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Motivations
So far, we focused on regulation (AS of the origin) and performance
through eigenvalues assignment (EA)

So far, no disturbances!

In several applications one wants to design controllers

for solving tracking problems, especially for constant references y0

for rejecting the effect of disturbances

Terminology

Offset-free tracking when :

disturbances and setpoints are constant

‖yo − y(t)‖ → 0 as t → +∞, independently of the initial state x(0)
of the system
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Summary

Necessary properties of the system under control

Two control design methods
▶ Feedforward compensation (measurable disturbance)
▶ Integral control (unknown disturbance)

Disturbance estimation (unknown disturbance with known dynamics)
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Problem setup

P :

{︃
x+ = Ax + Bu +Md

y = Cx + Nd

x ∈ Rn, u ∈ Rm, y ∈ Rp and disturbance d ∈ Rr

Flexible formulation: the disturbance can act on inputs/states/outputs
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Problem setup

P :

{︃
x+ = Ax + Bu +Md

y = Cx + Nd

x ∈ Rn, u ∈ Rm, y ∈ Rp and disturbance d ∈ Rr

Problem

Design an LTI controller for P such that

1) the closed-loop system is AS and has eigenvalues in prescribed
positions

2) lim
k→+∞

y(k) = yo for constant yo and d

Remark
(1) ⇒ stability and performance during transients

(2) ⇒ zero steady-state tracking error for constant yo and d

Standing assumptions

(A,B) reachable and (A,C ) observable

Square system: m = p
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Steady-state analysis

If the CL system is AS and point (2) is verified, then x → x̄ and u → ū for
t → +∞, where x̄ and ū yield y = yo

x̄ = Ax̄ + Bū +Md

yo = Cx̄ + Nd

In matrix form, for arbitrary yo and d ,[︂
A− I B
C 0

]︂
⏟  ⏞  

Σ

[︂
x̄
ū

]︂
=

[︂
0 −M
I −N

]︂ [︂
yo

d

]︂
(*)

Problem

Can the condition (*) be fulfilled by any system verifying the standing
assumptions? NO
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Necessary steady-state condition for offset-free tracking

[︂
A− I B
C 0

]︂
⏟  ⏞  

Σ

[︂
x̄
ū

]︂
=

[︂
0 −M
I −N

]︂ [︂
yo

d

]︂
(*)

Proposition

Assume (A,B) is reachable. Then, (*) has a unique solution[︀
x̄T ūT

]︀T
for any

[︀
yoT dT

]︀T ∈ Rm+r if and only if det(Σ) ̸= 0

Giancarlo Ferrari Trecate Multivariable control EPFL 7 / 30



Steady-state condition det(Σ) ̸= 0
det(Σ) ̸= 0 is a property of the system only. If not verified ,tracking of
arbitrary setpoints cannot be guaranteed, whatever controller is used

Unique equilibrium (x̄ , ū) given by[︂
x̄
ū

]︂
= Σ−1

[︂
0 −M
I −N

]︂ [︂
yo

d

]︂
Σ =

[︂
A− I B
C 0

]︂

Definition

The transmission zeros of a MIMO LTI system are the values z ∈ C such
that

det

(︂[︂
A− zI B
C 0

]︂)︂
= 0 (*)

Motivation for the terminology

One can show that for a SISO system, a transmission zero is a zero of the
transfer function G (z) = C (zI − A)−1B
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Steady-state condition det(Σ) ̸= 0

det

(︂[︂
A− I B
C 0

]︂)︂
̸= 0 (*)

(*) means that the system has no ”discrete derivators” (zeros equal to
+1).

In the SISO case, the presence of a derivator means that the gain of
the system is zero, which implies that, for constant input, the only
constant output in steady state is zero.

▶ Consider, for instance G (z) = z−1
z+0.5 = Y (z)

U(z)

U(z)(z − 1) = Y (z)(z + 0.5)

↓ z = push forward in time

u(k + 1)− u(k) = y(k + 1) + 0.5y(k)

↓ in steady state, assuming y(k) = ȳ constant

0 = 1.5ȳ
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Mid-lecture summary

We considered a square, reachable and observable system. The original
problem we wanted to solve is

Design an LTI controller for P such that

1) the closed-loop system is AS and has eigenvalues in prescribed
positions

2) lim
k→+∞

y(k) = yo for constant yo and d

A necessary condition is

det (Σ) ̸= 0, Σ =

[︂
A− I B
C 0

]︂
(*)
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Two design approaches to
offset-free tracking
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Method 1 : Feedforward compensation

Assumption

d ∈ Rr is measured

Step 1 : find ū in steady state as a function of yo and d[︂
x̄
ū

]︂
= Σ−1

[︂
0 −M
I −N

]︂ [︂
yo

d

]︂
ū =

[︀
0 I

]︀ [︂ x̄
ū

]︂
=

[︀
0 I

]︀
Σ−1

[︂
0
I

]︂
⏟  ⏞  

K

yo +
[︀
0 I

]︀
Σ−1

[︂
−M
−N

]︂
⏟  ⏞  

H

d

ū = Kyo + Hd
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Controller with feedforward compensation

The architecture assumes that the controller is driven by the tracking error

Set yo and d to zero and assume that det(Σ) ̸= 0 and that the closed-loop
system is AS. Then, for constant inputs yo and d , there is a single set of
steady-state variables (states/inputs/outputs of R and P).

