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Motivations

So far, we focused on regulation (AS of the origin) and performance

through eigenvalues assignment (EA)

So far, no disturbances!

In several applications one wants to design controllers

for solving tracking problems, especially for constant references y
0

for rejecting the e↵ect of disturbances

Terminology

O↵set-free tracking when :

disturbances and setpoints are constant

kyo � y(t)k ! 0 as t ! +1, independently of the initial state x(0)

of the system
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Summary

Necessary properties of the system under control

Two control design methods

I Feedforward compensation (measurable disturbance)

I Integral control (unknown disturbance)

Disturbance estimation (unknown disturbance with known dynamics)
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Problem setup

P :

(
x
+
= Ax + Bu +Md

y = Cx + Nd

x 2 Rn
, u 2 Rm

, y 2 Rp
and disturbance d 2 Rr

Flexible formulation: the disturbance can act on inputs/states/outputs
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Problem setup

P :

(
x
+
= Ax + Bu +Md

y = Cx + Nd

x 2 Rn
, u 2 Rm

, y 2 Rp
and disturbance d 2 Rr

Problem

Design an LTI controller for P such that

1) the closed-loop system is AS and has eigenvalues in prescribed

positions

2) lim
k!+1

y(k) = y
o
for constant y

o
and d

Remark

(1) ) stability and performance during transients

(2) ) zero steady-state tracking error for constant y
o
and d

Standing assumptions

(A,B) reachable and (A,C ) observable

Square system: m = p

Giancarlo Ferrari Trecate Multivariable control EPFL 5 / 30



Problem setup

P :

(
x
+
= Ax + Bu +Md

y = Cx + Nd

x 2 Rn
, u 2 Rm

, y 2 Rp
and disturbance d 2 Rr

Problem

Design an LTI controller for P such that

1) the closed-loop system is AS and has eigenvalues in prescribed

positions

2) lim
k!+1

y(k) = y
o
for constant y

o
and d

Remark

(1) ) stability and performance during transients

(2) ) zero steady-state tracking error for constant y
o
and d

Standing assumptions

(A,B) reachable and (A,C ) observable

Square system: m = p

Giancarlo Ferrari Trecate Multivariable control EPFL 5 / 30



Steady-state analysis

If the CL system is AS and point (2) is verified, then x ! x̄ and u ! ū for

t ! +1, where x̄ and ū yield y = y
o

x̄ = Ax̄ + Bū +Md

y
o
= Cx̄ + Nd

In matrix form, for arbitrary y
o
and d ,


A� I B

C 0

�

| {z }
⌃


x̄

ū

�
=


0 �M

I �N

� 
y
o

d

�
(⇤)

Problem

Can the condition (⇤) be fulfilled by any system verifying the standing

assumptions? NO
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Necessary steady-state condition for o↵set-free tracking


A� I B

C 0

�

| {z }
⌃


x̄

ū

�
=


0 �M

I �N

� 
y
o

d

�
(⇤)

Proposition

Assume (A,B) is reachable. Then, (⇤) has a unique solution⇥
x̄
T

ū
T

⇤T
for all

⇥
y
oT

d
T

⇤T 2 Rm+r
if and only if det(⌃) 6= 0
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Steady-state condition det(⌃) 6= 0

det(⌃) 6= 0 is a property of the system only. If not verified ,tracking of

arbitrary setpoints cannot be guaranteed, whatever controller is used

Unique equilibrium (x̄ , ū) given by


x̄

ū

�
= ⌃

�1


0 �M

I �N

� 
y
o

d

�
⌃ =


A� I B

C 0

�

Definition

The transmission zeros of a MIMO LTI system are the values z 2 C such

that

det

✓
A� zI B

C 0

�◆
= 0 (⇤)

Motivation for the terminology

One can show that for a SISO system, a transmission zero is a zero of the

transfer function G (z) = C (zI � A)
�1

B
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
x̄

ū
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Steady-state condition det(⌃) 6= 0

det

✓
A� I B

C 0

�◆
6= 0 (⇤)

(⇤) means that the system has no ”discrete derivators” (zeros equal to

+1).

In the SISO case, the presence of a derivator means that the gain of

the system is zero, which implies that, for constant input, the only

constant output in steady state is zero.

I Consider, for instance G (z) =
z�1
z+0.5 =

Y (z)
U(z)

U(z)(z � 1) = Y (z)(z + 0.5)

# z = push forward in time

u(k + 1)� u(k) = y(k + 1) + 0.5y(k)

# in steady state, assuming y(k) = ȳ constant

0 = 1.5ȳ
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Mid-lecture summary

We considered a square, reachable and observable system. The original

problem we wanted to solve is

Design an LTI controller for P such that

1) the closed-loop system is AS and has eigenvalues in prescribed

positions

2) lim
k!+1

y(k) = y
o
for constant y

o
and d

A necessary condition is

det (⌃) 6= 0, ⌃ =


A� I B

C 0

�
(⇤)
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Two design approaches to
o↵set-free tracking
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Method 1 : Feedforward compensation

