Lecture 6 State observers Output-feedback controllers

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Motivations: in several applications

- not all scalar states are accessible
- ullet sensors are costly o not convenient to measure all scalar states

Motivations: in several applications

- not all scalar states are accessible
- ullet sensors are costly o not convenient to measure all scalar states

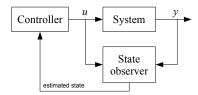
Problems

Knowing just the output, but not the state, prevents from using state feedback controllers

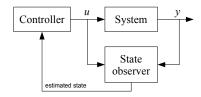
Solutions

- Build an observer, that is a dynamical system with
 - inputs: the inputs and outputs of the system Σ under observation
 - \triangleright outputs: the estimated state of Σ
- Use the estimated state in the controller

2/39



EPFL

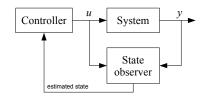


Terminology: state observers or state estimators

Challenges: stability of the closed-loop system? Performance?

Other uses: estimates of the internal state are also very useful for

detecting malfunctioning and faults on components



Terminology: state observers or state estimators

Challenges: stability of the closed-loop system? Performance?

Other uses: estimates of the internal state are also very useful for

detecting malfunctioning and faults on components

Outline of the lecture

- Full-order observers and filters
 - Output-feedback controllers: the separation principle
- Reduced-order observers
- Choice of the closed-loop eigenvalues

Later: Kalman filtering (stochastic framework)

$$\Sigma : \begin{cases} x^+ = Ax + Bu \\ y = Cx \\ x(0) = x_0 \end{cases}$$

- Full-order: reconstruct the whole state x(k)
- Define $\hat{x}(k|k-1)$ the estimate available at time k of x(k) using data (inputs and outputs) known up to k-1
 - \hookrightarrow Notation for these sequences : u^{k-1} , y^{k-1}

$$\begin{bmatrix} u_3 & u_4 \\ u_2 \\ u_3 \end{bmatrix}$$

4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 へ ○

Luenberger observer

$$\hat{\Sigma} = \begin{cases} \hat{x}(k+1|k) = A\hat{x}(k|k-1) + Bu(k) - L[y(k) - C\hat{x}(k|k-1)] \\ \hat{y}(k) = C\hat{x}(k|k-1) \\ \hat{x}(0) = \hat{x}_0 \end{cases}$$

Luenberger observer

$$\hat{\Sigma} = \begin{cases} \hat{x}(k+1|k) = A\hat{x}(k|k-1) + Bu(k) - L[y(k) - C\hat{x}(k|k-1)] \\ \hat{y}(k) = C\hat{x}(k|k-1) \\ \hat{x}(0) = \hat{x}_0 \end{cases}$$

Remarks

- $L \in \mathbb{R}^{n \times p}$: observer gain. Multiplies the output estimation error
- Recursive update at \hat{x} : the observer is an LTI system
- The dynamic of Σ and $\hat{\Sigma}$ are identical, up to the output-error term

EPFL

Luenberger observer

$$\hat{\Sigma} = \begin{cases} \hat{x}(k+1|k) = A\hat{x}(k|k-1) + Bu(k) - L[y(k) - C\hat{x}(k|k-1)] \\ \hat{y}(k) = C\hat{x}(k|k-1) \\ \hat{x}(0) = \hat{x}_0 \end{cases}$$

Remarks

- $L \in \mathbb{R}^{n \times p}$: observer gain. Multiplies the output estimation error
- Recursive update at \hat{x} : the observer is an LTI system
- ullet The dynamic of Σ and $\hat{\Sigma}$ are identical, up to the output-error term
- If, at \bar{k} , $\hat{x}(\bar{k}|\bar{k}-1)=x(\bar{k})$, then, $\hat{x}=x$, $\forall k\geq \bar{k}$ (perfect reconstruction)
- x_0 is not known, \hat{x}_0 is chosen using "common sense" and, unavoidably, $\hat{x}_0 \neq x_0$

Goal

Guarantee that the estimation error $e(k|k-1) = x(k) - \hat{x}(k|k-1)$ goes to zero as $k \to \infty$.

