
Multivariable Control (ME-422) - Exercise session 2

SOLUTIONS

Prof. G. Ferrari Trecate

1. Exercise on modal analysis
Consider the system x+ = Ax where

A =


−0.5 0 0 0
−1 1 0 0
0 0 −0.5 2
0 0 0 1

 .

Tell if

(a) all modes go to zero as k → ∞
(b) all modes are bounded

(c) there is at least an unbounded mode.

Hint: Note that A is block diagonal and its eigenvalues are those of each individual block.

Solution: By inspection (block diagonal matrix)

λ1 = −0.5 n1 = 2 ν1 =?

λ2 = 1 n2 = 2 ν2 =?.

• |λ1| < 1
Lemma−−−−→ all modes associated to λ1 are bounded and go to 0, independently of

ν1.

– At home: Show that ν1 = 2 and hence there is a unique mode associated to λ1.

• |λ2| = 1
Lemma−−−−→ bounded or unbounded modes: it depends on ν2.

ν2 = dim (V1)

V1 = {v : (A− I) v = 0} =



v1
v2
v3
v4

 :

−1.5v1 = 0

−v1 = 0

−1.5v3 + 2v4 = 0


=

v :


0
α
β
2
1.5β

 , α, β ∈ R

 −→ ν2 = 2.

Since n2 = ν2, the table tells us there is only one mode and the Lemma tells us the mode is
bounded.
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Conclusion: the answer is (b).

2. Complex conjugate eigenvalues generate real modes
At first sight, it might seem strange that complex conjugate eigenvalues give rise to modes taking
values in R instead of C. This exercise provides some intuition on why this happens.

Consider the system

{
x+ = Ax

y = Cx

x(0) = x0.

(a) Let A ∈ Rn×n and T ∈ Cn×n be nonsingular matrices.
Define x̂(k) = Tx(k) ∈ Cn. Show that x̂(k) follows the dynamics x̂+ = Âx̂ with Â = TAT−1.

Solution: The relation has been shown in the lectures.

(b) Consider the case

A =

[
1 1
−1 1

]
C =

[
1 1

]
,

where the eigenvalues of A are 1± j =
√
2e±j π

4 and

Â = TAT−1 =

[
1 + j 0
0 1− j

]
for T−1 =

[
1 1
j −j

]
.

Compute explicitly x(k) and y(k) as a function of x0.

Solution:

x(k) = 0.5

[
1 1
j −j

] [(√
2ej

π
4

)k
0

0
(√

2e−j π
4

)k
] [

1 −j
1 j

]
x0 =

= 0.5
√
2k

[
ejk

π
4 + e−jk π

4 −jejk
π
4 + je−jk π

4

jejk
π
4 − je−jk π

4 ejk
π
4 + e−jk π

4

]
x0 =

=
√
2k

[
cos(kπ/4) sin(kπ/4)
− sin(kπ/4) cos(kπ/4)

]
x0.

From the output equation, we obtain

y(k) =
√
2k

[
1 1

] [ cos(kπ/4) sin(kπ/4)
− sin(kπ/4) cos(kπ/4)

]
x0 =

=
√
2k+1

[
cos((k + 1)π/4) cos((k − 1)π/4)

]
x0.

3. Satellite simulation
Consider the satellite in the figure. The satellite mission requires accurate pointing of a scientific
sensor package with respect to a fixed star.

• θ1 is the angle deviation of the satellite body

• θ2 is the angle deviation of the instrument package from the reference star. It can be measured
through devices called “star trackers.”

By using cold-gas jets, one can produce a torque Tc acting on the satellite body.

The figure also shows an equivalent mechanical model of the satellite. This system is composed by
two rotating masses connected by a spring with torque constant κ and viscous-damping constant
b.
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Instrument 
Package

A discrete-time model of the system with state x =
[
θ2 θ̇2 θ1 θ̇1

]
, output y = θ2, and input u = Tc

can be written as 
x+ =


1 T 0 0

−T κ
J2

1− T b
J2

T κ
J2

T b
J2

0 0 1 T
T κ

J1
T b

J1
−T κ

J1
1− T b

J1

x+


0
0
0

T 1
J1

u

y =
[
1 0 0 0

]
x,

where T > 0 is the sampling time and J1 and J2 are the inertias of the masses. Set κ = 0.091,
b = 0.0036, J1 = 1, J2 = 0.1, and T = 0.01.

(a) Check if the system has unbounded modes. Use MATLAB for computations.

(b) Draw the free output between 0 and 200s., starting from the initial condition x = [0 0 0.1 0]
T
.

Give a physical interpretation to the result.

(c) Draw the impulse response (that is, the output generated by the input u(0) = 1, u(k) =
0, k > 0) and give an interpretation of the results in terms of the satellite motion.

(d) Now consider the output as y = x2. Draw the impulse response and, through the physical
interpretation of the results, explain why its asymptotic value is consistent with the graph
obtained in the previous point.

Useful MATLAB commands: eig, null, ss(A,B,C,D,T), lsim, impulse.

Solution: See the MATLAB file Ex2.m.
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