Assumption

d 2 Rr
is measured

Step 1 : find ū in steady state as a function of y
o
and d


x̄

ū

�
= ⌃

�1


0 �M

I �N

� 
y
o

d

�

ū =
⇥
0 I

⇤  x̄

ū

�
=

⇥
0 I

⇤
⌃
�1


0

I

�

| {z }
K

y
o
+
⇥
0 I

⇤
⌃
�1


�M

�N

�

| {z }
H

d

ū = Ky
o
+ Hd
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�
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0 I
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�
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Controller with feedforward compensation

The architecture assumes that the controller is driven by the tracking error

Set y
o
and d to zero and assume that det(⌃) 6= 0 and that the closed-loop

system is AS. Then, for constant inputs y
o
and d , there is a single set of

steady-state variables (states/inputs/outputs of R and P).

In particular, e ! ē + 0. Then @u ! 0 and

@u ! 0 ) u ! ū ) y ! y
o

Design of the controller R

Must guarantee AS and assign closed-loop eigenvalues as desired

Key conditions: the system ”seen” from R (meaning with inputs @u, d and y
o

and output e) must be reachable and observable
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Dynamics of system (@u, d , y o) ! e

Set x(k) = x̄ + @x(k), u(k) = ū + @u(k), y(k) = y
o � e(k).

From the LTI dynamics of P

x̄ + @x(k + 1) = Ax̄ + A@x(k) + Bū + B@u(k) +Md

y
o � e(k) = Cx̄ + C@x(k) + Nd

Recalling that x̄ = Ax̄ + Bū +Md and y
o
= Cx̄ + Nd , we have

@P :

(
@x(k + 1) = A@x(k) + B@u(k)

e(k) = �C@x(k)

By construction, @P is independent of y
o
and d

I For control design only @P matters and one can set d = 0 and y
o
= 0

@P is reachable and observable if the system P has these properties
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Design of the controller R

Use eigenvalues assignment + observer for designing R

Pros of the approach

Simplicity

K , H are static compensators (easy to implement)

Cons of the approach

Tracking and disturbance rejection are not robust against

uncertainties in the parameters of P

I If some entries of (A,B ,C ,D) di↵er from their nominal values,

e ! ē 6= 0 as t ! +1
The disturbance must be measured
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Method II: controller with integrators

Lessons from basic control theory for SISO CT systems

  

Stabilizing
controller

System∫
y° ye u

-

+

d

Ww

Step 1: design of the static part of the controller

“add an integrator to drive the error to zero when the

setpoint is constant”

Step 2: design of the dynamic part of the regulator through

loopshaping. This design step considers the cascade of the

system under control and the integrator

Provides o↵set-free tracking even if d(t) is unknown (but constant)
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Addition of an integral action

  

System P

y° ye u

-

+

d

w
R

1
R

2

d 2 Rn
unknown and constant, controller driven by the tracking error

Step 1 - Design of R1: p integrators

R1 :

(
v(k + 1) = v(k) + e(k) v(k) 2 Rp

w(k) = v(k)

Assume the closed-loop system is AS and det(⌃) 6= 0. Then, for d and y
o

constant, the system reaches a steady state. The steady state values v̄ , w̄ , ē, of

v(k), w(k) and e(k) verify

⇢
v̄ = v̄ + ē

w̄ = v̄
) ē = 0

O↵set-free tracking achieved!
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Design of R2

Goal: R2 must stabilize the closed-loop system

Key conditions: the system ”seen” from R2 (i.e. with inputs u, d , and y
o

and output w) must be reachable and observable and the plant must verify

det(⌃) 6= 0

Dynamics of system (u, d , y0) ! w

8
><

>:

x(k + 1) = Ax(k) + Bu(k) +Md

v(k + 1) = v(k) + y
o � Cx(k)� Nd

w(k) = v(k)

Setting ⌘ =
⇥
x
T , vT

⇤T

⌘+ =


A 0
�C I

�

| {z }
Ā

⌘ +


B

0

�

| {z }
B̄

u +


M

�N

�

| {z }
M̄

d +


0
I

�
y
o

w =
⇥

0 I
⇤

| {z }
C̄

⌘ + 0|{z}
N̄

d

Remark: for control design, only the matrices (Ā, B̄, C̄) matter ! one can set yo = 0 and d = 0
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Observability of (Ā, B̄ , C̄ )

The observability matrix of (Ā, C̄ ) is

M0 =

"
0 �C

T �A
T
C

T � C
T �

�
A
2
�T

C
T � A

T
C

T � C
T · · ·

I I I I · · ·

#

And, replacing (column i) with [-(column i)+(column i � 1)], for i > 1

M̃0 =

"
0 C

T
A
T
C

T
�
A
2
�T

C
T · · ·

I 0 0 0 · · ·

#

Lemma

M0 has maximal rank if (A,C ) is observable.

