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Linear Quadratic (LQ) optimal control

LQ control over a finite horizon (FH)

System under control

xT =Ax+Bu x(k)€R"
x(0) = xo

u(k) € R™
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Linear Quadratic (LQ) optimal control

LQ control over a finite horizon (FH)

System under control
xT =Ax+Bu x(k) €R" u(k) €R™ (1)
x(0) = xo (2)

Optimal control cost

N—-1
J:{E:XHHQAH+UUMRMH}+quﬁAN) (3)
k=0
where

QeR™ Q=Q" >0 SeR™" S=ST>0
ReR™™ R=RT >0 NeNN>1
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Linear Quadratic (LQ) optimal control

LQ control over a finite horizon (FH)

Goal of optimal control

Compute u(0), u(1), ..., u(N — 1) that minimises J under the constraints
(1) at times 0,1,..., N — 1 and constraint (2) (the state xp is measured)

Terminology :

@ The problem is called LQ because it refers to a Linear system and a
Quadratic cost

@ N: control horizon. It is finite.

Minor remark

In (3), xT(0)Qx(0) € R is a term that could be omitted. It is kept for
notational simplicity
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Linear Quadratic (LQ) optimal control

Analysis of the cost

xT(k)Qx(k) + u” (k)Ru(k) — stage cost
x(N)T Sx(N) — terminal cost

o xT(k)Qx(k) penalises " big states”. Same for the terminal cost.
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Linear Quadratic (LQ) optimal control

Analysis of the cost

xT(k)Qx(k) + u” (k)Ru(k) — stage cost

x(N)T Sx(N) — terminal cost

xT(k)Qx(k) penalises " big states”. Same for the terminal cost.

uT (k)Ru(k) penalises " big inputs”, which are actuator-unfriendly
> It is in conflict with the terms above: for steering rapidly x(k) — 0 one
usually need a large amount of "control energy"”.
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Linear Quadratic (LQ) optimal control

Analysis of the cost

xT(k)Qx(k) + u” (k)Ru(k) — stage cost

x(N)T Sx(N) — terminal cost
o xT(k)Qx(k) penalises " big states”. Same for the terminal cost.
o u'(k)Ru(k) penalises "big inputs”, which are actuator-unfriendly

> It is in conflict with the terms above: for steering rapidly x(k) — 0 one
usually need a large amount of " control energy".

Design parameters

Control horizon N and matrix weights @, S, R.

eg. : @ >> R, S >> R means that we want to steer the state to
zero quickly and we do not care much about how big the
control variables are.
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Linear Quadratic (LQ) optimal control
Properties of @, S, R

@ We assume they are symmetric matrices, without loss of generality.
Indeed, for a generic T € R™*", the quadratic form xT Tx can be

written as

T+TT T-TT T T
xTTx = XT;X 4xT ————x=(a) +x" =x—x"T—x

2 2 2 2
| ~——

(a) scalar

T T

=(a)+ XTEX - XTEX = (a)

(a) is called the symmetric part of T

@ @>0,S5>0but R > 0: zero penalty is ok on states but not on the
input (see later why ...)
< They guarantee that J > 0 (key property of a meaningful "cost")
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

Theorem (solution to FH-LQ)

There is a unique control law
u(k) = —K(k)x(k) k=0,....,N—1

minimising J, where the control gains are computed by the following
algorithm

@ Set P(N) =S
@ Fork=N—-1N-2,...,0
=il
K(k) = [R+ BT P(k + 1)8} BTP(k+1)A (R1)
P(k) = Q+ATP(/<-|- l)A_ K(k)T [R-i- BTP(k-|- 1)B K(k)
(R2)
Moreover J* = min J = xT(0)P(0)x(0).
u(0),...,u(N—1) (0)P(0)x(0)

v
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

@ Substituting K (k) in (R2) one gets the recursive update

P(k)=Q+ATP(k+1)A— ATP(k+1)B[R
+BTP(k + 1)3] T BTP(k+1)A

Known as Difference Riccati Equation (DRE)
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

@ Substituting K (k) in (R2) one gets the recursive update

P(k)=Q+ATP(k+1)A— ATP(k+1)B[R
+BTP(k+1)B]  BTP(k+1)A

Known as Difference Riccati Equation (DRE)
o Backward iterations
e S, Q, R symmetric = P(k) symmetric k=0,...,N —1
© S,Q,R>0and [R+ B"P(k+ 1)B] invertible

