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Linear Quadratic (LQ) optimal control
LQ control over a finite horizon (FH)

System under control

x+ = Ax + Bu x(k) ∈ Rn u(k) ∈ Rm (1)

x(0) = x0 (2)

Optimal control cost

J =

{︃
N−1∑︁
k=0

xT (k)Qx(k) + uT (k)Ru(k)

}︃
+ xT (N)Sx(N) (3)

where

Q ∈ Rn×n,Q = QT ≥ 0 S ∈ Rn×n, S = ST ≥ 0

R ∈ Rm×m,R = RT > 0 N ∈ N,N ≥ 1
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Linear Quadratic (LQ) optimal control
LQ control over a finite horizon (FH)

Goal of optimal control

Compute u(0), u(1), . . . , u(N − 1) that minimises J under the constraints
(1) at times 0, 1, . . . ,N − 1 and constraint (2) (the state x0 is measured)

Terminology :

The problem is called LQ because it refers to a Linear system and a
Quadratic cost

N: control horizon. It is finite.

Minor remark

In (3), xT (0)Qx(0) ∈ R is a term that could be omitted. It is kept for
notational simplicity
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Linear Quadratic (LQ) optimal control
Analysis of the cost

xT (k)Qx(k) + uT (k)Ru(k) → stage cost

x(N)TSx(N) → terminal cost

xT (k)Qx(k) penalises ”big states”. Same for the terminal cost.

uT (k)Ru(k) penalises ”big inputs”, which are actuator-unfriendly
I It is in conflict with the terms above: for steering rapidly x(k) → 0 one

usually need a large amount of ”control energy”.

Design parameters

Control horizon N and matrix weights Q, S ,R.

e.g. : Q >> R, S >> R means that we want to steer the state to
zero quickly and we do not care much about how big the
control variables are.
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Linear Quadratic (LQ) optimal control
Properties of Q, S ,R

We assume they are symmetric matrices, without loss of generality.
Indeed, for a generic T ∈ Rn×n, the quadratic form xTTx can be
written as

xTTx = xT
T + TT

2
x⏟  ⏞  

(a)

+xT
T − TT

2
x = (a) + xT

T

2
x − xT

TT

2
x⏟  ⏞  

scalar

= (a) + xT
T

2
x − xT

T

2
x = (a)

(a) is called the symmetric part of T

Q ≥ 0, S ≥ 0 but R > 0: zero penalty is ok on states but not on the
input (see later why . . . )
→˓ They guarantee that J ≥ 0 (key property of a meaningful ”cost”)
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

Theorem (solution to FH-LQ)

There is a unique control law

u(k) = −K (k)x(k) k = 0, . . . ,N − 1

minimising J, where the control gains are computed by the following
algorithm

Set P(N) = S

For k = N − 1,N − 2, . . . , 0

K (k) =
[︁
R + BTP(k + 1)B

]︁−1
BTP(k + 1)A (R1)

P(k) = Q + ATP(k + 1)A− K (k)T
[︁
R + BTP(k + 1)B

]︁
K (k)

(R2)

Moreover J* = min
u(0),...,u(N−1)

J = xT (0)P(0)x(0).
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

Substituting K (k) in (R2) one gets the recursive update

P(k) = Q + ATP(k + 1)A− ATP(k + 1)B [R

+BTP(k + 1)B
]︁−1

BTP(k + 1)A

Known as Difference Riccati Equation (DRE)

Backward iterations

S ,Q,R symmetric ⇒ P(k) symmetric k = 0, . . . ,N − 1

S ,Q,R ≥ 0 and
[︀
R + BTP(k + 1)B

]︀
invertible

⇒ P(k) ≥ 0 k = 0, . . . ,N − 1
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

The gain K (k)
I is time-varying → the closed-loop system is linear time-varying
I is defined only for k = 0, . . . ,N − 1 → ”stability” of the closed-loop

system has no meaning
I can be precomputed at time k = 0 and independently of x0
I u(k) = −K (k)x(k) is a state-feedback regulator

The assumption that R > 0 guarantees that R + BTP(k + 1)B is
invertible
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Linear Quadratic (LQ) optimal control
Proof of the Theorem

Review : minimization of quadratic forms

Consider the quadratic form

F (x) = xTHx + xTg + gT x , H = HT > 0

The minimum can be computed setting dF
dx = 0. Recall that

𝜕

𝜕a
aTBc = cTBT 𝜕

𝜕c
aTBc = aTB.