Proof : The upper-right block of M
T

0 is the observability matrix of (A,C )
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Reachability of (Ā, B̄ , C̄ )

The reachability matrix of (Ā, B̄) is

Mr =


B AB A

2
B A

3
B · · ·

0 �CB �CAB � CB �CA
2
B � CAB � CB · · ·

�

Lemma

Mr has maximal rank if (A,B) is reachable and det(⌃) 6= 0,

⌃ =


A� I B

C 0

�

Proof : omitted. . .
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Controller with integrator : pros and cons

Pros : If entries of (A,B ,C ,D) di↵er from their nominal value,

often their steady-state e↵ect can be ”dumped” into d(k)

The controller is robust against these perturbations

Cons : d and y
o
must be constant for perfect tracking. What about

non constant d(k) and y
o
(k) ?

Giancarlo Ferrari Trecate Multivariable control EPFL 21 / 30

x
+
= A ++A +B
↳ = Md + GAE



Controller with integrator : pros and cons

Pros : If entries of (A,B ,C ,D) di↵er from their nominal value,

often their steady-state e↵ect can be ”dumped” into d(k)

The controller is robust against these perturbations

Cons : d and y
o
must be constant for perfect tracking. What about

non constant d(k) and y
o
(k) ?

Giancarlo Ferrari Trecate Multivariable control EPFL 21 / 30



Disturbance estimation
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Disturbance estimation

Idea for non constant disturbance: estimate and subtract.

We consider only the problem of guaranteeing that the plant state x(k) converges

to zero as k ! +1 (not a tracking problem)

Reference diagram

Remarks

d(k) is assumed to a↵ect the control variable

If the disturbance acts elsewhere, it has to be brought in this position

(”virtual disturbance”)

The estimator provides both d̂ and x̂ but only x̂ is used by the

state-feedback controller K

Giancarlo Ferrari Trecate Multivariable control EPFL 23 / 30

t



Problem setup

Plant

x
+
= Ax + B(u + d)

y = Cx

Disturbance generator

x
+
d

= �xd

d = Hxd

Disturbance model (�,H)

Needed for state estimation

The initial state is unknown

LTI models are quite flexible. For instance they embrace

constant disturbances

(
x
+
d

= xd

d = xd

ramp disturbances

(unstable model)

8
><

>:

x
+
d ,1 = xd ,2 + xd ,1

x
+
d ,2 = xd ,2

d = xd ,1

. . . and any disturbance that can be represented as the free state of

an LTI system (recall the lectures on modes!)
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Design of observer/controller

Augmented system (plant + disturbance generator)


x
+

x
+
d

�
=


A BH

0 �

�

| {z }
Ā


x

xd

�
+


B

0

�

| {z }
B̄

u

y =
⇥
C 0

⇤
| {z }

C̄


x

xd

�

Important remark : (Ā, B̄ , C̄ ) is always uncontrollable because the

disturbance model is a free system!
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Design of observer/controller

Design procedure

Assumptions:

det(⌃) 6= 0

(A,B) reachable
(Ā, C̄ ) observable

Algorithm:

design K based on (A,B) only
design the observer based on (Ā, C̄ ) for producing an AS error

dynamics

The proof of stability of the closed-loop system is omitted
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Example: disturbance torque rejection for a spinning

satellite

Attitude control = proper orientation of the satellite antenna with respect to

earth.

ϑ

Inertial

reference

I ✓̈ = MC +MD

I = moment of inertia of the satellite (about the mass center)

MC = control torque applied by thrusters

MD = disturbance torque

✓ = angle of satellite
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Example: disturbance torque rejection for a spinning

satellite

Attitude control = proper orientation of the satellite antenna with respect to

earth.

ϑ

Inertial

reference

Model in normalized coordinates :

u =
MC

I
, d =

MD

I

✓̈ = u + d
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DT model (x1 = ✓, x2 = ✓̇, y = ✓, exact discretisation)
As seen in lecture 5


x
+
1
x
+
2

�
=


1 T

0 1

�

| {z }
A


x1

x2

�
+


T

2

2
T

�

| {z }
B

(u + d)

y =
⇥
1 0

⇤
x

d(k) acts on the inputs only, as required

T = 0.1 sec

The disturbance torque d(k) is generated by a solar pressure of 2
deg
sec2 and

acts is a sinusoid given by
"

x
+
d ,1

x
+
d ,2

#
=


0.9877 0.0996
�0.2457 0.9877

� 
xd1

xd2

�

d = xd1

Use the controller K = [�10.2500,�3.4875], seen previously that

places the control eigenvalues in 0.8± j0.25
Place the observer eigenvalues at 0.4± j0.4, 0.9± j0.1
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Simulations

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-3

-2

-1

0

1

2

3

O
u

tp
u

t

By using eigenvalue assignment, the gain of the full-order observer is

L =
⇥
�1.3754 �6.8124 �8.0547 7.3964

⇤T
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Concluding remarks

Methods for solving the regulation problem (AS of the origin) can be

applied in a smart way for addressing

I o↵set-free tracking

I disturbance estimation and rejection

Similar design procedures exist for CT systems

Generalisation for tracking non-constant references y
o
(k) exist

I Key assumption : y
o
(k) is the output of an exogenous and

autonomous system (A
o ,C o

)
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