= Pk)>0 k=0,....,N—1
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

@ The gain K(k)
> is time-varying — the closed-loop system is linear time-varying
> is defined only for k =0,..., N —1 — "stability” of the closed-loop
system has no meaning
» can be precomputed at time kK = 0 and independently of xg
» u(k) = —K(k)x(k) is a state-feedback regulator
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Linear Quadratic (LQ) optimal control
Solution to the FH-LQ problem

@ The gain K(k)
> is time-varying — the closed-loop system is linear time-varying
> is defined only for k =0,..., N —1 — "stability” of the closed-loop

system has no meaning
» can be precomputed at time kK = 0 and independently of xg
» u(k) = —K(k)x(k) is a state-feedback regulator

o The assumption that R > 0 guarantees that R + BT P(k + 1)B is
invertible
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Linear Quadratic (LQ) optimal control

Proof of the Theorem

Review : minimization of quadratic forms
Consider the quadratic form

F(x)=x"Hx+x"g+g"x, H=H" >0

V.
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Linear Quadratic (LQ) optimal control

Proof of the Theorem

Review : minimization of quadratic forms
Consider the quadratic form

F(x)=x"Hx+x"g+g"x, H=H" >0

The minimum can be computed setting Z_,; = 0. Recall that

2aTBc =c'BT gaTBc —a’B.
Oa dc

Giancarlo Ferrari Trecate Multivariable control EPFL 9/49



Linear Quadratic (LQ) optimal control

Proof of the Theorem

Review : minimization of quadratic forms
Consider the quadratic form

F(x)=x"Hx+x"g+g"x, H=H">0
The minimum can be computed setting Z—’; = 0. Recall that
2aTBc =c'BT gaTBc =a’B.
0a
Then

dF
a:0<:>XTH+XTHT—|—gT—|—gT:2XTH+2gT:0

and we have

X = —H_lg
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Linear Quadratic (LQ) optimal control

Proof of the theorem

We use a dynamic programming argument. Define the " cost-to-go”

V)= min {Zx N Qx(i) T(,‘)Ru(i)}—l—xT(N)Sx(N)

which is the queue of the cost from k to N.
For k = N,

V(N) = xT(N)P(N)x(N) = xT (N)Sx(N)
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Linear Quadratic (LQ) optimal control

Proof of the theorem

For k=N —1,

V(N—1)=u(r,r\1lil11)x (N —-1)@Qx(N —1) 4+ u" (N —1)Ru(N — 1) +V(N)
()

= min (a) 4 (Ax(N — 1) 4+ Bu(N —1))" P(N)(Ax(N — 1)

u(N-1)
+ Bu(N — 1))
= min xT(N = 1) [Q + ATP(N)A| x(N — 1) + uT (N — 1)

R+ BTP(N)B} u(N —1) +2x" (N = 1)ATP(N)Bu(N — 1)
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Linear Quadratic (LQ) optimal control

Proof of the theorem

We must minimize a quadratic form in the variable u(N — 1), treating
x(N — 1) as a given vector of parameters (it is indeed measured).

(?)\:((/(\11_11)) =2uT(N = 1) [R+ BTP(N)B| +2xT (N — 1)AT P(N)B = 0
This gives

u(N-1)=— [R + BTP(N)B}_l BTP(N)Ax(N —1) =

K(N—1)

The next goal is to express V(N — 1) as a quadratic form.
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Linear Quadratic (LQ) optimal control
Proof of the theorem
Substituting u(N — 1) into V(N — 1) we have
V(N —1) =x"(N —1) [Q + ATP(N)A] x(N — 1)+
— —
(b)
xT(N = 1)ATP(N)B [R+ BT P(N)B] " BT P(N) Ax(N — 1)
©
—2x"(N—1)ATP(N)B [R+ BT P(N)B] L BTP(N) Ax(N — 1)

identical to (c)
Defining P(N — 1) = (b) — (¢) (which is (R2) in the Theorem) one has
V(N —=1)=x"(N—-1)P(N — 1)x(N — 1)

which has the same structure of V/(N).
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Linear Quadratic (LQ) optimal control
Proof

At time k = N — 2, one can replicate the above steps by realizing that

V(N-2) = U(Tli_nz)xT(N—z)Qx(N—z)Jr uT(N=2)Ru(N —2)+ V(N—1) (%)

Formula () is the Bellman iteration and is the core of the dynamic
programming procedure.

