
Multivariable Control (ME-422) - Exercise session 13

SOLUTIONS

Prof. G. Ferrari Trecate

1. Consider the system

xk+1 = xk + wk wk ∼WGN(0, 1)

yk = xk + vk vk ∼WGN(0, 2)

x0 ∼ N(1, 10)

The measurements y0 = 2 adn y1 = 3 have been collected.

(a) Compute (by hand) x̂2|1 and Σ2|1 using the Kalman predictor.

(b) Can you guarantee that Σk|k−1 converges as k → +∞? If yes, to which value does it converge?

Solution:

(a) Recall the KF formulae

x̂0|−1 = E[x0], Σ0|−1 = V ar[x0]

x̂k|k = x̂k|k−1 + Σk|k−1C
T
(
CΣk|k−1C

T + V
)−1 (

yk − Cx̂k|k−1
)

Σk|k = Σk|k−1 − Σk|k−1C
T
(
CΣk|k−1C

T + V
)−1

CΣk|k−1

x̂k+1|k = Ax̂k|k

Σk+1|k = AΣk|kA
T +W

For A = 1, C = 1, W = 1, V = 2 we have

• k = 0

x̂0|0 = 1 + 10
1

10 + 2
(2− 1) = 1.833

Σ0|0 = 10− 102
1

10 + 2
= 1.666

x̂1|0 = x̂0|0 = 1.833

Σ1|0 = Σ0|0 + 1 = 2.666

• k = 1

x̂1|1 = 1.833 + 2.666
1

2.666 + 2
(3− 1.833) = 2.5

Σ1|1 = 2.666− 2.6662
1

2.666 + 2
= 1.1429

x̂2|1 = 2.5

Σ2|1 = 2.1429
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(b) One can set W = BqB
T
q for Bq = 1 and, since (A,Bq) is reachable and (A,C) is observable,

Σk|k−1 converges to Σ̄ > 0 solving the ARE

Σ̄ = AΣ̄AT +W −AΣ̄CT
[
CΣ̄CT + V

]−1
CΣ̄AT

Σ̄ = Σ̄ + 1− Σ̄2

Σ̄ + 2

Σ̄2 − Σ̄− 2 = 0

Σ̄ =
1±
√

1 + 8

2
→ Σ̄ = 2.

2. The MATLAB code

1 % Generation of oscillator data
2
3 Ac=[0 1; -1 0];
4 Bc=[0;1];
5 Cc=[1 0];
6 Dc=0;
7 T=0.5;
8 sysC=ss(Ac,Bc,Cc,Dc);
9 sysD=c2d(sysC,T);

10
11 % noiseless input to the oscillator
12 Un=1*[ones(1,10) zeros(1,10) ones(1,10) zeros(1,11)];
13 % add process noise
14 sqW=0.1;
15 U=Un+sqW*randn(size(Un));
16
17 [Yn,Tsim,Xsim]=lsim(sysD,U);
18 % add measurement noise
19 sqV=0.2;
20 Ym=Yn+sqV*randn(size(Yn));
21
22 %% Plot of the output
23
24 figure(1);clf
25 %times=0:39;
26 PL=plot(Tsim,Ym);
27 NameArray = {'Color','LineStyle','LineWidth'};
28 ValueArray = {'blue','--',2};
29 set(PL,NameArray,ValueArray)
30
31 legend('measured outputs')
32 xlabel('{t}','FontSize',18)
33 ylabel('{y}','FontSize',18)
34 title('Oscillator data');
35 set(gca,'FontSize',13)
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % Enter your code here for computing
39 % the time varying and time invariant
40 % Kalman predictors
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

available in Moodle under the name problem2.m generates noisy data from an oscillator driven by
a square wave. The measurement noise is WGN(0, 0.22) and the process noise is given by Bcwk,

where wk ∼WGN(0, 0.12). Assume that x0 ∼ N
([

0
0

]
, I

)
.

(a) Write the code for running a time-varying Kalman predictor. Show, in the same plot, the
measured output and the estimate ŷk|k−1.