Then

dF

dx
= 0 ⇔ xTH + xTHT + gT + gT = 2xTH + 2gT = 0

and we have
x = −H−1g
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Linear Quadratic (LQ) optimal control
Proof of the theorem

We use a dynamic programming argument. Define the ”cost-to-go”

V (k) = min
u(k),u(k+1),...,u(N−1)

{︃
N−1∑︁
i=k

xT (i)Qx(i) + uT (i)Ru(i)

}︃
+ xT (N)Sx(N)

which is the queue of the cost from k to N.
For k = N,

V (N) = xT (N)P(N)x(N) = xT (N)Sx(N)
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Linear Quadratic (LQ) optimal control
Proof of the theorem

For k = N − 1,

V (N − 1) = min
u(N−1)

xT (N − 1)Qx(N − 1) + uT (N − 1)Ru(N − 1)⏟  ⏞  
(a)

+V (N)

= min
u(N−1)

(a) + (Ax(N − 1) + Bu(N − 1))T P(N)(Ax(N − 1)

+ Bu(N − 1))

= min
u(N−1)

xT (N − 1)
[︁
Q + ATP(N)A

]︁
x(N − 1) + uT (N − 1)[︁

R + BTP(N)B
]︁
u(N − 1) + 2xT (N − 1)ATP(N)Bu(N − 1)
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Linear Quadratic (LQ) optimal control
Proof of the theorem

We must minimize a quadratic form in the variable u(N − 1), treating
x(N − 1) as a given vector of parameters (it is indeed measured).

𝜕V (N − 1)

𝜕u(N − 1)
= 2uT (N − 1)

[︁
R + BTP(N)B

]︁
+ 2xT (N − 1)ATP(N)B = 0

This gives

u(N − 1) = −
[︁
R + BTP(N)B

]︁−1
BTP(N)A⏟  ⏞  

K(N−1)

x(N − 1) =

The next goal is to express V (N − 1) as a quadratic form.
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Linear Quadratic (LQ) optimal control
Proof of the theorem

Substituting u(N − 1) into V (N − 1) we have

V (N − 1) =xT (N − 1)
[︀
Q + ATP(N)A

]︀⏟  ⏞  
(b)

x(N − 1)+

xT (N − 1)ATP(N)B
[︀
R + BTP(N)B

]︀−1
BTP(N)⏟  ⏞  

(c)

Ax(N − 1)

− 2xT (N − 1)ATP(N)B
[︀
R + BTP(N)B

]︀−1
BTP(N)⏟  ⏞  

identical to (c)

Ax(N − 1)

Defining P(N − 1) = (b)− (c) (which is (R2) in the Theorem) one has

V (N − 1) = xT (N − 1)P(N − 1)x(N − 1)

which has the same structure of V (N).

Giancarlo Ferrari Trecate Multivariable control EPFL 13 / 49



Linear Quadratic (LQ) optimal control
Proof

At time k = N − 2, one can replicate the above steps by realizing that

V (N − 2) = min
u(N−2)

xT (N − 2)Qx(N − 2)+ uT (N − 2)Ru(N − 2)+V (N − 1) (*)

Formula (*) is the Bellman iteration and is the core of the dynamic
programming procedure.
Proceeding iteratively for k = N − 2,N − 1, . . . , 0 one obtains the algorithm in
the statement of the Theorem. �
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Linear Quadratic (LQ) optimal control
Example

Problem

DT system under control

x(k + 1) = 0.3679x(k) + 0.6321u(k), x(0) = 1

Determine the optimal control law to minimize the following performance
index :

J = x(10)2 +
9∑︁

k=0

(︀
x2(k) + u2(k)

)︀
Note that in this example S = 1,Q = 1, and R = 1. Also, determine the
minimum value of J.
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Linear Quadratic (LQ) optimal control
Example - Solution

Using the Riccati equation, we obtain P(k) as follows:

P(k) = 1 + (0.3679)2P(k + 1)

− 0.3679P(k + 1)0.63212(1 + 0.63212P(k + 1))−1P(k + 1)0.3679

which can be simplified to

P(k) = 1 + 0.1354P(k + 1)[1 + 0.3996P(k + 1)]−1

The boundary condition for P(k) is

P(N) = P(10) = S = 1
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Linear Quadratic (LQ) optimal control
Example - Solution

We now compute P(k) backward from k = 9 to k = 0:

P(9) = 1.0967

P(8) = 1.1032

P(7) = 1.1036

P(6) = 1.1037

P(k) = 1.1037, k = 5, 4, 3, 2, 1, 0

Notice that the values of P(k) rapidly approach the steady-state value.
The steady-state value Pss can be obtained from

Pss = 1 + 0.1354Pss(1 + 0.3996Pss)
−1

or
0.3996P2

ss + 0.4650Pss − 1 = 0

Solving this last equation for Pss, we have

Pss = 1.1037 or − 2.2674
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Linear Quadratic (LQ) optimal control
Example - Solution

Since P(k) must be positive, we find the steady-state value for P(k) to be
1.1037.
The feedback gain K (k) can be computed as

K (k) =
[︀
1 + 0.63212P(k + 1)

]︀−1
0.6321P(k + 1)(0.3679)

By substituting the values of P(k) we have obtained, we get

K (10) = 0

K (9) = 0.1662

K (8) = 0.1773

K (7) = 0.1781

K (6) = K (5) = · · · = K (0) = 0.1781

The optimal control law is given by

u(k) = −K (k)x(k)
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Linear Quadratic (LQ) optimal control
Example - Solution

Since

x(k + 1) = 0.3679x(k) + 0.6321u(k) = 10.3679− 0.6321K (k)x(k)

we obtain

x(1) = [0.3679− 0.6321K (0)]x(0)

= (0.3679− 0.6321× 0.1781)× 1 = 0.2553

x(2) = (0.3679− 0.6321× 0.1781)× 0.2553 = 0.0652

x(3) = (0.3679− 0.6321× 0.1781)× 0.0652 = 0.0166

x(4) = (0.3679− 0.6321× 0.1781)× 0.0166 = 0.00424

The values of x(k) for k = 5, 6, . . . , 10 approach zero rapidly.
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Linear Quadratic (LQ) optimal control
Example - Solution

The optimal control sequence u(k) is now obtained as follows:

u(0) = −K (0)x(0) = −0.1781× 1 = −0.1781

u(1) = −K (1)x(1) = −0.1781× 0.2553 = −0.0455

u(2) = −K (2)x(2) = −0.1781× 0.0652 = −0.0116

u(3) = −K (3)x(3) = −0.1781× 0.0166 = −0.00296

u(4) = −K (4)x(4) = −0.1781× 0.00424 = −0.000756

u(k) ≃ 0, k = 5, 6, . . . , 10

Finally, the minimum value of the performance index J can be obtained as

J* = x(0)P(0)x(0) = (1× 1.1037× 1) = 1.1037
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Linear Quadratic (LQ) optimal control
Example - Solution

The values of P(k), K (k), x(k), and u(k) are shown in the figure below.
Notice that the values of P(k) and K (k) are constant except for the final
few stages.
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Infinite-horizon LQ optimal control
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Infinite-Horizon (IH) LQ optimal control

Main drawback of FH-OC : u(k) is defined only for k = 0, . . . ,N − 1

Idea : consider the case N → +∞.

System under control

x+ = Ax + Bu

x(0) = x0

Optimal control cost

J =
+∞∑︁
k=0

xT (k)Qx(k) + uT (k)Ru(k), Q = QT ≥ 0,R = RT > 0

Goal

Find the sequence u(0), u(1), . . . minimizing J
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Infinite-Horizon (IH) LQ optimal control

Remark

There could be no sequence u(0), u(1), . . . for which J < +∞ !

Example

x+ = 2x + 0 · u, x0 = 1 Q = R = 1 →⏟ ⏞ 
for u(·) = 0

J =
+∞∑︁
k=0

2kQ2k = +∞

If u(·) ̸= 0, any nonzero input sample u(k) gives a positive contribution →
the cost is still +∞

Remark

The terminal cost x+(∞)Sx(∞) has no meaning
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Solution to IH-LQ

Theorem

Assume (A,B) is reachable. Then

1) For any initial condition P(N) = S = ST ≥ 0, the matrices P(k),
k = N − 1,N − 2, . . . , 0,−1,−2, . . . converge to a symmetric matrix P̄
which is the unique positive-semidefinite solution of the Algebraic Riccati
Equation (ARE)

P̄ = AT P̄A+ Q − AT P̄B(R + BT P̄B)−1BT P̄A

2) The optimal control law minimizing J is given by u(k) = −K̄x(k) where

K̄ = (R + BT P̄B)−1BT P̄A

3) The optimal cost (corresponding to the optimal control law) is

J* = x(0)T P̄x(0)
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Solution to IH-LQ

