Multivariable Control (ME-422) - Exercise session 3
SOLUTIONS

Prof. G. Ferrari Trecate

1. Stability analysis
Consider the mass-spring-damper system

with M > 0, K >0, and d > 0.

As seen in the lecture, a discrete-time model of the system is
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where T > 0 is the sampling time, u = F', and z; and x5 are, respectively, the position and velocity
of the mass. Set T'=1, M = 1, and, for each one of the following cases, analyze the stability of
the system and compute the modes.

e K=0,d=0
e K=0,de(0,1)
e Ke€(0,1),d=0

In each case, check if the results match the physical intuition about the motion of the system.

Solution:

e K=0,d=0:

A= [(1) ﬂ — eigenvalue 1 with algebraic multiplcity 2

The system can be either stable or unstable. For deciding, one has to compute the geometric
multiplicity of the eigenvalue 1.

v :ker(A—I):kerqg éD - {MR2:§2:: 0} :{m 7@€R} S dim(Vy) = 1

Since dim(V) < 2, the system is unstable.
For computing the modes, we use the table seen in the lecture. The integer n verifies 1 <7 < 2
and n =1 <= n =v. Hence, n = 2. From the table, we have two modes indexed by p = 0,1



my (k) = 1¥ =1 (corresponding to p =0 )

0, for k=0 .
mo(k) = {k‘l(k_l), for k> 0 (corresponding to p =1)

The modes are in agreement with the physical intuition: in absence of damping and elastic
forces, if the initial velocity is positive and F = 0, the position of the mass diverges. This
behavior of the free state is captured by mq (k).

o« K=0,de (0,1):
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The system is stable. The eigenvalues are real and distinct. From the table, the modes are

ml(k‘) = 1k = 1, mg(k‘) = (1 — d)k

Physical intuition: under the effect of damping only, the free state starting from z; = 0,
xo # 0 is expected to converge to a position Z; # 0. However, this should happen for any
d > 0 and not only for d € (0,1). This discrepancy between the mathematical analysis and
physical intuition is due to the fact that discrete-time model is just an approximation of the
continuous-time one. This phenomenon will be analyzed later in the lectures.

e K€(0,1),d=0:

Compute the eigenvalues as

-1

Mo=1+VI-1-K=1+jVK.

det()JA)—det([AI_(l N D S A1 K =N 211K

Since |A1| = |A2| > 1, the system is unstable.

This does not match the physical intuition on the continuous-time system: the free state
starting from x; # 0, xo = 0 is expected to be bounded, as the mass will oscillate around
Z1 = 0 under the effect of the elastic force. The mismatch is due to the fact that the discretized
system is just an approximation of the continuous-time model.

2. Stability analysis
Analyze by hand the stability of the system z+ = Az where

o O (an)
o o = O
o O OO
=N OO

Hint: The eigenvalues of a block-diagonal matrix are the union of the eigenvalues of the blocks
on the main diagonal.



Solution: The eigenvalues of A are Ay =0, Ay =1, A3 =0, and Ay = 1. Then, the system cannot
be asymptotically stable. It can be stable or unstable. To decide, let us compute the eigenspace

-1 0 0 O
. . 1 0 0 O . 4. q
Vi = ker(A — 1I) = ker 0 0 -1 2 —{xeR .Ax—O}
0 0 0 O
A
—21=0 0
={zeR*: —2;,=0 = 2023 ,a,f €R
—x3+2x4 =0 B

Since the geometric multiplicity of the eigenvalue 1 is dim(V;) = 2, and it coincides with the
algebraic multiplicity, the system is simply stable.

. Invariance of reachability
Consider the LTT system

zt = Az + Bu xeR™ ueR™.

Show that the rank of the reachability matrix is invariant with respect to the change of coordinate
& =Tz, det(T) # 0.

This means that the reachability properties of the equivalent LTI systems are the same.

Solution: As seen in the lectures, the system dynamics in the Z-coordinates is
it =Ai+Bu A=TAT™', B=TB. (1)
The reachability matrix of the system (1) is
N, = [B AB ... A3,

Since AkB=TAT~'... TAT ' TB = TA*B, one has

k times

M,=[TB TAB ... TA"'B]|=T[B AB --- A""'B|

M,

where M, is the reachability matrix of (4, B). Since T is nonsingular, one has rank(M,) = rank(M,.).

. Consider the multi-compartment system describing the discrete-time dynamics of a drug on various
parts of the body, given in the figure, where the state z;(k) of each compartment is the mass of
the drug measured in mg in compartment i, and arrows represent mass transfer. The mass transfer
rates are k1o = ki3 = ko3 = ks = 0.5 L. Inputs are mass flows measured in mg/h.

A discrete-time model describing the mass transfer between compartments is

xf = — (k12 + ki3)x1 + 21 +uy
.’E;r = k12£L'1 — ng(EQ + X9 + U9

LE;_ = k131‘1 + kggd?z — k3$3 + 3.



ingestion injection

uy (k) ua(k)

Compartment 1 o Compartment 2
(stomach) (blood)

(a) e Remove the input uy from the model. Using MATLAB, check that the system is unreach-
able.

e Can you compute an unreachable state just by looking at the system structure? (Hint:
Think about an experiment starting without drug in the body.)

Build the reachability form of the system and verify your result.
(b) Add back the input u; and check if the system is reachable, using MATLAB. If yes, compute

a control law u(k), k =0, 1,2 that, starting without drug in the body, produces z1(3) = 0.5,
22(3) =1, and z3(3) = 1.

Solution: See the MATLAB file Ex3.m.



