Exercise session 2B

Linearization around an equilibrium and stability

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Let (\bar{x}, \bar{u}) be an equilibrium for the NL invariant system

$$\dot{x} = f(x, u)$$

$$y = g(x, u)$$

Deviations: $\delta x(t) = x(t) - \bar{x}$, $\delta u(t) = u(t) - \bar{u}$, $\delta y(t) = y(t) - \bar{y}$

Let (\bar{x}, \bar{u}) be an equilibrium for the NL invariant system

$$\dot{x} = f(x, u)$$
$$y = g(x, u)$$

Deviations:
$$\delta x(t) = x(t) - \bar{x}$$
, $\delta u(t) = u(t) - \bar{u}$, $\delta y(t) = y(t) - \bar{y}$

First order Taylor expansion about the equilibrium:

$$f(x,u) \simeq f(\bar{x},\bar{u}) + D_x f(x,u) \Big|_{\substack{x=\bar{x}\\u=\bar{u}}} (x-\bar{x}) + D_u f(x,u) \Big|_{\substack{x=\bar{x}\\u=\bar{u}}} (u-\bar{u})$$

$$g(x,u) \simeq g(\bar{x},\bar{u}) + D_x g(x,u) \Big|_{\substack{x=\bar{x}\\u=\bar{u}}} (x-\bar{x}) + D_u g(x,u) \Big|_{\substack{x=\bar{x}\\u=\bar{u}}} (u-\bar{u})$$

$$D_{x}f(x,u) = \begin{bmatrix} \frac{\partial f_{1}(x,u)}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(x,u)}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(x,u)}{\partial x_{1}} & \cdots & \frac{\partial f_{n}(x,u)}{\partial x_{n}} \end{bmatrix}$$
 Jacobian with respect to the variables x

One gets:

$$\dot{\delta x} = \dot{x} - \dot{\bar{x}} = f(x, u) \simeq \underbrace{f(\bar{x}, \bar{u})}_{=0} + D_x f(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta x + D_u f(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta u$$

$$\delta y = -\bar{y} + y \simeq \underbrace{-g(\bar{x}, \bar{u}) + g(\bar{x}, \bar{u})}_{=0} + D_x g(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta x + D_u g(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta u$$

One gets:

$$\begin{split} \dot{\delta x} &= \dot{x} - \dot{\bar{x}} = f(x, u) \simeq \underbrace{f(\bar{x}, \bar{u})}_{=0} + D_x f(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta x + D_u f(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta u \\ \delta y &= -\bar{y} + y \simeq \underbrace{-g(\bar{x}, \bar{u}) + g(\bar{x}, \bar{u})}_{=0} + D_x g(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta x + D_u g(x, u) \Big|_{\substack{x = \bar{x} \\ u = \bar{u}}} \delta u \end{split}$$

Linearized system

Defining

$$A = D_x f(x,u) \Big|_{\substack{x = \overline{x} \\ u = \overline{u}}}, \ B = D_u f(x,u) \Big|_{\substack{x = \overline{x} \\ u = \overline{u}}}, \ C = D_x g(x,u) \Big|_{\substack{x = \overline{x} \\ u = \overline{u}}}, \ D = D_u g(x,u) \Big|_{\substack{x = \overline{x} \\ u = \overline{u}}}$$

the linearized system around the equilibrium (\bar{x}, \bar{u}) is

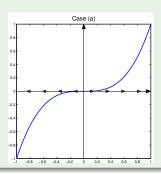
$$\dot{\delta x} = A\delta x + B\delta u$$
$$\delta y = C\delta x + D\delta u$$

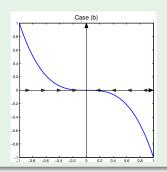
We hope state trajectories of the linearized system are good approximations of $x(t) - \bar{x}$... but this does not always happen

We hope state trajectories of the linearized system are good approximations of $x(t)-\bar{x}$... but this does not always happen

Example: (a):
$$\dot{x} = x^3$$
, (b): $\dot{x} = -x^3$

Linearized systems around $\bar{x}=0$ are the same: $\delta \dot{x}=0 \Rightarrow \delta x(t)=x_0$ but NL systems have different behaviors





Stability of an equilibrium state of an NL system

Stability of a linear system can be analyzed by looking at the eigenvalues of the transition matrix...