Remarks

Part 1 establishes the link between FH-LQ and IH-LQ

I P̄ is independent of the initial condition P(N) = S
I (A,B) reachable and Q ≥ 0, R > 0 ⇒ the ARE always has a solution

P̄ ≥ 0
F non obvious, as the ARE is a nonlinear matrix equation in P̄

Part 2 : the IH-LQ control law is time-invariant → the closed-loop system
dynamics is

x+ = (A− BK̄ )x

I The assumption (A,B) reachable can be weakened into (A,B)
stabilisable (meaning the unreachable eigenvalues have modulus < 1)

Terminology: u(k) = −K̄x(k) is called the LQ Regulator (LQR)

Open problems: is P̄ > 0? Is A− BK̄ Schur?
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I (A,B) reachable and Q ≥ 0, R > 0 ⇒ the ARE always has a solution

P̄ ≥ 0
F non obvious, as the ARE is a nonlinear matrix equation in P̄

Part 2 : the IH-LQ control law is time-invariant → the closed-loop system
dynamics is

x+ = (A− BK̄ )x

I The assumption (A,B) reachable can be weakened into (A,B)
stabilisable (meaning the unreachable eigenvalues have modulus < 1)

Terminology: u(k) = −K̄x(k) is called the LQ Regulator (LQR)
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Tools for studying if P̄ > 0

Factorisation :
Q = CT

1 C1 C1 ∈ Rnc×n

Not unique. Example Q = 1 → C1 = 1 or C1 = −1

Lemma

Let C1 and C2 be factors such that Q = CT
1 C1 = CT

2 C2.
Then

(A,C1) observable ⇔ (A,C2) observable
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Proof of the Lemma

If (A,C1) observable, then
n−1
∩

J=0
Ker(C1A

J) = {0}, where Ker(F ) is the null

space of F .
Assume by contradiction that (A,C2) is unobservable. Then,
n−1
∩

J=0
Ker(C2A

J), ̸= {0}, hence implying that ∃x0 ∈
n−1
∩

J=0
Ker(C2A

J), x0 ̸= 0,

such that C2A
kx0 = 0, for k = 0, 1, . . . .

Therefore

xT0 (Ak)TCT
2 C2A

kx0 = xT0 (Ak)TQ(Ak)x0 = xT0 (Ak)TCT
1 C1A

kx0 = 0

which implies C1A
kx0 = 0, k = 0, 1, . . . . But this contradicts the

observability of (A,C1). �
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Why observability of (A,C1) is important ?

Consider J =
∑︀+∞

k=0 x(k)
TQx(k) + uT (k)Ru(k), x+ = Ax + Bu and

evaluate the cost of the control law u(k) = 0. One has

J =
+∞∑︁
k=0

xT0 (AT )kQAkx0 (**)

Since Q ≥ 0, one might have x0 ̸= 0 producing J = 0. But if (A,C1)
is observable, this cannot happen, i.e.

J = 0 ⇒ x0 = 0 (***)

Remarks

If Q = CT
1 C1 > 0, one can show that (A,C1) is always observable

Frequent case : Q = diag(q1, . . . , qn), qi > 0
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Why observability of (A,C1) is important ?

Lemma

If Q = CT
1 C1 and (A,C1) observable, then the solution P̄ ≥ 0 of the ARE

is positive definite.

Proof

By contradiction assume P̄ positive semidefinite.
Since J* = x(0)T P̄x(0), there is x(0) ̸= 0 such that J* = 0.
Since R > 0, J* = 0 ⇒ u(0) = u(1) = · · · = 0.
Therefore, the cost J* coincides with J on (**). But, as shown in
(***) this would imply x0 = 0, which is a contradiction.
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Stabilizing LQR

Open-loop system and LQR

x+ = Ax + Bu

u = −K̄x

Closed-loop (CL)

x+ = (A− BK̄ )x

K̄ = time-invariant matrix gain produced by ∞-horizon LQ problem

Theorem (CL stability of LQR)

Let C1 be a matrix verifying Q = CT
1 C1. If

(a) (A,B) is reachable

(b) (A,C1) is observable

then A− BK̄ is Schur stable.

Before providing the proof, interlude: Lyapunov stability theory

Giancarlo Ferrari Trecate Multivariable control EPFL 31 / 49



Lyapunov stability theory

We focus on stability of the origin for the LTI system x+ = Ax

Idea: if an energy-like function of the state decreases to zero, the
origin is stable.
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Lyapunov stability theory

Energy V (x)
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V (x) is a measure of the distance of x from the origin.
I If V (x) can only decrease, then x̄ = 0 should be stable.

