
Multivariable Control (ME-422) - Exercise session 14

SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the nonlinear system

xk+1 = αxk + cos(xk) + wk

yk = x2
k + vk

wk ∼ WGN(0, 1)

vk ∼ WGN(0, 0.5)

Determine the Extended Kalman Filter (EKF).

Solution: The relevant matrices are

Âk =
∂ (αxk + cos(xk))

∂xk

∣∣∣∣
xk=x̂k−1|k−1

= α− sin(x̂k−1|k−1)

Ĉk =
∂
(
x2
k

)
∂xk

∣∣∣∣∣
xk=x̂k|k−1

= 2x̂k|k−1.

Using the formulae seen in the lecture for EKF:

• Filtering step:

x̂k|k = x̂k|k−1 + L̄k|k

(
yk − x̂2

k|k−1

)
L̄k|k = Σ̄k|k−1

(
2x̂k|k−1

) ((
2x̂k|k−1

)2
Σ̄k|k−1 + 0.5

)−1

Σ̄k|k = Σ̄k|k−1 − Σ̄2
k|k−1

(
2x̂k|k−1

)2 ((
2x̂k|k−1

)2
Σ̄k|k−1 + 0.5

)−1

• Prediction step:

x̂k+1|k = αx̂k|k + cos
(
x̂k|k

)
Σ̄k+1|k =

(
α− sin

(
x̂k−1|k−1

))2
Σ̄k|k + 1

2. Consider the system
xt+1 = Axt +But , (1)

with

A =

[
0.5 −2
6 −6

]
, B =

[
0
1

]
,

where x0 ∼ N (0,Σ0) is distributed according to a Gaussian distribution with covariance matrix
Σ0 = I.

Since the system is open-loop unstable, your colleague selects a stabilizing control law

ut = −K0xt ,

that sets the eigenvalues of (A−BK0) equal to (0, 0.5). Letting

J(K) = Ex0

[∞∑
t=0

xT
t xt + uT

t ut

]
, (2)

1

denote the average IH cost achieved by a control law ut = −Kxt, determine the Performance
Improvement (PI)

PI = 100

(
1− J(K⋆)

J(K0)

)
% , (3)

that can be achieved by replacing K0 with the optimal S-LQR controller K⋆.

Hint: You can use the MATLAB functions dlyap and idare appropriately.

Solution: To compute the controller K0 that sets eigenvalues to (0, 0.5), we let

K0 =
[
x y

]
,

so that
det(λI −A+BK0) = λ2 + λ(5 + y) + 6− 2x− y .

To impose λ = 0 is a root of the characteristic polynomial above, we set

2x+ y = 6 .

Then, to impose that λ = 0.5 is also a root, we set

y + 5 = −0.5 → y = −5.5 ,

which implies x = 5.75. Hence, we have K0 =
[
5.75 −5.5

]
.

To compute the average IH cost achieved by K0, we need to solve the Lyapunov equation

PK0 = I +KT
0 K0 + (A−BK0)

TPK0(A−BK0) .

By using the MATLAB command

dlyap((A-B*K0)’, eye(2)+K0’*K0);

we obtain that PK0
=

[
61 −85.5

−85.5 139

]
, and hence

J(K0) = Trace(PK0
) = 200 .

Last, we compute the minimum cost achievable with the optimal S-LQR controller K⋆. We have
that

J(K⋆) = Trace(P ⋆) ,

where
P ⋆ = ATP ⋆A−ATP ⋆B(BTP ⋆B + I)−1BTP ⋆A+ I .

In MATLAB, P ⋆ is computed by running

idare(A,B,eye(2),eye(1),zeros(2,1),eye(2));

We obtain that J(K⋆) = 81.8442. Hence, we conclude that the Performance Improvement obtained
by switching to an LQR controller is

PI = 100

(
1− 81.8442

200

)
% = 59%.

Quite a large improvement! Your colleague should really go for the LQR controller.

3. In this exercise, you will implement the Gradient Descent (GD) algorithm to solve S-LQR. You are
given a system (1) with

A = 0.1

−1 1 −2
−3 3.2 3.5
−5 6 −7

 , B = I ,

where x0 ∼ N (0,Σ0) and Σ0 = I. The average IH cost is defined as (2) as per Exercise 2.

Your task is to implement the GD algorithm on MATLAB to compute the optimal LQR controller
K⋆.

2

Task 1 Complete the passages in the pseudocode implementation of GD

K0 = ??? (explain how to select an initial controller)

eta = ??? (explain, in words, how you would select a stepsize eta)

K = K0

while(???) (Insert a condition for stopping the algorithm)

P_K = ??? (How to compute P_K?)

Sigma_K = ??? (How to compute Sigma_K?)

DeltaJ = ??? (How to compute the gradient DeltaJ)

K = ??? (How to compute an updated value of K?)

end

Task 2 Complete the file “Ex14 3.m” to implement the GD algorithm. Verify that the GD con-
verges to the optimal LQR controller.

Solution Task 1 The pseudocode is given by

K0 = ???

ANSWER: K0 such that (A-B*K0) is Hurwitz. Since A is already Hurwitz, K0 = 0 works.

eta = ???

ANSWER: The stepsize eta should be small enough such that,

for all K, J(K-eta*DeltaK) <= J(K).In practice, we reduce

eta until we observe convergence.