In particular, e → ē + 0. Then 𝜕u → 0 and

𝜕u → 0 ⇒ u → ū ⇒ y → yo

Design of the controller R

Must guarantee AS and assign closed-loop eigenvalues as desired

Key conditions: the system ”seen” from R (meaning with inputs 𝜕u, d and yo

and output e) must be reachable and observable

Giancarlo Ferrari Trecate Multivariable control EPFL 13 / 30



Controller with feedforward compensation

The architecture assumes that the controller is driven by the tracking error

Set yo and d to zero and assume that det(Σ) ̸= 0 and that the closed-loop
system is AS. Then, for constant inputs yo and d , there is a single set of
steady-state variables (states/inputs/outputs of R and P).
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Dynamics of system (𝜕u, d , y o) → e

Set x(k) = x̄ + 𝜕x(k), u(k) = ū + 𝜕u(k), y(k) = yo − e(k).
From the LTI dynamics of P

x̄ + 𝜕x(k + 1) = Ax̄ + A𝜕x(k) + Bū + B𝜕u(k) +Md

yo − e(k) = Cx̄ + C𝜕x(k) + Nd

Recalling that x̄ = Ax̄ + Bū +Md and yo = Cx̄ + Nd , we have

𝜕P :

{︃
𝜕x(k + 1) = A𝜕x(k) + B𝜕u(k)

e(k) = −C𝜕x(k)

By construction, 𝜕P is independent of yo and d
▶ For control design only 𝜕P matters and one can set d = 0 and yo = 0

𝜕P is reachable and observable if the system P has these properties
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Design of the controller R

Use eigenvalues assignment + observer for designing R

Pros of the approach

Simplicity

K , H are static compensators (easy to implement)

Cons of the approach

Tracking and disturbance rejection are not robust against
uncertainties in the parameters of P

▶ If some entries of (A,B,C ,D) differ from their nominal values,
e → ē ̸= 0 as t → +∞

The disturbance must be measured
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Method II: controller with integrators

Lessons from basic control theory for SISO CT systems

  

Stabilizing
controller

System∫
y° ye u

-

+

d

Ww

Step 1: design of the static part of the controller

“add an integrator to drive the error to zero when the
setpoint is constant”

Step 2: design of the dynamic part of the regulator through
loopshaping. This design step considers the cascade of the
system under control and the integrator

Provides offset-free tracking even if d(t) is unknown (but constant)
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Addition of an integral action

  

System P

y° ye u

-

+

d

w
R

1
R

2

d ∈ Rn unknown and constant, controller driven by the tracking error

Step 1 - Design of R1: p integrators

R1 :

{︃
v(k + 1) = v(k) + e(k) v(k) ∈ Rp

w(k) = v(k)

Assume the closed-loop system is AS and det(Σ) ̸= 0. Then, for d and yo

constant, the system reaches a steady state. The steady state values v̄ , w̄ , ē, of
v(k), w(k) and e(k) verify {︂

v̄ = v̄ + ē
w̄ = v̄

⇒ ē = 0

Offset-free tracking achieved!
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Design of R2

Goal: R2 must stabilize the closed-loop system

Key conditions: the system ”seen” from R2 (i.e. with inputs u, d , and yo

and output w) must be reachable and observable and the plant must verify
det(Σ) ̸= 0

Dynamics of system (u, d , y0) → w⎧⎪⎨⎪⎩
x(k + 1) = Ax(k) + Bu(k) +Md

v(k + 1) = v(k) + yo − Cx(k)− Nd

w(k) = v(k)

Setting 𝜂 =
[︀
xT , vT

]︀T
𝜂+ =

[︂
A 0
−C I

]︂
⏟  ⏞  

Ā

𝜂 +

[︂
B
0

]︂
⏟  ⏞  

B̄

u +

[︂
M
−N

]︂
⏟  ⏞  

M̄

d +

[︂
0
I

]︂
yo

w =
[︀

0 I
]︀⏟  ⏞  

C̄

𝜂 + 0⏟ ⏞ 
N̄

d

Remark: for control design, only the matrices (Ā, B̄, C̄) matter → one can set yo = 0 and d = 0
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Observability of (Ā, B̄ , C̄ )

The observability matrix of (Ā, C̄ ) is

M0 =

[︃
0 −CT −ATCT − CT −

(︀
A2

)︀T
CT − ATCT − CT · · ·

I I I I · · ·

]︃

And, replacing (column i) with [-(column i)+(column i − 1)], for i > 1

M̃0 =

[︃
0 CT ATCT

(︀
A2

)︀T
CT · · ·

I 0 0 0 · · ·

]︃

Lemma

M0 has maximal rank if (A,C ) is observable.