...but how can we analyze the stability of an equilibrium state of an NL system?¹

- Stability analysis is difficult in general
- Sufficient conditions for stability of an equilibrium state follow from the dynamics of the linearized system around it
 - \hookrightarrow differently from linear systems, stability is a **property of the** equilibrium state only
 - \hookrightarrow different equilibrium states of a nonlinear system may have different stability property

¹Check the Appendix for a mathematical definition of stability of an equilibrium state of a non-linear system.

Stability test for the equilibrium states of an NL system

NL system

$$NL : \dot{x} = f(x)$$

 \bar{x} : equilibrium state

Linearized system around \bar{x}

$$LIN: \dot{\delta x} = A(\bar{x})\delta x$$

$$A(\bar{x}) = D_x f(x) \Big|_{x = \bar{x}}$$

Stability test for the equilibrium states of an NL system

NL system

$$NL : \dot{x} = f(x)$$

 \bar{x} : equilibrium state

Linearized system around \bar{x}

$$LIN: \dot{\delta x} = A(\bar{x})\delta x$$

$$A(\bar{x}) = D_x f(x) \Big|_{x = \bar{x}}$$

Theorem

The equilibrium state \bar{x} of NL

- ullet is AS if all eigenvalues of LIN have real part < 0
- ullet is unstable if at least an eigenvalue of LIN has real part >0

Stability test for the equilibrium states of an NL system

NL system

$$NL : \dot{x} = f(x)$$

 \bar{x} : equilibrium state

Linearized system around \bar{x}

$$LIN: \dot{\delta x} = A(\bar{x})\delta x$$

$$A(\bar{x}) = D_x f(x) \Big|_{x = \bar{x}}$$

Theorem

The equilibrium state \bar{x} of NL

- ullet is AS if all eigenvalues of LIN have real part < 0
- ullet is unstable if at least an eigenvalue of LIN has real part >0

No conclusion if all eigenvalues of LIN have real part ≤ 0 and at least an eigenvalue has zero real part

Appendix

Stability of an equilibrium state

Let \bar{x} be an equilibrium state for the NL invariant system $\dot{x} = f(x)$

Ball centered in $\bar{z} \in \mathbb{R}^n$ of radius $\delta > 0$

$$B_{\delta}(\bar{z}) = \{ z \in \mathbb{R}^n : ||z - \bar{z}|| < \delta \}$$

Definition (Lyapunov stability)

The equilibrium state \bar{x} is

stable if

$$\forall \epsilon > 0 \ \exists \delta > 0, \ x(0) \in B_{\delta}(\bar{x}) \Rightarrow x(t) \in B_{\epsilon}(\bar{x}), \forall t \geq 0$$

 \bullet Asymptotically Stable (AS) if it is stable and $\exists \gamma > 0$ such that

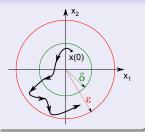
$$x(0) \in B_{\gamma}(\bar{x}) \Rightarrow \lim_{t \to +\infty} ||x(t) - \bar{x}|| = 0$$

unstable if it is not stable

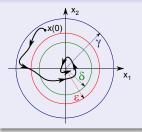
- 《ロ》《御》《意》《意》 (意) の((

Remarks

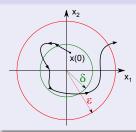
$\bar{x} = 0$ stable



$\bar{x} = 0 \text{ AS}$



$\bar{x} = 0$ unstable



Regions of attraction of \bar{x} AS

• $X \subseteq \mathbb{R}^n$ is a region of attraction of \bar{x} if

$$x(0) \in X \Rightarrow \lim_{t \to +\infty} ||x(t) - \bar{x}|| = 0$$

Example: $B_{\gamma}(\bar{x})$ is a region of attraction

• THE region of attraction of \bar{x} is the union of all regions of attraction of \bar{x} (i.e. it is maximal)

Review: stability tests for LTI systems

LTI system

$$\dot{x} = Ax, \quad x(t) \in \mathbb{R}^n$$

System eigenvalues = eigenvalues of the matrix A

Theorem

The equilibrium state $\bar{x} = 0$ of a linear system is

- ullet AS \Leftrightarrow all system eigenvalues have real part < 0
- ullet unstable if at least a system eigenvalue has real part >0
- ullet stable if all system eigenvalues have real part ≤ 0 , at least one has zero real part and all eigenvalues with zero real part are simple

When all eigenvalues have real part ≤ 0 and there are multiple eigenvalues with zero real part, the equilibrium state can be either stable or unstable.

Giancarlo Ferrari Trecate Multivariable Control EPFL 10 / 10