Proceeding iteratively for k = N —2, N —1,..., 0 one obtains the algorithm in
the statement of the Theorem. B
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Linear Quadratic (LQ) optimal control

Example

Problem
DT system under control

x(k 4+ 1) = 0.3679x(k) + 0.6321u(k), x(0)=1

Determine the optimal control law to minimize the following performance
index :

x(10) +Z (k) + u?(K))

Note that in this example S =1, Q =1, and R = 1. Also, determine the
minimum value of J.
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Linear Quadratic (LQ) optimal control

Example - Solution

Using the Riccati equation, we obtain P(k) as follows:

P(k) =14 (0.3679)*P(k + 1)
—0.3679P(k +1)0.6321%(1 4 0.6321°P(k + 1)) "1 P(k + 1)0.3679

which can be simplified to

P(k) = 1+ 0.1354P(k 4 1)[1 + 0.3996 P(k + 1)] "

The boundary condition for P(k) is

P(N) = P(10) = S = 1
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Linear Quadratic (LQ) optimal control

Example - Solution

We now compute P(k) backward from kK =9 to k = 0:
P(9) = 1.0967
P(8) = 1.1032
P(7) = 1.1036
P(6) = 1.1037

P(k) =1.1037, k=5,4,3,2,1,0

Notice that the values of P(k) rapidly approach the steady-state value.
The steady-state value Pss can be obtained from

P = 1+ 0.1354P(1 + 0.3996P) ~*

or
0.3996P2 4 0.4650Pss — 1 =0

Solving this last equation for P, we have
Pes =1.1037 or —2.2674
EPFL  17/49



Linear Quadratic (LQ) optimal control

Example - Solution

Since P(k) must be positive, we find the steady-state value for P(k) to be
1.1037.

The feedback gain K (k) can be computed as

K(k) = [1+0.63212P(k +1)] " 0.6321P(k + 1)(0.3679)

By substituting the values of P(k) we have obtained, we get

K(10) =0

K(9) = 0.1662

K(8) = 0.1773

K(7) =0.1781

K(6) _ K(5) — .= K(O) =0.1781

The optimal control law is given by

u(k) = —K(Kk)x(k)
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Linear Quadratic (LQ) optimal control

Example - Solution

Since

x(k +1) =0.3679x(k) + 0.6321u(k) = 10.3679 — 0.6321 K (k)x(k)
we obtain
x(1) =[0.3679 — 0.6321K(0)]x(0)
= (0.3679 — 0.6321 x 0.1781) x 1 = 0.2553
x(2) = (0.3679 — 0.6321 x 0.1781) x 0.2553 = 0.0652
)
)

(
x(3) = (0.3679 — 0.6321 x 0.1781) x 0.0652 = 0.0166
x(4) = (0.3679 — 0.6321 x 0.1781) x 0.0166 = 0.00424

The values of x(k) for k =5,6,...,10 approach zero rapidly.
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Linear Quadratic (LQ) optimal control

Example - Solution

The optimal control sequence u(k) is now obtained as follows:

) )x(0) = —0.1781 x 1 = —0.1781

) )x(1) = —0.1781 x 0.2553 = —0.0455
u(2) = —K(2)x(2) = —0.1781 x 0.0652 = —0.0116

) )x(3) = —0.1781 x 0.0166 = —0.00296

) )x(4) = —0.1781 x 0.00424 = —0.000756
u(k)~0, k=5,6,...,10

Finally, the minimum value of the performance index J can be obtained as

J* = x(0)P(0)x(0) = (1 x 1.1037 x 1) = 1.1037
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Linear Quadratic (LQ) optimal control
Example - Solution
The values of P(k), K(k), x(k), and u(k) are shown in the figure below.

Notice that the values of P(k) and K(k) are constant except for the final
few stages.

