
Multivariable Control (ME-422) - Exercise session 2B

SOLUTIONS

Prof. G. Ferrari Trecate

Consider the Duffing oscillator shown in Figure 1. This system consists of a mass-less flexible arm of
length l and a metal ball of mass m. The ball is attached to the upper extreme of the flexible arm and is
free to oscillate, whereas the lower extreme of the arm is anchored to the ground. The angular position of
the ball can be controlled by generating an electromagnetic torque using two magnets, as shown below.

Figure 1: Duffing oscillator

The dynamics of the system can be modeled according to the second-order differential equation:

ml2ẍ1 = mgl sin(x1)− αx1 − kẋ1 + τ ,

where αx1 represents the restoring torque (α > 0) and kẋ1 the damping torque (k > 0). Defining x2 = ẋ1

and u =
τ

ml2
, we obtain the following state-space model for the Duffing oscillator:

ẋ1 = x2,

ẋ2 =
g

l
sin(x1)−

α

ml2
x1 −

k

ml2
x2 + u.

(1)

The values of the parameters are l = 1m, α = 16Nm, m = 2kg, k = 4Nms and g = 9.81 m
s2 . We

consider full state observation.

1. Compute all the equilibrium states (x̄1, x̄2) of the system when ū = 0.
Hint: use the vpasolve function to numerically solve a nonlinear equation. You may need to indi-
cate an initial value to the solver.

2. Linearize the system around the equilibrium states obtained in the previous point. Are these lin-
earized systems stable? Can you conclude anything about the stability of the equilibria of the
original non-linear system?

3. Construct the non-linear model (1) in Simulink. Using the time-based linearization block, compute
the matrices that describe the dynamics of the linearized systems around the different equilibria.
Compare the results obtained numerically with the analytical solutions obtained in point 2.
To linearize a non-linear system using Simulink, follow these steps:

(a) Replace the input and output signals of the non-linear system with the In1 and Out1 blocks
available in the Simulink library under the sources and sinks tabs.
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(b) Add a Timed-Based Linearization block available in the Simulink library under the model-
wide utilities tab.

(c) Save the Simulink model as filename.slx and simulate the evolution of the system. Then,
extract the matrices that characterize the linearized system dynamics from the Matlab structure
named filename Timed Based Linearization that will be created automatically.

Do not forget to properly set the linearization time of the Timed-Based Linearization block and
the initial condition of the system.

4. Simulate and compare the evolution of the non-linear system with that of the three linearized
systems constructed in the previous point. First, assume that (x1(0), x2(0)) = (0, 0). Then, repeat
the simulation with initial conditions (0.5, 0) and (−0.5, 0). Plot the state trajectories in the x1-
x2 plane.
Hint: set the input to zero and define the different initial conditions as workspace variables.

Solution:

1. To calculate the equilibria of the system, we impose ẋ1 = ẋ2 = 0 in (1). The first equation
implies that x̄2 = 0. Recalling that ū = 0, the second equation gives 9.81 sin(x̄1) = 8x̄1. We solve
the nonlinear equation numerically using Matlab (see file Ex2B.mlx). Then, the system has three
equilibria at:

a. (x̄1
1, x̄

1
2) = (0, 0), b. (x̄2

1, x̄
2
2) ≈ (1.08, 0), c. (x̄3

1, x̄
3
2) ≈ (−1.08, 0).

2. Let u = ū + δu, x1 = x̄i
1 + δxi

1 and x2 = x̄i
2 + δxi

2 for i = 1, 2, 3. The linearized system dynamics
around the equilibria computed in the previous point are given by

δẋi
1 = δxi

2,

δẋi
2 = 9.81 cos(x̄i

1)δx
i
1 − 8δxi

1 − 2δxi
2 + δu.

Rewriting these equations in matrix form, we obtain:[
δẋi

1

δẋi
2

]
=

[
0 1

9.81 cos(x̄i
1)− 8 −2

] [
δxi

1

δxi
2

]
+

[
0
1

]
δu ,

for i = 1, 2, 3. To analyze stability properties, we compute the eigenvalues of the linearized system
dynamics around the different equilibrium points. These are approximately given by:

a. (λ1
1, λ

1
2) = (0.68,−2.68), b. (λ2

1, λ
2
2) = (λ3

1, λ
3
2) = (−1 + 1.54j,−1− 1.54j).

Hence, we conclude that the linearized system around (x̄1
1, x̄

1
2) = (0, 0) is unstable, whereas the

systems obtained by linearizing around (x̄2
1, x̄

2
2) ≈ (1.08, 0) and (x̄3

1, x̄
3
2) ≈ (−1.08, 0) are stable. As

no eigenvalue has zero real part, we conclude that the equilibrium (x̄1
1, x̄

1
2) = (0, 0) of the original

non-linear system is an unstable equilibrium, whereas (x̄2
1, x̄

2
2) ≈ (1.08, 0) and (x̄3

1, x̄
3
2) ≈ (−1.08, 0)

are stable equilibria of the original non-linear system.

3. See the file Ex2B.mlx.

4. The linearized dynamics around (x̄2
1, x̄

2
2) ≈ (1.08, 0) and (x̄3

1, x̄
3
2) ≈ (−1.08, 0) are globally asymp-

totically stable. Hence, regardless of where any of these two linearized system is initialized, it
converges back to the equilibrium (δx1, δx2) = (0, 0). Conversely, the linearized dynamics around
(x̄1

1, x̄
1
2) ≈ (0, 0) are unstable, and the state trajectories diverge unless the system is perfectly ini-

tialized at the equilibrium. Finally, the original non-linear system also remains indefinitely at the
unstable equilibrium if it is perfectly initialized there. For general initial conditions, we observe
that the dynamics of the non-linear system converge to one of the two stable equilibria.
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(a) (x1(0), x2(0)) = (0, 0) (b) (x1(0), x2(0)) = (0.5, 0) (c) (x1(0), x2(0)) = (−0.5, 0)

Figure 2: Comparison between the state-space trajectories of the original non-linear system and the three
systems obtained by linearization around different equilibrium points, as shown in the legend.
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