Multivariable Control (ME-422) - Exercise session 14
SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the nonlinear system

Tp+1 = axg + cos(xg) + w wi ~ WGN(0,1)
Yk = zﬁ + v v ~ WGN(0,0.5)

Determine the Extended Kalman Filter (EKF).

Solution: The relevant matrices are

. 0
A, — (axy, ;— cos(y)) =q — Sin(i'k_l\k—l)
Tk Te=%Tp_1|k—1
. 0 (x? -
Ck. _ 8( k) — 2xk|k71'
Tk .
Tp=Zp k-1

Using the formulae seen in the lecture for EKF:

e Filtering step:

Tk = Zrjp—1 + Lij (yk - ji\kfl)

Ly, = Skpe—1 (28 p5-1) ((2571@\1@71)2 Skik—1 + 0-5)71

Sk = Skip-1 — Sijp_1 (25%\1@—1)2 ((25%\1@—1)2 Skik—1 + 0-5)71
e Prediction step:

Tps1je = Qg + cos (Zxpk)
Skt1k = (o —sin (ik—l\k—l))z Sk +1

2. Consider the system
T4+l = Axt + But s (]‘)

0.5 -2 0
=0 3] o=l
where zg ~ N(0,%) is distributed according to a Gaussian distribution with covariance matrix
So=1.

Since the system is open-loop unstable, your colleague selects a stabilizing control law

with

uy = —Koxy,

that sets the eigenvalues of (A — BKj) equal to (0,0.5). Letting

[ee)

T T
g Ty Ty + Uy Uy
t=0

J(K) = Eq, : (2)




denote the average IH cost achieved by a control law u; = —Kx;, determine the Performance

Improvement (PI) I
PI = 100 <1— JEK();)%, ®)

that can be achieved by replacing K with the optimal S-LQR controller K*.
Hint: You can use the MATLAB functions dlyap and idare appropriately.

Solution: To compute the controller K that sets eigenvalues to (0,0.5), we let
KO = |:£E y} )

so that
det(\] — A+ BKo) =N +A5+y)+6 -2z —y.

To impose A = 0 is a root of the characteristic polynomial above, we set
2r+y=26.
Then, to impose that A = 0.5 is also a root, we set
y+5=-05—>y=-55,
which implies = = 5.75. Hence, we have Ko = [5.75 —5.5].

To compute the average TH cost achieved by K, we need to solve the Lyapunov equation
Py, =1+ K] Ko+ (A— BKy)"Pg,(A— BKy).

By using the MATLAB command

dlyap((A-B*K0)’, eye(2)+KO0’*K0);

61 —85.5
—-85.5 139

J(Ko) = Trace(Pg,) = 200.

we obtain that Pk, = } , and hence

Last, we compute the minimum cost achievable with the optimal S-LQR. controller K*. We have
that
J(K*) = Trace(P"),
where
P*=ATP*A—A"P*B(B'"P*B+1)"'B"P*A+1.
In MATLAB, P* is computed by running
idare(A,B,eye(2),eye(1) ,zeros(2,1),eye(2));
We obtain that J(K™*) = 81.8442. Hence, we conclude that the Performance Improvement obtained
by switching to an LQR controller is

81.8442
200

Quite a large improvement! Your colleague should really go for the LQR controller.

PI_l()O(l— )%—59%.

. In this exercise, you will implement the Gradient Descent (GD) algorithm to solve S-LQR. You are
given a system (1) with

-1 1 -2
A=01|-3 32 35|, B=1I,
-5 6 -7

where 29 ~ N (0,%) and Xy = I. The average IH cost is defined as (2) as per Exercise 2.

Your task is to implement the GD algorithm on MATLAB to compute the optimal LQR controller
K*.



Task 1 Complete the passages in the pseudocode implementation of GD

KO = 777 (explain how to select an initial controller)

eta = 777 (explain, in words, how you would select a stepsize eta)

K = KO

while( 777 ) (Insert a condition for stopping the algorithm)

P_K = 777

Sigma_K = 777

DeltaJ = 777

K = 777

end

(How

(How

(How

(How

to compute P_K7)

to compute Sigma_K7)

to compute the gradient Deltal)

to compute an updated value of K7)

Task 2 Complete the file “Ex14_3.m” to implement the GD algorithm. Verify that the GD con-
verges to the optimal LQR controller.

Solution Task 1 The pseudocode is given by

KO = 777

ANSWER: KO such that (A-B*KO) is Hurwitz. Since A is already Hurwitz, KO = O works.

eta = 777

ANSWER: The stepsize eta should be small enough such that,
for all K, J(K-eta*DeltaK) <= J(K).In practice, we reduce
eta until we observe convergence.

K = KO

while( ANSWER: ||DeltaJ||<=0.00001 )

P.K =
Sigma_K =
Deltal =
K =

end

Solution Task 2

ANSWER:
ANSWER:
ANSWER:
ANSWER :

%/ SYSTEM DEFINITION

A=-0.1%[1 -1 2;3 -3.2 -3.