P(K)
jheeees e oo
0.5
I N N N I N S I o Y —
0 2 4 6 8 0 « 10 4
x(k)
1.0 5
0.5
.
N
0 2 a 5} i mn
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Infinite-horizon LQ optimal control

EPFL  22/49



Infinite-Horizon (IH) LQ optimal control

Main drawback of FH-OC : u(k) is defined only for k =0,...,N — 1

Idea : consider the case N — +oo0.

Giancarlo Ferrari Trecate Multivariable control EPFL 23/49



Infinite-Horizon (IH) LQ optimal control

Main drawback of FH-OC : u(k) is defined only for k =0,...,N — 1
Idea : consider the case N — +o0.
System under control
xT = Ax + Bu
x(0) = xo
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Infinite-Horizon (IH) LQ optimal control

Main drawback of FH-OC : u(k) is defined only for k =0, ...

Idea : consider the case N — +oo0.
System under control
xT = Ax + Bu
x(0) = xo

Optimal control cost

+o0o
=Y xT(K)@x(k) + uT (k)Ru(k), @=QT>0,R=R" >0

k=0
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Infinite-Horizon (IH) LQ optimal control

Main drawback of FH-OC : u(k) is defined only for k =0,...,N — 1
Idea : consider the case N — +o0.
System under control
xT = Ax + Bu
x(0) = xo

Optimal control cost

+o0o
=Y xT(K)@x(k) + uT (k)Ru(k), @=QT>0,R=R" >0
k=0

Goal
Find the sequence u(0), u(1),... minimizing J
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Remark

Infinite-Horizon (IH) LQ optimal control

There could be no sequence u(0), u(1),... for which J < 400 !

=] & = E DA
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Infinite-Horizon (IH) LQ optimal control

Remark
There could be no sequence u(0), u(1), ... for which J < +o0 !

Example

+oo
+ _ _ _p_ _ k Ak _
xT=2x4+0-u,xg=1 Q=R=1 — J—Z2 Q2" = 40
for u(-) =0 k=0

If u(-) # 0, any nonzero input sample u(k) gives a positive contribution —
the cost is still +o00

v

Remark

The terminal cost x*(00)Sx(00) has no meaning
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Solution to IH-LQ

Theorem

Assume (A, B) is reachable. Then

@ For any initial condition P(N) =S = ST > 0, the matrices P(k), _
k=N—-1,N—2,...,0,—1,—2,... converge to a symmetric matrix P

which is the unique positive-semidefinite solution of the Algebraic Riccati
Equation (ARE)

P=ATPA+ Q- ATPB(R+B"PB) 'B"PA
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Solution to IH-LQ

Theorem
Assume (A, B) is reachable. Then

@ For any initial condition P(N) =S = ST > 0, the matrices P(k),
k=N-—1,N—2,...,0,—1,—2,... converge to a symmetric matrix P
which is the unique positive-semidefinite solution of the Algebraic Riccati
Equation (ARE)

P=ATPA+ Q- ATPB(R+B"PB) 'B"PA
@ The optimal control law minimizing J is given by u(k) = —Kx(k) where

K=(R+BTPB)'BTPA
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Solution to IH-LQ

Theorem
Assume (A, B) is reachable. Then

@ For any initial condition P(N) =S = ST > 0, the matrices P(k), _
k=N—-1,N—2,...,0,—1,—2,... converge to a symmetric matrix P
which is the unique positive-semidefinite solution of the Algebraic Riccati
Equation (ARE)

P=ATPA+ Q- ATPB(R+B"PB) 'B"PA
@ The optimal control law minimizing J is given by u(k) = —Kx(k) where
K=(R+BTPB)'BTPA
@ The optimal cost (corresponding to the optimal control law) is

J¥ = x(0)7 Px(0)
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Solution to IH-LQ

Remarks
@ Part 1 establishes the link between FH-LQ and IH-LQ

P is independent of the initial condition P(N) = S
(A, B) reachable and Q > 0, R > 0 = the ARE always has a solution

P>0
non obvious, as the ARE is a nonlinear matrix equation in P

26 /49
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Solution to IH-LQ

Remarks
@ Part 1 establishes the link between FH-LQ and IH-LQ

P is independent of the initial condition P(N) = S
(_A, B) reachable and @ > 0, R > 0 = the ARE always has a solution
P>0

non obvious, as the ARE is a nonlinear matrix equation in P

@ Part 2 : the IH-LQ control law is time-invariant — the closed-loop system
dynamics is _
xT = (A— BK)x