K = K0

while(ANSWER: ||DeltaJ||<=0.00001)

P_K = ANSWER: dlyap((A-B*K)’,Q+K’*R*K)

Sigma_K = ANSWER: dlyap(A-B*K,Sigma_0);

DeltaJ = ANSWER: 2*((R+B’*P*B)*K-B’*P*A)*Sigma_K;

K = ANSWER: K-eta * DeltaJ;

end

Solution Task 2

%% SYSTEM DEFINITION

A=-0.1*[1 -1 2;3 -3.2 -3.5;5 -6 7];

B=eye(3);

n = size(A,1);

m = size(B,2);

Sigma_0 = eye(n);

3

disp(’We consider the S-LQR problem with A, B, Sigma_0 given by’)

A

B

Sigma_0

disp(’and cost matrices Q and R given by’)

%Weight matrices for the cost

Q = eye(n)

R = eye(m)

fprintf(’\n\n’)

disp(’We start with a controller K0 ’)

K0 = zeros(3,3)

disp(’that is stabilizing and has a cost’)

cost_K0 = trace(dlyap((A-B*K0)’,Q+K0’*R*K0)*Sigma_0)

eta=0.0005; %step-size

norm_gradient = 9999; %stopping criterion

count=0;

fprintf(’***********+\n***********\n Start GD\n ***********\n********\n’)

Sigma=zeros(n,n);

K = K0;

while(norm_gradient>0.000001)

count = count+1;

P = dlyap((A-B*K)’,Q+K’*R*K);

Sigma = dlyap(A-B*K,Sigma_0);

DeltaJ = 2*((R+B’*P*B)*K-B’*P*A)*Sigma;

norm_gradient = norm(DeltaJ);

if(mod(count,100)==0)

cost_K = trace(P*Sigma_0);

fprintf(’Iteration: %d, Cost: %f\n\n\n’, count, cost_K)

end

K = K-eta * DeltaJ;

end

%% LQR Controller comparison

P = idare(A,B,Q,R,zeros(n,m),eye(n));

K_LQR = inv(B’*P*B+R)*B’*P*A

cost_LQR = trace(P * Sigma_0)

disp(’The controller found with gradient descent is’)

K

disp(’The LQR controller is’)

K_LQR

4. In this exercise you will use projected GD to compute locally optimal distributed controllers. You
are given a system (1) with

A = 0.2

−1 1 −2
−3 3.2 3.5
−5 6 −7

 , B = I , (4)

where x0 ∼ N (0,Σ0) and Σ0 = I. The average IH cost is defined as (2) as per Exercise 2 and
Exercise 3. Notice that the definition of A has changed with respect to Exercise 3.

4

Task 1 You work for the company ControlX who is using a distributed controller

K0 =

−1.1189 0 0
−0.6894 0 −1.9114

0 1.7018 0

 ,

for their plant whose state-space model is given by (4). Letting S =

1 0 0
1 0 1
0 1 0

, find a locally

optimal controller K̂ ∈ Sparse(S) using PGD starting from K0. What PI can you achieve (see
definition of PI in (3))?

Task 2 Your locally optimal controller from Task 1 is quite successful and improves the company’s
profits by ∼ 86%. Congratulations, you got a promotion!

A few months later your main competitor on the market, iControl, deploys a novel distributed
controller KiControl ∈ Sparse(S) that significantly improves over your solution. How is it possible?

Can you find a controller in the sparsity subspace Sparse(S) that improves over K̂? How much
does it improve?

Solution Task 1 We apply projected GD to improve over K0 until convergence. We modify the
centralized GD algorithm as follows

S = [1 0 0;1 0 1;0 1 0];

eta=0.000005;

while(norm_gradient>0.000001)

count = count+1;

P = dlyap((A-B*K)’,Q+K’*R*K);

Sigma = dlyap(A-B*K,Sigma_0);

DeltaJ = 2*((R+B’*P*B)*K-B’*P*A)*Sigma;

DeltaJ = DeltaJ .* S;

norm_gradient = norm(DeltaJ);

if(mod(count,100)==0)

cost_K = trace(P*Sigma_0);

fprintf(’Iteration: %d, Cost: %f\n\n\n’, count, cost_K)

end

K = K-eta * DeltaJ;

end

We converge to a controller

K̂ =

−0.7597 0 0
−0.8956 0 −0.2621

0 2.7016 0

 .

We verify that J(K0) = 465.5270 and J(K̂) = 63.077438, yielding a PI of

PI = 100

(
1− 63.077438

465.5270

)
% = 86.45% .

You deserve a promotion!

5

Solution Task 2 Yes, it is possible that iControl comes up with a better distributed controller.
Indeed, K̂ may only be a local minimum of J(·) when imposing sparsity constraints.

In order to find a better controller than K̂, we should find a new initial controller K0 that lies in
a different region closer to a better local minimum. For instance, by starting from

K ′
0 =

−0.0900 0 0
−1.2633 0 3.3683

0 0.7425 0

 ,

we converge to

K̂ ′ =

−0.5843 0 0
−0.0446 0 1.5751

0 −0.2419 0

 ,

that yields a cost of J(K̂) = 43.0588.

The controller K ′
0 was found by brute force by running

done=0;

while(done==0)

done=1;

K=500*(rand-rand)*(rand(m,n)-rand(m,n));

K = K.*S

eigs=eig(A-B*K);

for(i=1:size(eigs,1))

eigs(i)=norm(eigs(i));

if(eigs(i)>0.90)

done=0;

end

end

end

which looks for a stabilizing controller within the given sparsity structure. Gradient descent then
allows to converge to the closest stationary point.

6