B=eye(3);

n = size(A,1);

m = size(B,2);
Sigma_0 = eye(n);

dlyap ((A-B*K) ’ ,Q+K’*R*K)
dlyap(A-B*K,Sigma_0) ;

2% ((R+B’*PxB) *K-B’ *PxA) *Sigma_K;
K-eta * Deltal;

5;6 -6 7];



disp(’We consider the S-LQR problem with A, B, Sigma_O given by’)
A

B

Sigma_0

disp(’and cost matrices Q and R given by’)

%Weight matrices for the cost

Q = eye(n)

R = eye(m)

fprintf (’\n\n’)

disp(’We start with a controller KO ’)

KO = zeros(3,3)

disp(’that is stabilizing and has a cost’)

cost_KO = trace(dlyap((A-B*K0)’,Q+KO’*R*K0)*Sigma_0)

eta=0.0005; %step-size

norm_gradient = 9999; Ystopping criterion

count=0;

fprintf (7 kxkkkikkiokk+\nxkkxkkkkkkk\n Start GD\n *kkkskkkskokkk\makkkkkxk\n’)

Sigma=zeros(n,n);
K = KO;
while(norm_gradient>0.000001)
count = count+1;
P = dlyap((A-B#K)’,Q+K’*R*K) ;
Sigma = dlyap(A-B*K,Sigma_0) ;
DeltaJ = 2% ((R+B’*P*B)*K-B’*P*A)*Sigma;
norm_gradient = norm(Deltal);
if (mod (count,100)==0)
cost_K = trace(PxSigma_0);
fprintf (’Iteration: %d, Cost: %f\n\n\n’, count, cost_K)
end
K = K-eta * Deltal;
end

%% LQR Controller comparison

P = idare(A,B,Q,R,zeros(n,m),eye(n));

K_LQR = inv(B’*P*B+R) *B’ *P*A

cost_LQR = trace(P * Sigma_0)

disp(’The controller found with gradient descent is’)
K

disp(’The LQR controller is’)

K_LQR

. In this exercise you will use projected GD to compute locally optimal distributed controllers. You
are given a system (1) with

-1 1 -2
A=02|-3 32 35|, B=1I, (4)
-5 6 -7

where g ~ N(0,%p) and Xy = I. The average IH cost is defined as (2) as per Exercise 2 and
Exercise 3. Notice that the definition of A has changed with respect to Exercise 3.



Task 1 You work for the company ControlX who is using a distributed controller

~1.1189 0 0
Ky= |-06804 0  —1.9114]|,
0 1.7018 0

for their plant whose state-space model is given by (4). Letting S = , find a locally

O = =
= o O
o = O

optimal controller K € Sparse(S) using PGD starting from Ky. What PI can you achieve (see
definition of PI in (3))?

Task 2 Your locally optimal controller from Task 1 is quite successful and improves the company’s
profits by ~ 86%. Congratulations, you got a promotion!

A few months later your main competitor on the market, iControl, deploys a novel distributed
controller Kjcontro1 € Sparse(S) that significantly improves over your solution. How is it possible?

Can you find a controller in the sparsity subspace Sparse(S) that improves over K? How much
does it improve?

Solution Task 1 We apply projected GD to improve over Ky until convergence. We modify the
centralized GD algorithm as follows

S=1[100;101;010];
eta=0.000005;
while(norm_gradient>0.000001)
count = count+1;
P = dlyap((A-B*K)’,Q+K’*R*K) ;
Sigma = dlyap(A-B*K,Sigma_0) ;
DeltaJ = 2% ((R+B’*P*B)*K-B’*P*A)*Sigma;

Deltal DeltalJ .* S;

norm_gradient = norm(Deltal);
if (mod (count,100)==0)
cost_K = trace(P*Sigma_0);
fprintf (’Iteration: %d, Cost: %f\n\n\n’, count, cost_K)
end
K = K-eta * Deltald;
end

We converge to a controller

. —0.7597 0 0
K = |—-0.8956 0 —0.2621
0 2.7016 0

We verify that J(Ky) = 465.5270 and J(K) = 63.077438, yielding a PI of

63.077438

PI=100(1- — "2
00 ( 465.5270

) % = 86.45% .

You deserve a promotion!



Solution Task 2 Yes, it is possible that iControl comes up with a better distributed controller.
Indeed, K may only be a local minimum of J(-) when imposing sparsity constraints.

In order to find a better controller than K , we should find a new initial controller Ky that lies in
a different region closer to a better local minimum. For instance, by starting from

—0.0900 0 0
K= |-1.2633 0 3.3683 | ,
0 0.7425 0

we converge to

~ [-05843 0 0
K'=|-00446 0 15751,
0 —0.2419 0

that yields a cost of J(K) = 43.0588.

The controller K, was found by brute force by running

done=0;
while (done==0)
done=1;
K=500* (rand-rand) * (rand(m,n)-rand(m,n)) ;
K = K.*S
eigs=eig(A-B*K) ;
for(i=1:size(eigs,1))
eigs(i)=norm(eigs(i));
if (eigs(i)>0.90)
done=0;
end
end
end

which looks for a stabilizing controller within the given sparsity structure. Gradient descent then
allows to converge to the closest stationary point.



