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École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

giancarlo.ferraritrecate@epfl.ch

Giancarlo Ferrari Trecate Multivariable Control EPFL 1 / 10

mailto:giancarlo.ferraritrecate@epfl.ch


Linearization around an equilibrium

Let (x̄ , ū) be an equilibrium for the NL invariant system

ẋ = f (x , u)

y = g(x , u)

Deviations: δx(t) = x(t)− x̄ , δu(t) = u(t)− ū, δy(t) = y(t)− ȳ

First order Taylor expansion about the equilibrium:

f (x , u) ≃ f (x̄ , ū) + Dx f (x , u)
∣∣∣
x=x̄
u=ū

(x − x̄) + Duf (x , u)
∣∣∣
x=x̄
u=ū

(u − ū)

g(x , u) ≃ g(x̄ , ū) + Dxg(x , u)
∣∣∣
x=x̄
u=ū

(x − x̄) + Dug(x , u)
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u=ū
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 Jacobian with respect to the variables x
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(x − x̄) + Duf (x , u)
∣∣∣
x=x̄
u=ū
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Linearization around an equilibrium

One gets:

˙δx = ẋ − ˙̄x = f (x , u) ≃ f (x̄ , ū)︸ ︷︷ ︸
=0

+Dx f (x , u)
∣∣∣
x=x̄
u=ū

δx + Duf (x , u)
∣∣∣
x=x̄
u=ū

δu

δy = −ȳ + y ≃ −g(x̄ , ū) + g(x̄ , ū)︸ ︷︷ ︸
=0

+Dxg(x , u)
∣∣∣
x=x̄
u=ū

δx + Dug(x , u)
∣∣∣
x=x̄
u=ū

δu

Linearized system

Defining

A = Dx f (x , u)
∣∣∣
x=x̄
u=ū

, B = Duf (x , u)
∣∣∣
x=x̄
u=ū

, C = Dxg(x , u)
∣∣∣
x=x̄
u=ū

, D = Dug(x , u)
∣∣∣
x=x̄
u=ū

the linearized system around the equilibrium (x̄ , ū) is

˙δx = Aδx + Bδu

δy = Cδx + Dδu
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the linearized system around the equilibrium (x̄ , ū) is
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Linearization around an equilibrium

We hope state trajectories of the linearized system are good
approximations of x(t)− x̄ ... but this does not always happen

Example: (a): ẋ = x3, (b): ẋ = −x3

Linearized systems around x̄ = 0 are the same: ˙δx = 0 ⇒ δx(t) = x0
but NL systems have different behaviors
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Stability of an equilibrium state of an NL system

Stability of a linear system can be analyzed by looking at the eigenvalues
of the transition matrix...

...but how can we analyze the stability
of an equilibrium state of an NL system?1

Stability analysis is difficult in general

Sufficient conditions for stability of an equilibrium state follow from
the dynamics of the linearized system around it

↪→ differently from linear systems, stability is a property of the
equilibrium state only

↪→ different equilibrium states of a nonlinear system may have
different stability property

1Check the Appendix for a mathematical definition of stability of an equilibrium state
of a non-linear system.
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Stability test for the equilibrium states of an NL system

NL system

NL : ẋ = f (x)

x̄ : equilibrium state

Linearized system around x̄

LIN : ˙δx = A(x̄)δx

A(x̄) = Dx f (x)
∣∣∣
x=x̄

Theorem

The equilibrium state x̄ of NL

is AS if all eigenvalues of LIN have real part < 0

is unstable if at least an eigenvalue of LIN has real part > 0

No conclusion if all eigenvalues of LIN have real part ≤ 0 and at least an
eigenvalue has zero real part
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Appendix
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Stability of an equilibrium state

Let x̄ be an equilibrium state for the NL invariant system ẋ = f (x)

Ball centered in z̄ ∈ Rn of radius δ > 0

Bδ(z̄) = {z ∈ Rn : ∥z − z̄∥ < δ}

Definition (Lyapunov stability)

The equilibrium state x̄ is

stable if

∀ϵ > 0 ∃δ > 0, x(0) ∈ Bδ(x̄) ⇒ x(t) ∈ Bϵ(x̄),∀t ≥ 0

Asymptotically Stable (AS) if it is stable and ∃γ > 0 such that

x(0) ∈ Bγ(x̄) ⇒ lim
t→+∞

∥x(t)− x̄∥ = 0

unstable if it is not stable
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Remarks

x̄ = 0 stable

x1

x2

�

�

x(0)

x̄ = 0 AS

x1

x2

�

�

x(0)

�

x̄ = 0 unstable

x1

x2

�

�

x(0)

Regions of attraction of x̄ AS

X ⊆ Rn is a region of attraction of x̄ if

x(0) ∈ X ⇒ lim
t→+∞

∥x(t)− x̄∥ = 0

Example: Bγ(x̄) is a region of attraction
THE region of attraction of x̄ is the union of all regions of attraction
of x̄ (i.e. it is maximal)
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Review: stability tests for LTI systems

LTI system

ẋ = Ax , x(t) ∈ Rn

System eigenvalues = eigenvalues of the matrix A

Theorem

The equilibrium state x̄ = 0 of a linear system is

AS ⇔ all system eigenvalues have real part < 0

unstable if at least a system eigenvalue has real part > 0

stable if all system eigenvalues have real part ≤ 0, at least one has
zero real part and all eigenvalues with zero real part are simple

When all eigenvalues have real part ≤ 0 and there are multiple eigenvalues
with zero real part, the equilibrium state can be either stable or unstable.
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