The assumption (A, B) reachable can be weakened into (A, B)
stabilisable (meaning the unreachable eigenvalues have modulus < 1)

v
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Solution to IH-LQ

Remarks

@ Part 1 establishes the link between FH-LQ and IH-LQ

P is independent of the initial condition P(N) = S

(_A, B) reachable and @ > 0, R > 0 = the ARE always has a solution
P>0

non obvious, as the ARE is a nonlinear matrix equation in P

@ Part 2 : the IH-LQ control law is time-invariant — the closed-loop system
dynamics is _
xT = (A— BK)x
The assumption (A, B) reachable can be weakened into (A, B)
stabilisable (meaning the unreachable eigenvalues have modulus < 1)

v

Terminology: u(k) = —Kx(k) is called the LQ Regulator (LQR) J
Open problems: is P > 0? Is A — BK Schur? J
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Tools for studying if P > 0

Factorisation :
R=CCG G eRexn

Not unique. Example Q =1 — G =1or GG = -1

Lemma

Let C; and G be factors such that @ = ClTCl = C2TC2.
Then
(A, C1) observable < (A, (;) observable
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Proof of the Lemma

n—1
If (A, C1) observable, then JQOKer(ClAJ) = {0}, where Ker(F) is the null

space of F.
Assume by contradiction that (A, C;) is unobservable. Then,

~1 ~1
ZQOKer(CzAJ), # {0}, hence implying that 3xp € ZQOKer(CgAJ), xo # 0,

such that CoAkxg =0, for k =0,1,....
Therefore

xg (AT C GAR %y = x{ (AT Q(AM)x0 = xg (AN)TC CLA*x = 0

which implies C;A*xg =0, k = 0,1,.... But this contradicts the
observability of (A, C1). B
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Why observability of (A, C;) is important ?
o Consider J = 3729 x(k)T Qx(k) + u” (k)Ru(k), x* = Ax + Bu and

evaluate the cost of the control law u(k) = 0. One has

+oo
J=> xJ (A7) QAkx ( %)
k=0

Since @ > 0, one might have xp # 0 producing J = 0. But if (A, (1)
is observable, this cannot happen, i.e.

J=0=x=0 (k * %)
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Why observability of (A, C;) is important ?

o Consider J = 3729 x(k)T Qx(k) + u” (k)Ru(k), x* = Ax + Bu and
evaluate the cost of the control law u(k) = 0. One has

+oo
J= x (AT) QA" (3 %)
k=0

Since @ > 0, one might have xp # 0 producing J = 0. But if (A, (1)
is observable, this cannot happen, i.e.

J=0=x=0 (k * %)

Remarks
If @ = C Ci > 0, one can show that (A, (1) is always observable J

Frequent case : Q = diag(q1,...,9n), ¢ >0
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Why observability of (A, C7) is important ?
Lemma
is positive definite.

If @ = ClTCl and (A, ;) observable, then the solution P > 0 of the ARE

o 5 = = 2N
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Why observability of (A, C;) is important ?

Lemma

If Q = ClTCl and (A, ;) observable, then the solution P > 0 of the ARE
is positive definite.

Proof

By contradiction assume P positive semidefinite.

Since J* = x(0)T Px(0), there is x(0) # 0 such that J* = 0.

Since R>0, J*=0= u(0)=u(l)=---=0.

Therefore, the cost J* coincides with J on (x x). But, as shown in
(% % %) this would imply xo = 0, which is a contradiction.
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Stabilizing LQR

Open-loop system and LQR
xT = Ax+ Bu

UZ—KX

Closed-loop (CL)
xT = (A - BK)x

K = time-invariant matrix gain produced by oo-horizon LQ problem

Theorem (CL stability of LQR)

Let C; be a matrix verifying @ = C// Gy. If
@ (A, B) is reachable

@ (A, () is observable

then A — BK is Schur stable.