Next: make statements more rigorous!
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Energy forward difference

x+ = Ax

Consider a quadratic energy-like function: V (x) = xTPx , where P ∈ Rn×n

is symmetric and positive definite

Compute ΔV (x) = V (x(k + 1))− V (x(k))

ΔV (x) = xTATPAx − xTPx = xT (ATPA− P)x

We are sure that ΔV (x) ≤ 0 if

ATPA− P ≤ 0
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Lyapunov theorems

Theorem 1: stability

The LTI system x+ = Ax is stable, if and only if there is P > 0 such that
ATPA− P ≤ 0

Theorem 2 (AS)

For the LTI system x+ = Ax , the following statements are equivalent

(a) the system is AS

(b) for an arbitrary matrix Q > 0, there is a matrix PT = P > 0 solving
the Lyapunov equation

ATPA− P = −Q
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Lyapunov theorems

Terminology

V (x) = xTPx is a candidate Lyapunov function

If V (x) verifies one of the two theorems, it is a Lyapunov function

Remark

ATPA−P = −Q is a system of linear equations in the elements of P,
for a given Q
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Proof of the stability theorem

Recall the statement

Theorem (CL stability of LQR)

Let C1 be a matrix verifying Q = CT
1 C1. If

(a) (A,B) is reachable

(b) (A,C1) is observable

then A− BK̄ is Schur stable.

For simplicity, we will discuss the proof under the simplifying assumption
that Q > 0 (instead of Q ≥ 0)
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Proof

(a) + (b) guarantees that the unique solution of the ARE is P̄ > 0. Let
V (x) = xT P̄x be a candidate Lyapunov function.
Forward difference :

ΔV (x) = (x+)T P̄x+ − xP̄x = xT (A− BK̄ )T P̄(A− BK̄ )x − xT P̄x

= xT
[︁
(A− BK̄ )T P̄(A− BK̄ )− P̄

]︁
⏟  ⏞  

(*)

x (1)

We want to show that (*) is negative definite. To this purpose note that

(K̄TBT )P̄(BK̄ )−(K̄TBT )P̄A+K̄TRK̄ = K̄T (BT P̄B+R)K̄−K̄TBT P̄A

= K̄T

⎡⎢⎣(BT P̄B + R) (BT P̄B + R)−1BT P̄⏟  ⏞  
K̄

A− BT P̄A)

⎤⎥⎦ = 0
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Proof

Adding (K̄TBT )P̄(BK̄ )− (K̄TBT )P̄A+ K̄TRK̄ to the ARE we obtain

P̄ = AT P̄A+ Q − AT P̄BK̄⏟  ⏞  
ARE

+K̄TBT P̄BK̄ − K̄TBT P̄A+ K̄TRK̄

that is
P̄ = [A− BK̄ ]T P̄[A− BK̄ ] + Q + K̄TRK̄

This gives

(*) = [A− BK̄ ]T P̄[A− BK̄ ]− P̄ = −(Q + K̄TRK̄ ) (2)
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Proof

Substituting (2) in (1) we have

ΔV (x) = −xT (Q + K̄TRK̄ )x

Since Q > 0 and R > 0, then Q + K̄TRK̄ > 0 and ΔV (x) < 0 unless
x = 0. From Lyapunov stability theory, the closed-loop system is
asymptotically stable.
If, instead, Q ≥ 0, then Q + K̄TRK̄ ≥ 0 and one has to show that there
are no state trajectories x̄(k) giving ΔV (x̄(k)) = 0 at all times, except for
the trivial one x̄(·) = 0. This can be done by exploiting the assumption
(b).
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Remarks on LQR

The stability theorem holds true even under the weaker assumptions
that
(a’) (A,B) is stabilizable
(b’) (A,C1) is detectable

(A,B) is stabilizable if any unreachable eigenvalue 𝜆 of A verifies
|𝜆| < 1

(A,C1) is detectable if any unobservable eigenvalue 𝜆 of A verifies
|𝜆| < 1
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Remarks on LQR

If the system (A,B,C ) is observable, one can show that (b) can be
always verified by choosing Q = CT Q̄C , where
Q̄ = Q̄T ∈ RP×P , Q̄ > 0 is a design parameter.
The associated cost is

J =
+∞∑︁
k=0

xT (k)CT Q̄Cx(k) + uT (k)Ru(k)

=
+∞∑︁
k=0

yT (k)Q̄y(k) + uT (k)Ru(k)

where the output y has been penalized instead of the state.