 \hookrightarrow recovers from the mismatch $x_0 \neq \hat{x}_0$.

Key point for observers: analyse the error dynamics (not \hat{x})!

System

$$x^+ = Ax + Bu$$
$$y = Cx$$

Observer
$$(\hat{x} = \hat{x}(k|k-1))$$

 $\hat{x}^+ = A\hat{x} + Bu - L(y - C\hat{x})$
 $\hat{y} = C\hat{x}$

System

$$x^+ = Ax + Bu$$
$$y = Cx$$

Observer
$$(\hat{x} = \hat{x}(k|k-1))$$

 $\hat{x}^+ = A\hat{x} + Bu - L(y - C\hat{x})$
 $\hat{y} = C\hat{x}$

Error dynamics
$$(e = e(k|k-1) = x(k) - \hat{x}(k|k-1))$$

 $e^{+} = Ae + Bu - Bu + L(Cx - C\hat{x}) = (A + LC)e$
 $x^{+} - \hat{x}^{+} = Ax + Bu - A\hat{x} - Bu - L(y - c\hat{x})$

System

$$x^+ = Ax + Bu$$
$$y = Cx$$

Observer
$$(\hat{x} = \hat{x}(k|k-1))$$

 $\hat{x}^+ = A\hat{x} + Bu - L(y - C\hat{x})$
 $\hat{y} = C\hat{x}$

Error dynamics
$$(e = e(k|k-1) = x(k) - \hat{x}(k|k-1))$$

 $e^+ = Ae + B\hat{u} - B\hat{u} + L(Cx - C\hat{x}) = (A + LC)e$

Definition

The observer is asymptotically stable (AS) if the error dynamics has this property

- The error dynamics is an autonomous system
 - ▶ AS $\Rightarrow \hat{x} \rightarrow x$ irrespectively of x_0 and \hat{x}_0

Definition

The eigenvalues of A + LC are called the eigenvalues of the observer

Observer design

Problem

Find L such that A + LC is Schur

• Spec(A + LC) = Spec $(A^T + C^TL^T)$ The problem is identical to the design of K such that (A + BK) has prescribed eigenvalues, up to the following replacements

$$A \rightarrow A^T$$

$$B \rightarrow C^T$$

$$K \rightarrow L^T$$

Observer design

• For single-output systems, $y \in \mathbb{R}$, use Ackermann's formula: if

$$M_0 = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T$$
 is full rank, set

$$L^{T} = -\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} (M_{o})^{-1} P^{D} (A^{T})$$

where P^D is the desired characteristic polynomial of A + LC

Observer design

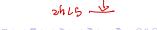
• For single-output systems, $y \in \mathbb{R}$, use Ackermann's formula: if

$$M_0 = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^T$$
 is full rank, set

$$L^{T} = -\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} (M_{o})^{-1} P^{D} (A^{T})$$

where P^D is the desired characteristic polynomial of A + LC

 For multi-output systems all methods seen for MIMO control design can be applied to observer design

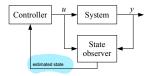


Giancarlo Ferrari Trecate

9/39

Output-feedback controllers: the separation principle

Observer & state feedback design: the separation principle



System

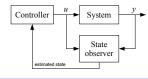
$$x^+ = Ax + Bu$$
$$y = Cx$$

Observer

$$\hat{x}^{+} = A\hat{x} + Bu - L(y - C\hat{x})$$
Recall: $\hat{x} = \hat{x}(k|k-1)$

Controller $u = K\hat{x}$

Observer & state feedback design: the separation principle



System

$$x^+ = Ax + Bu$$
$$y = Cx$$

Observer

$$\hat{x}^{+} = A\hat{x} + Bu + L(y - C\hat{x})$$
Recall:
$$\hat{x} = \hat{x}(k|k-1)$$