Proof : The upper-right block of MT
0 is the observability matrix of (A,C )
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M0 =

[︃
0 −CT −ATCT − CT −

(︀
A2

)︀T
CT − ATCT − CT · · ·

I I I I · · ·

]︃

And, replacing (column i) with [-(column i)+(column i − 1)], for i > 1

M̃0 =

[︃
0 CT ATCT

(︀
A2

)︀T
CT · · ·

I 0 0 0 · · ·

]︃

Lemma

M0 has maximal rank if (A,C ) is observable.

Proof : The upper-right block of MT
0 is the observability matrix of (A,C )

Giancarlo Ferrari Trecate Multivariable control EPFL 19 / 30



Reachability of (Ā, B̄ , C̄ )

The reachability matrix of (Ā, B̄) is

Mr =

[︂
B AB A2B A3B · · ·
0 −CB −CAB − CB −CA2B − CAB − CB · · ·

]︂

Lemma

Mr has maximal rank if (A,B) is reachable and det(Σ) ̸= 0,

Σ =

[︂
A− I B
C 0

]︂
Proof : omitted. . .
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Controller with integrator : pros and cons

Pros : If entries of (A,B,C ,D) differ from their nominal value,
often their steady-state effect can be ”dumped” into d(k)

The controller is robust against these perturbations

Cons : d and yo must be constant for perfect tracking. What about
non constant d(k) and yo(k) ?
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Disturbance estimation
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Disturbance estimation
Idea for non constant disturbance: estimate and subtract.
We consider only the problem of guaranteeing that the plant state x(k) converges
to zero as k → +∞ (not a tracking problem)

Reference diagram

Remarks

d(k) is assumed to affect the control variable

If the disturbance acts elsewhere, it has to be brought in this position
(”virtual disturbance”)

The estimator provides both d̂ and x̂ but only x̂ is used by the
state-feedback controller K
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Problem setup
Plant

x+ = Ax + B(u + d)

y = Cx

Disturbance generator

x+d = 𝜑xd

d = Hxd

Disturbance model (𝜑,H)

Needed for state estimation
The initial state is unknown
LTI models are quite flexible. For instance they embrace

constant disturbances

{︃
x+d = xd

d = xd

ramp disturbances
(unstable model)

⎧⎪⎨⎪⎩
x+d ,1 = xd ,2 + xd ,1

x+d ,2 = xd ,2

d = xd ,1

. . . and any disturbance that can be represented as the free state of
an LTI system (recall the lectures on modes!)
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Design of observer/controller

Augmented system (plant + disturbance generator)[︂
x+

x+d

]︂
=

[︂
A BH
0 𝜑

]︂
⏟  ⏞  

Ā

[︂
x
xd

]︂
+

[︂
B
0

]︂
⏟  ⏞  

B̄

u

y =
[︀
C 0

]︀⏟  ⏞  
C̄

[︂
x
xd

]︂

Important remark : (Ā, B̄, C̄ ) is always uncontrollable because the
disturbance model is a free system!
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Design of observer/controller

Design procedure

Assumptions:

det(Σ) ̸= 0
(A,B) reachable
(Ā, C̄ ) observable

Algorithm:

design K based on (A,B) only
design the observer based on (Ā, C̄ ) for producing an AS error
dynamics

The proof of stability of the closed-loop system is omitted
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Example: disturbance torque rejection for a spinning
satellite

Attitude control = proper orientation of the satellite antenna with respect to
earth.

ϑ

Inertial

reference

I𝜃 = MC +MD

I = moment of inertia of the satellite (about the mass center)

MC = control torque applied by thrusters

MD = disturbance torque

𝜃 = angle of satellite
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Example: disturbance torque rejection for a spinning
satellite

Attitude control = proper orientation of the satellite antenna with respect to
earth.

ϑ

Inertial

reference

Model in normalized coordinates :

u =
MC

I
, d =

MD

I

𝜃 = u + d
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DT model (x1 = 𝜃, x2 = 𝜃, y = 𝜃, exact discretisation)
As seen in lecture 5[︂

x+1
x+2

]︂
=

[︂
1 T
0 1

]︂
⏟  ⏞  

A

[︂
x1
x2

]︂
+

[︂
T 2

2
T

]︂
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d(k) acts on the inputs only, as required
T = 0.1 sec

The disturbance torque d(k) is generated by a solar pressure of 2 deg
sec2

and
acts is a sinusoid given by[︃
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x+d ,2

]︃
=

[︂
0.9877 0.0996
−0.2457 0.9877

]︂ [︂
xd1
xd2

]︂
d = xd1

Use the controller K = [−10.2500,−3.4875], seen previously that
places the control eigenvalues in 0.8± j0.25
Place the observer eigenvalues at 0.4± j0.4, 0.9± j0.1
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Simulations
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By using eigenvalue assignment, the gain of the full-order observer is

L =
[︀
−1.3754 −6.8124 −8.0547 7.3964

]︀T
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Concluding remarks

Methods for solving the regulation problem (AS of the origin) can be
applied in a smart way for addressing

▶ offset-free tracking
▶ disturbance estimation and rejection

Similar design procedures exist for CT systems

Generalisation for tracking non-constant references yo(k) exist
▶ Key assumption : yo(k) is the output of an exogenous and

autonomous system (Ao ,C o)
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