Before providing the proof, interlude: Lyapunov stability theory

Giancarlo Ferrari Trecate Multivariable control EPFL

31/49



Lyapunov stability theory

o We focus on stability of the origin for the LTI system x™ = Ax

o Idea: if an energy-like function of the state decreases to zero, the
origin is stable.
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Lyapunov stability theory
Energy V(x) (x1,x2)-plane

o

@ V/(x) is a measure of the distance of x from the origin.
If V(x) can only decrease, then X = 0 should be stable.

@ Next: make statements more rigorous!
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Energy forward difference

xT = Ax

Consider a quadratic energy-like function: V/(x) = x” Px, where P € R"<"
is symmetric and positive definite

o Compute AV(x) = V (x(k + 1)) — V (x(k))
AV(x)=xTATPAx — xTPx = xT(ATPA — P)x

@ We are sure that AV(x) <0 if

ATPA—P<0
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Lyapunov theorems

Theorem 1: stability

The LTI system xT = Ax is stable, if and only if there is P > 0 such that
ATPA-P <0

Theorem 2 (AS)

For the LTI system x™ = Ax, the following statements are equivalent
(a) the system is AS

(b) for an arbitrary matrix Q > 0, there is a matrix PT = P > 0 solving
the Lyapunov equation

ATPA-P=-Q
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Lyapunov theorems

Terminology

o V(x) = x" Px is a candidate Lyapunov function

e If V/(x) verifies one of the two theorems, it is a Lyapunov function

Remark
o ATPA— P = —Q is a system of linear equations in the elements of P,
for a given Q
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Proof of the stability theorem

Recall the statement

Theorem (CL stability of LQR)

Let C; be a matrix verifying @ = C// C;. If
@ (A, B) is reachable

@ (A, G) is observable

then A — BK is Schur stable.

For simplicity, we will discuss the proof under the simplifying assumption
that Q > 0 (instead of Q > 0) J
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Proof

(a) + (b) guarantees that the unique solution of the ARE is P> 0. Let
V(x) = x" Px be a candidate Lyapunov function.
Forward difference :

AV(x)

= (x")TPxT —xPx =x"(A— BK)TP(A - BK)x — x" Px
—xT [(A— BR)TP(A - BK) - /5] x (1)
*)
We want to show that (x) is negative definite. To this purpose note that

(KTBT)P(BK)—(K"BT)PA+KTRK = KT(BTPB+R)K—KTBTPA

=K" [(BTPB+R)(B"PB+R)"'B"TPA—-BTPA)| =0

K
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Proof

Adding (KTBT)P(BK) — (KTBT)PA+ KTRK to the ARE we obtain

P=ATPA+Q—-ATPBK+K"BTPBK — K"BTPA+ K"RK
ARE

that is B o B B B
P=[A-BK]"P[A- BK]+ Q+K'™RK
This gives

(x) = [A—BK]TP[A— BK] - P = —(Q + KTRK) (2)
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Proof

Substituting (2) in (1) we have
AV(x)=—x"(Q+ KTRK)x

Since Q > 0and R >0, then Q + KTRK > 0 and AV/(x) < 0 unless

x = 0. From Lyapunov stability theory, the closed-loop system is
asymptotically stable.

If, instead, @ > 0, then @ + KT RK > 0 and one has to show that there
are no state trajectories X(k) giving AV/(x(k)) = 0 at all times, except for
the trivial one X(-) = 0. This can be done by exploiting the assumption

(b).
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Remarks on LQR

@ The stability theorem holds true even under the weaker assumptions
that
@ (A, B) is stabilizable
@ (A, () is detectable

@ (A, B) is stabilizable if any unreachable eigenvalue A of A verifies
Al <1

o (A, (q) is detectable if any unobservable eigenvalue A of A verifies
Al <1
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Remarks on LQR

o If the system (A, B, C) is observable, one can show that (b) can be
always verified by choosing Q = CTQC, where
Q=Q7 eRP*P, Q> 0is a design parameter.
The associated cost is

J= fxT(k)CTQCx(k) + u" (k)Ru(k)
k=0

—Zy k)Qy (k) + uT (k)Ru(k)

where the output y has been penalized instead of the state.
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Remarks on LQR

o If the system (A, B, C) is observable, one can show that (b) can be
always verified by choosing Q = CTQC, where
Q=Q7 eRP*P, Q> 0is a design parameter.
The associated cost is

J= +fxT(k)CT@Cx(k) + u" (k)Ru(k)

k=0

—Zy k)Qy (k) + uT (k)Ru(k)

where the output y has been penalized instead of the state.