LQR can be applied to multi-input systems → Interesting for the
multivariable case!

If x(k) is not measured, one can replace it with an estimate x̄(k)
provided by a state observer (see later in the course).
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LQR with prescribed stability degree

Problem of standard LQR: some 𝜆 ∈ Spec(A− BK̄ ) could be close to
the boundary of stability region, that is |𝜆| ≃ 1.

Discounted LQR

J𝛼 =
+∞∑︁
k=0

(︀
xT (k)Qx(k) + uT (k)Ru(k)

)︀
𝛼2k , 𝛼 > 1

Theorem (discounted LQR)

Let K̄𝛼 be the LQR gain associated to J𝛼. then

Spec(A− BK̄𝛼) ⊂
1

𝛼
B(0, 1) (�)

Re

Im

11

α
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Proof of the theorem

We have

J𝛼 =
+∞∑︁
k=0

x̂T (k)Qx̂(k) + ûT (k)Rû(k) (*)

with x̂(k) = 𝛼kx(k) and û(k) = 𝛼ku(k).
Multiplying x+ = Ax + Bu by 𝛼k+1, we have

x̂+ = 𝛼A⏟ ⏞ 
Â

x̂ + 𝛼B⏟ ⏞ 
B̂

û = Âx̂ + B̂û (**)

Then (*) and (**) define a standard LQ problem and the associated
LQR guarantees that x̂ → 0 as k → ∞. Hence, for x+ = (A− BK̄ )x , one

has that x → 0 at least as fast as
(︀
1
𝛼

)︀k
. In view of the relations between

modes and eigenvalues, we have (�).
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LQR with prescribed stability degree of stability

Algorithm

Define Â = 𝛼A and B̂ = 𝛼B

Compute K̂ from the standard LQR problem with weights Q and R

Use u(k) = −K̂x(k)
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Design of weights Q and R

No golden rule - a few common criteria in the sequel

Often some trial-and-error is required for achieving satisfactory
performances
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Design of weights Q and R

Modal analysis

If A has very different eigenvalues, as in the figure below

Re

Im

1
+

+

ӿ

ӿ

Figure: Eigenvalues providing satisfactory modes (+) and highly oscillating modes (*)

a sensible goal is to move the critical eigenvalues (*) and focus less
on the remaining ones.

Idea : In J assign more weights to selected modes. How to do it ?
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Design of weights Q and R

Assume A has distinct eigenvalues 𝜆1, 𝜆2, . . . , implying that A can be
diagonalized by a non-singular matrix T containing eigenvectors as
columns. Change of coordinates : x̄ = Tx ,
Ā = TAT−1 = diag(𝜆1, . . . , 𝜆n), B̄ = TB

x̄+ = Āx̄ + B̄u (⋆)

Remark

x̄i is associated with an eigenvalue 𝜆i .

Formulation of LQR for (⋆)

J̄ =
+∞∑︁
k=0

x̄T (k)Q̄x̄(k) + uT (k)Ru(k)

Giancarlo Ferrari Trecate Multivariable control EPFL 47 / 49



Design of weights Q and R

Choose Q̄ = diag(q̄1, . . . , q̄n) and weight more the ”undesired”
eigenvalues

We have
x̄T (k)Q̄x̄(k) = xT (k)TT Q̄Tx(k)

Set Q = TT Q̄T in the LQR problem for the original system.

The above method can be generalized to multiple eigenvalues through
the use of Jordan forms (not in this class).
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Design of weights Q and R : the normalization approach

J =
+∞∑︁
k=0

q1x
2
1 (k) + . . . qnx

2
n (k) + r1u

2
1(k) + . . . rmu

2
m(k)

Problem: each variable might be measured in different units → weights are
scale-dependent

Idea

Assume one knows that ‖uj‖ ≤ uj,max j = 1, . . . ,m and ‖xi‖ ≤ xi,max ,
i = 1, . . . , n.
Define qi =

q̃i
x2
i,max

and rj =
r̃j

u2
j,max

. The cost becomes

J =
+∞∑︁
k=0

q̃1
x21,max

x21 (k) + . . .
q̃n

x2n,max

x2n (k) +
r̃1

u21,max

u21(k) + . . .
r̃m

u2m,max

u2m(k)

and q̃i , r̃i can be chosen in the interval (0, 1), independently of the measurement
units
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