Controller $u = K\hat{x}$

Closed-loop system

$$\begin{bmatrix} x^{+} \\ \hat{x}^{+} \end{bmatrix} = \underbrace{\begin{bmatrix} A & BK \\ -LC & A + BK + LC \end{bmatrix}}_{E} \begin{bmatrix} x \\ \hat{x} \end{bmatrix}$$

Separation principle

$$Spec(F)=Spec(A+BK)\cup Spec(A+LC)$$

- If L stabilizes A + LC and K stabilizes A + BK, the closed-loop system is AS
- Each gain is designed independently of the other one

Giancarlo Ferrari Trecate

Proof of the separation principle

Make the error $e = x - \hat{x}$ appear through the change of variables

$$\begin{bmatrix} x \\ e \end{bmatrix} = T \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \quad T = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \Rightarrow T = T^{-1}$$

Proof of the separation principle

Make the error $e = x - \hat{x}$ appear through the change of variables

$$\left[\begin{array}{c} x \\ e \end{array}\right] = T \left[\begin{array}{c} x \\ \hat{x} \end{array}\right] \quad T = \left[\begin{array}{cc} I & 0 \\ I & -I \end{array}\right] \Rightarrow T = T^{-1}$$

• Dynamics of $\begin{bmatrix} x \\ e \end{bmatrix}$: $\begin{bmatrix} x^+ \\ e^+ \end{bmatrix} = \hat{F} \begin{bmatrix} x \\ e \end{bmatrix}$ where

$$\hat{F} = T \begin{bmatrix} A & BK \\ -LC & A + BK + LC \end{bmatrix} T^{-1} = \begin{bmatrix} A + BK & -BK \\ 0 & A + LC \end{bmatrix}$$

12 / 39

Proof of the separation principle

Make the error $e = x - \hat{x}$ appear through the change of variables

$$\begin{bmatrix} x \\ e \end{bmatrix} = T \begin{bmatrix} x \\ \hat{x} \end{bmatrix} \quad T = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \Rightarrow T = T^{-1}$$

• Dynamics of $\begin{bmatrix} x \\ e \end{bmatrix}$: $\begin{bmatrix} x^+ \\ e^+ \end{bmatrix} = \hat{F} \begin{bmatrix} x \\ e \end{bmatrix}$ where

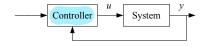
$$\hat{F} = T \begin{bmatrix} A & BK \\ -LC & A + BK + LC \end{bmatrix} T^{-1} = \begin{bmatrix} A + BK & -BK \\ 0 & A + LC \end{bmatrix}$$

trongale

• Block-diagonal structure $\Rightarrow \operatorname{Spec}(\hat{F}) = \operatorname{Spec}(A + BK) \cup \operatorname{Spec}(A + LC)$

(□) (□) (□) (□) (□)

Output feedback controllers



State observer + state feedback provides a method for designing output feedback controllers

$$\hat{x}^{+} = A\hat{x} + Bu + L(y - C\hat{x})$$
$$u = K\hat{x}$$

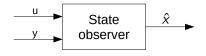
The controller is a dynamical system of order n

Problem

Is it possible to reduce the order of the controller? Yes, by using reduced-order observers (see later).

→□▶→□▶→□▶→□▶ □ り<0</p>

Full-order observers with no delay (filters)



Previously

Compute $\hat{x}(k|k-1)$ using u^{k-1} (inputs up to k-1) and y^{k-1} (outputs up to k-1)

Next

Compute $\hat{x}(k|k)$ using u^{k-1} and y^k

• Controller $u(k) = K\hat{x}(k|k)$

Pros

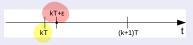
- $\hat{x}(k|k)$ is "better" than $\hat{x}(k|k-1)$ as it uses more information.
 - Example: a disturbance at time k can be captured by y^k but not by y^{k-1}

Pros

- $\hat{x}(k|\mathbf{k})$ is "better" than $\hat{x}(k|k-1)$ as it uses more information.
 - Example: a disturbance at time k can be captured by y^k but not by y^{k-1}

Cons

Timing of the computations (uniform sampling period T)