@ LQR can be applied to multi-input systems — Interesting for the
multivariable case!
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Remarks on LQR

o If the system (A, B, C) is observable, one can show that (b) can be
always verified by choosing Q@ = CTQC, where
Q=Q7 eRP*P, Q> 0is a design parameter.
The associated cost is

J= +fxT(k)CT@Cx(k) + u" (k)Ru(k)

k=0

—Zy k)Qy (k) + uT (k)Ru(k)

where the output y has been penalized instead of the state.

@ LQR can be applied to multi-input systems — Interesting for the
multivariable case!

@ If x(k) is not measured, one can replace it with an estimate x(k)
provided by a state observer (see later in the course).

Giancarlo Ferrari Trecate Multivariable control EPFL 42 /49



LQR with prescribed stability degree

Problem of standard LQR: some A € Spec(A — BK) could be close to
the boundary of stability region, that is || ~ 1.
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LQR with prescribed stability degree

Problem of standard LQR: some A € Spec(A — BK) could be close to
the boundary of stability region, that is || ~ 1.

Discounted LQR

o
Jo = (xT(k)Qx(k) + u" (k)Ru(k)) o**, a>1

8

»
[l
o

Theorem (discounted LQR)
Let K, be the LQR gain associated to J,. then

Spec(A — BK,)) C éB(O, 1) (m)
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Proof of the theorem

We have .
Jo =Y &T(k)Q&(K) + a7 (k)Rii(k) (%)
k=0

with (k) = o*x(k) and (k) = o*u(k).
Multiplying xt = Ax + Bu by a**1, we have

>A<+=\aj/4/>?+gf/ﬁ:,ﬁf<+§0 (% %)

A B

Then (%) and ( %) define a standard LQ problem and the associated
LQR guarantees that X — 0 as k — oo. Hence, for x™ = (A — BK)x, one

k : )
has that x — 0 at least as fast as (é) . In view of the relations between
modes and eigenvalues, we have (H).
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LQR with prescribed stability degree of stability

Algorithm
o Define A=A and B=aB
o Compute K from the standard LQR problem with weights Q and R
o Use u(k) = —Kx(k)
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Design of weights @ and R

@ No golden rule - a few common criteria in the sequel

e Often some trial-and-error is required for achieving satisfactory
performances
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Design of weights @ and R

Modal analysis

o If A has very different eigenvalues, as in the figure below

m

‘I’ 1 Re

Figure: Eigenvalues providing satisfactory modes (+) and highly oscillating modes ()

a sensible goal is to move the critical eigenvalues () and focus less
on the remaining ones.

Idea : In J assign more weights to selected modes. How to do it ?

v
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Design of weights @ and R

Assume A has distinct eigenvalues A1, Ao, ..., implying that A can be

diagonalized by a non-singular matrix T containing eigenvectors as
columns. Change of coordinates : X = Tx,

A= TAT ! =diag(\1,...,\n), B=TB
xt = Ax+ Bu (*)

Remark

X; is associated with an eigenvalue \;.

Formulation of LQR for (x)

J= Zx (k)@x(k) + uT (k)Ru(k)
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Design of weights @ and R

o Choose Q = diag(qy, ..., dn) and weight more the " undesired”
eigenvalues

@ We have B B
xT(k)Qx(k) = xT(k)TT QTx(k)
Set Q= TTQT in the LQR problem for the original system.

@ The above method can be generalized to multiple eigenvalues through
the use of Jordan forms (not in this class).
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Design of weights @ and R: the normalization approach

J= Z qud (k) + ... qox2(K) + rud (k) + ... rmuz,(K)

Problem: each variable might be measured in different units — weights are
scale-dependent

Idea

Assume one knows that ||uj|| < Ujmax j=1,...,m and ||xi]| < Xi max,
i=1,..., )

Define g; = = and rj = —4— The cost becomes

i,max j,max

Z B2k 4. 32k P R(K) 4.

1 max n max 1 max m max

tp, (K)

and §;, 7 can be chosen in the interval (0,1), independently of the measurement
units
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