# Multivariable Control (ME-422) - Exercise session 2 SOLUTIONS

### Prof. G. Ferrari Trecate

## 1. Exercise on modal analysis

Consider the system  $x^+ = Ax$  where

$$A = \begin{bmatrix} -0.5 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -0.5 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Tell if

- (a) all modes go to zero as  $k \to \infty$
- (b) all modes are bounded
- (c) there is at least an unbounded mode.

**Hint:** Note that A is block diagonal and its eigenvalues are those of each individual block.

**Solution:** By inspection (block diagonal matrix)

$$\lambda_1 = -0.5$$
  $n_1 = 2$   $\nu_1 = ?$   
 $\lambda_2 = 1$   $n_2 = 2$   $\nu_2 = ?$ .

- $|\lambda_1| < 1$   $\xrightarrow{\text{Lemma}}$  all modes associated to  $\lambda_1$  are bounded and go to 0, independently of  $\nu_1$ .
  - At home: Show that  $\nu_1 = 2$  and hence there is a unique mode associated to  $\lambda_1$ .
- $|\lambda_2| = 1$   $\xrightarrow{\text{Lemma}}$  bounded or unbounded modes: it depends on  $\nu_2$ .

$$\nu_2 = dim(V_1)$$

$$V_{1} = \{v : (A - I) v = 0\} = \left\{ \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix} : \begin{aligned} -1.5v_{1} &= 0 \\ -v_{1} &= 0 \\ -1.5v_{3} + 2v_{4} &= 0 \end{aligned} \right\}$$
$$= \left\{ v : \begin{bmatrix} 0 \\ \alpha \\ \beta \\ \frac{2}{1.5}\beta \end{bmatrix}, \alpha, \beta \in \mathbb{R} \right\} \longrightarrow \nu_{2} = 2.$$

Since  $n_2 = \nu_2$ , the table tells us there is only one mode and the Lemma tells us the mode is bounded.

Conclusion: the answer is (b).

## 2. Complex conjugate eigenvalues generate real modes

At first sight, it might seem strange that complex conjugate eigenvalues give rise to modes taking values in  $\mathbb{R}$  instead of  $\mathbb{C}$ . This exercise provides some intuition on why this happens.

Consider the system

$$\begin{cases} x^+ = Ax \\ y = Cx \end{cases}$$
$$x(0) = x_0$$

(a) Let  $A \in \mathbb{R}^{n \times n}$  and  $T \in \mathbb{C}^{n \times n}$  be nonsingular matrices. Define  $\hat{x}(k) = Tx(k) \in \mathbb{C}^n$ . Show that  $\hat{x}(k)$  follows the dynamics  $\hat{x}^+ = \hat{A}\hat{x}$  with  $\hat{A} = TAT^{-1}$ .

**Solution:** The relation has been shown in the lectures.

(b) Consider the case

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix},$$

where the eigenvalues of A are  $1 \pm j = \sqrt{2}e^{\pm j\frac{\pi}{4}}$  and

$$\hat{A} = TAT^{-1} = \begin{bmatrix} 1+j & 0\\ 0 & 1-j \end{bmatrix} \text{ for } T^{-1} = \begin{bmatrix} 1 & 1\\ j & -j \end{bmatrix}.$$

Compute explicitly x(k) and y(k) as a function of  $x_0$ .

Solution:

$$\begin{split} x(k) &= 0.5 \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \begin{bmatrix} \left(\sqrt{2}e^{j\frac{\pi}{4}}\right)^k & 0 \\ 0 & \left(\sqrt{2}e^{-j\frac{\pi}{4}}\right)^k \end{bmatrix} \begin{bmatrix} 1 & -j \\ 1 & j \end{bmatrix} x_0 = \\ &= 0.5\sqrt{2^k} \begin{bmatrix} e^{jk\frac{\pi}{4}} + e^{-jk\frac{\pi}{4}} & -je^{jk\frac{\pi}{4}} + je^{-jk\frac{\pi}{4}} \\ je^{jk\frac{\pi}{4}} - je^{-jk\frac{\pi}{4}} & e^{jk\frac{\pi}{4}} + e^{-jk\frac{\pi}{4}} \end{bmatrix} x_0 = \\ &= \sqrt{2^k} \begin{bmatrix} \cos(k\pi/4) & \sin(k\pi/4) \\ -\sin(k\pi/4) & \cos(k\pi/4) \end{bmatrix} x_0. \end{split}$$

From the output equation, we obtain

$$y(k) = \sqrt{2^k} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \cos(k\pi/4) & \sin(k\pi/4) \\ -\sin(k\pi/4) & \cos(k\pi/4) \end{bmatrix} x_0 =$$
$$= \sqrt{2^{k+1}} \left[ \cos((k+1)\pi/4) & \cos((k-1)\pi/4) \right] x_0.$$

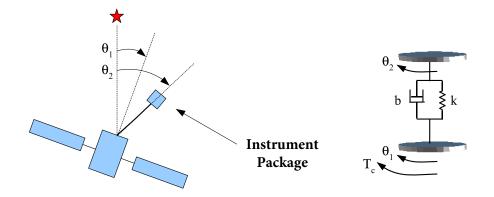
#### 3. Satellite simulation

Consider the satellite in the figure. The satellite mission requires accurate pointing of a scientific sensor package with respect to a fixed star.

- $\theta_1$  is the angle deviation of the satellite body
- $\theta_2$  is the angle deviation of the instrument package from the reference star. It can be measured through devices called "star trackers."

By using cold-gas jets, one can produce a torque  $T_c$  acting on the satellite body.

The figure also shows an equivalent mechanical model of the satellite. This system is composed by two rotating masses connected by a spring with torque constant  $\kappa$  and viscous-damping constant b.



A discrete-time model of the system with state  $x = \begin{bmatrix} \theta_2 & \dot{\theta}_2 & \theta_1 & \dot{\theta}_1 \end{bmatrix}$ , output  $y = \theta_2$ , and input  $u = T_c$  can be written as

$$\begin{cases} x^{+} = \begin{bmatrix} 1 & T & 0 & 0 \\ -T\frac{\kappa}{J_{2}} & 1 - T\frac{b}{J_{2}} & T\frac{\kappa}{J_{2}} & T\frac{b}{J_{2}} \\ 0 & 0 & 1 & T \\ T\frac{\kappa}{J_{1}} & T\frac{b}{J_{1}} & -T\frac{\kappa}{J_{1}} & 1 - T\frac{b}{J_{1}} \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ T\frac{1}{J_{1}} \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x, \end{cases}$$

where T > 0 is the sampling time and  $J_1$  and  $J_2$  are the inertias of the masses. Set  $\kappa = 0.091$ , b = 0.0036,  $J_1 = 1$ ,  $J_2 = 0.1$ , and T = 0.01.

- (a) Check if the system has unbounded modes. Use MATLAB for computations.
- (b) Draw the free output between 0 and 200s., starting from the initial condition  $x = \begin{bmatrix} 0 & 0 & 0.1 & 0 \end{bmatrix}^T$ . Give a physical interpretation to the result.
- (c) Draw the impulse response (that is, the output generated by the input u(0) = 1, u(k) = 0, k > 0) and give an interpretation of the results in terms of the satellite motion.
- (d) Now consider the output as  $y = x_2$ . Draw the impulse response and, through the physical interpretation of the results, explain why its asymptotic value is consistent with the graph obtained in the previous point.

Useful MATLAB commands: eig, null, ss(A,B,C,D,T), lsim, impulse.

Solution: See the MATLAB file Ex2.m.