done in two steps:

Step 1: Project the state-space coordinates x into x using x = T x. That is, find a suitable invertible
matrix T ∈ Rn×n, and transform the state-space model

A = T−1 AT =

[
A11, A12

A21, A22

]
, A11 ∈ Rr×r, B = T−1 B =

[
B1

B2

]
, B1 ∈ Rr×m,

C = C T =
[
C1, C2

]
, C1 ∈ Rp×r, D = D.

Selecting the transformation T depends on the employed method.

Step 2: Partition the state-space coordinates into x = (x1, x2), where x1 ∈ Rr and obtain Gr by
selecting Ar = A11, Br = B1, Cr = C1, Dr = D. Accordingly, the new states are z = x1.

Method 1: dominant pole approximation This approach focuses on producing a reduced-order
model Gr that resembles the steady-state behavior of G. Recall that state and output at time step k of a
stable model can be expressed as a weighted sum of system’s modes. For eigenvalues close to the origin,
the corresponding mode quickly goes to 0 as the time increases. Therefore, these eigenvalues primarily
affect the transient response and have a negligible effect on the steady-state behavior.

The dominant pole approximation method assumes that the slowest mode(s) of the system dominates
the response and accordingly, ignores faster mode(s). When all eigenvalues are real, a model of reduced
order r is obtained by projecting the state space on the subspace spanned by the eigenvectors corre-
sponding to the r slowest (dominant) eigenvalues. For simplicity, we do not discuss the case for complex
poles.
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Figure 1: Starting the Reduce Model Order tool. Click on an empty code section in your live script.
Then, from the top bar, select LIVE EDITOR and click on Task. Under CONTROL SYSTEM DESIGN AND

ANALYSIS, double click on Reduce Model Order. If you do not see this field, make sure that the CONTROL
SYSTEM DESIGN AND ANALYSIS library is installed correctly. The tool will start in the empty code section
that you have selected.

Method 2: balanced truncation Balanced truncation aims at obtaining Gr which is close to G in
terms of the amount of energy transferred from the input into the output. To achieve this, states of G
with relatively small energy contribution are removed. Balanced truncation identifies state coordinate
directions that are i) very hard to excite with finite amounts of input energy, and ii) do not result in
much energy in the output. For checking (i) and (ii), all states must be controllable and observable.

2 Exercises

We will use the Reduce Model Order tool in Matlab for experimenting with the introduced order re-
duction techniques. In this section, we solve a series of exercises to familiarize ourselves with dominant
pole approximation and balanced truncation functionalities of this tool. Download the data file Ex4-data
from Moodle. Open a new live script and load the data using the command load(’Ex4-data’). The
file contains two discrete-time state-space models, G1 and G2. System matrices can be accessed through
G1.A, G1.B, · · · or viewed by double clicking on G1 or G2 in Matlab Workspace.

1. Find the number of states, inputs, and outputs for G1 and G2.

2. Calculate eigenvalues of G1 and G2 in Matlab. Are G1 and G2 stable? Categorize the eigenvalues as
being fast or slow.

3. Follow instructions in Fig. 1 to launch the tool and set fields according to Fig. 2. The Mode

Selection method retains the most effective modes in a frequency region you specify. To tar-
get the slower part of the response, set the lower frequency bound to a very small value. The upper
frequency bound distinguishes between slow and fast modes. Use the values in Fig. 2 to obtain a
first-order approximation of G1, named G1DP. Compare the impulse response of the full and reduced
order models, G1 and G1DP.

4. According to the theory, what is the eigenvalue of the first-order approximated system, G1DP? Find
the eigenvalue of G1DP using Matlab and check if the result matches your expectation.

5. In a new live script section, start another Reduce Model Order tool and load G2 in it. Set the
frequency bounds to get a first-order system and call it G2DP. Compare the impulse response to
exercise 3. First-order reduction approximates which system, G1 or G2, better? Why?

6. In part 5, slowly extend the frequency upper bound to increase the order of the reduced system
(you can check the order in the legend of the impulse response). Observe that eigenvalues of G2 will
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Figure 2: Setting the fields for dominant pole approximation. Select the full-order model and set the
method to Mode Selection. Name the reduced-order model G1DP. Specify the frequency range as
[0.001, 338.1]. The reduced-order system will appear in your Matlab Workspace with the indicated name,
G1DP, and the impulse response of G1 and G1DP will be plotted. Note that changing the fields, for instance,
the frequency range, overwrites G1DP. So, you should either change the reduced-order model name or
copy G1DP in another Workspace variable before changing the fields if you wish to keep G1DP.

get involved in the reduced system, G2DP, in order of magnitude. Describe the effect of extending
the frequency upper bound on the impulse response.

Next, we perform balanced truncation, which is applicable to controllable and observable systems.

7. Check controllability and observability of G1 and G2.

8. Set up balanced truncation according to Fig. 3. Pick G1 as the full-order model and call the reduced
model G1BT. Start with setting Reduced Order to 1 and increase it gradually one at a time. Monitor
the error reduction in the impulse response.

9. Obtain a first-order reduced model of G2 through balanced truncation and call it G2BT. Plot the
impulse responses of G2BT and compare it to G2DP obtained in question 5. Which method, dominant
pole approximation or balanced truncation, performs better? Why?
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Figure 3: Setting the fields for balanced truncation. Select the full-order model and set the method to
Balanced Truncation. Name the reduced-order model G1BT and set the reduced order to 1. Indicate to
preserve the DC gain. Select impulse as the output plot. The reduced-order system will appear in your
Matlab Workspace with the name G1BT, and the impulse response of G1 and G1BT will be plotted.
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