Hint: For debugging your code, set, in the simulator and the predictor, very small noise
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variances and, in the predictor, Σ0|−1 = 10−6I. In this case, the real and predicted outputs
must be almost identical.

(b) Write the code for implementing a steady-state Kalman predictor. Compare the results with
those obtained in point (a).

Hint: Use the command dare for computing the steady-state covariance of the predictor.
Note, however, that dare solves the IH-LQR problem.

(c) Let’s now discuss the behavior of the predictor when the assumed variances are different from
the true ones. Run simulations

• by dividing by 1000 the measurement noise covariance used in the Kalman predictor

• by multiplying by 1000 the measurement noise covariance used in the Kalman predictor.

Can you provide an intuitive explanation of the behavior of the predictor?

Solution: See the MATLAB file Ex13 1.m for the solutions.

3. Consider the system

xk+1 = 0.5xk + uk + wk

yk = xk + vk

w ∼WGN(0, 0.875)

v ∼WGN(0, 1)

where the noises are uncorrelated.

(a) Compute the infinite-horizon LQ (IH-LQ) control law with Q = 0.875 and R = 1

(b) Compute the corresponding closed-loop eigenvalue

(c) Compute the steady-state Kalman predictor

(d) Compute the overall output feedback LQG control law obtained by combining the previous
results.

Hint: The discrete ARE (DARE) for IH-LQ control is given by

P = ATPA+Q−ATPB
[
BTPB +R

]−1
BTPA (1)

where the objective is to solve for P = PT > 0 with a given choice of Q = QT > 0 and R = RT ≥ 0.
Solve the parts (a)-(d) by hand. Then, verify your results by utilizing the MATLAB command dare

to solve this equation for parts (a) and (c). However, while solving for part (c), be careful to take
into account the fact that estimation problem is the dual of control problem, i.e., you have to
replace A by AT , B by CT , Q by W , and R by V in (1).

Solution:

(a) For this system, the system matrices are

A = 0.5 B = 1 C = 1.

Also taking Q = 0.875 and R = 1, one obtains the DARE

P = 0.25P + 0.875− 0.25
P 2

P + 1

which has a solution P = 1.

With this solution, the IH-LQ controller is K =
(
BTPB +R

)−1
BTPA = 0.25.

(b) With K = 0.25, the closed-loop system matrix is A−BK = 0.25, yielding closed-loop eigen-
value of λcl = 0.25.
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(c) DARE for Kalman Filtering is given by

Σ = 0.25Σ + 0.875− 0.25
Σ2

Σ + 1

which is exactly the same equation as in part (a). Therefore, it has the same solution Σ = 1.

The steady-state Kalman predictor gain is L = AΣCT
(
CΣCT + V

)−1
= 0.25. The steady-

state Kalman predictor is then

x̂k+1|k = 0.25x̂k|k−1 + uk + 0.25yk. (2)

(d) The overall output feedback LQR control law is defined, along with the steady-state Kalman
predictor in (2), as

uk = uk|k−1 = −Kx̂k|k−1 = −0.25x̂k|k−1.

4. Sensor Fusion
Consider a system of two sensors, each taking measurements of an unknown constant x̄ ∈ R. Each
measurement is noisy and modeled as follows

y1 = x̄+ v1

y2 = x̄+ v2

where the measurement noises are correlated, i.e.,

v =

[
v1

v2

]
∼ N

([
0
0

]
,

[
1 0.1

0.1 1

])
.

Asume that the measurements yk, k = 0, 1, . . . , 200 have been collected, where yk =

[
y1k
y2k

]
.

Estimate x̄ in the framework of Kalman filtering. Adapt the code developed in problem 2 for
developing a time-varying KF, simulating the data for x̄ = 5, and plotting x̂k+1|k.

Hint: For generating a Gaussian random vector v ∈ R2 with V ar[v] = V , use the MATLAB
command w=sqrtm(V)*randn(2,1).

Solution: To use the KF framework, consider the following model

xk+1 = xk

yk = Cxk + vk

where C =

[
1
1

]
and x0 ∼ N(1, 1) (E[x0] = 1 and V ar[x0] = 1 are arbitrary choices). The solution

file is Ex13 2.m.
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