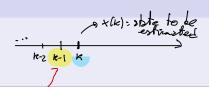
- Measure y(k) = y(kT) at time kT
- $\hat{x}(k|k)$ is available at time $kT + \epsilon$
- u(k) is available at time $kT + \epsilon$, at earliest

Applicable if ϵ is "small" compared to T

- 4 ロ ト 4 週 ト 4 速 ト 4 速 ト - 連 - 夕 Q G

Terminology

- $\hat{x}(k|k)$: filtered estimate
- $\hat{x}(k+1|k)$: predicted estimate
- $\hat{x}(k-1|k)$: smoothed estimate



Filter dynamics
$$(\hat{x}(k) = \hat{x}(k|k))$$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) - L(y(k+1) - \underbrace{C(A\hat{x}(k) + Bu(k))}_{\text{estimate of } y(k+1)})$$

Filter dynamics
$$(\hat{x}(k) = \hat{x}(k|k))$$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu(k) - L(y(k+1) - \underbrace{C(A\hat{x}(k) + Bu(k))}_{\text{estimate of } y(k+1)})$$

Error dynamics
$$(e(k) = x(k) - \hat{x}(k))$$

$$e(k+1) = Ax(k) + Bu(k) - A\hat{x}(k) - Bu(k) + LCx(k+1) - LCA\hat{x}(k)$$

$$- LCBu(k)$$

$$= Ae(k) + LC(Ax(k) + Bu(k)) - LCA\hat{x}(k) - LCBu(k)$$

$$= (A + LCA) e(k)$$

Filter design: find L such that A + LCA is Schur

• Eigenvalue assignment for the pair (A, CA), if it is observable

Definition

The eigenvalues of A + LCA are termed the filter eigenvalues

Remarks

- (A, C) observable $\Rightarrow (A, CA)$ observable
- The observability matrix for (A, CA) is

$$\widetilde{M}_{o} = \begin{bmatrix} CA \\ CA^{2} \\ \vdots \\ CA^{n} \end{bmatrix}^{T} = A^{T} M_{o} \qquad M_{o} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{T}$$

If det(A) = 0, \tilde{M}_o is not full rank, even if M_o is

Giancarlo Ferrari Trecate

Remarks

- (A, C) observable $\gg (A, CA)$ observable
- The observability matrix for (A, CA) is

$$\tilde{M}_{o} = \begin{bmatrix} CA \\ CA^{2} \\ \vdots \\ CA^{n} \end{bmatrix}^{T} = A^{T} M_{o} \qquad M_{o} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{T}$$

If det(A) = 0, \tilde{M}_o is not full rank, even if M_o is

- Possible to prove that if $\lambda = 0$ is an eigenvalue of A, then it is an unobservable eigenvalue of (A, CA)
 - Not critical, however, because the mode associated to $\lambda=0$ is AS (vanishes in n steps)

- 1h L 6

19 / 39

Giancarlo Ferrari Trecate Multivariable control EPFL

Example

Observability analysis: $det(M_o) \neq 0$ but $det(\tilde{M}_o) = 0$

$$M_8 = \begin{bmatrix} c \\ cA \end{bmatrix} = \begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$$

Example

$$x^+ = Ax + Bu$$
 $y = Cx$ $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Observability analysis: $det(M_o) \neq 0$ but $det(\tilde{M}_o) = 0$ Assignment of the observer eigenvalues

$$L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \quad A + LCA = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & l_1 + 1 \\ 0 & l_2 + 1 \end{bmatrix}$$

• Spec $(A + LCA) = \{0, l_2 + 1\}$. The eigenvalue $\lambda = 0$ cannot be modified. However, this is not a problem for the observer stability

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

20/39

Separation principle

Proceeding as in the case of the observer with state $\hat{x}(k|k-1)$, one can prove that

$$\{closed-loop\ eigenvalues\} = Spec(A + BK) \cup Spec(A + LCA)$$

• If (A, B) is controllable and (A, CA) is observable, all eigenvalues of the closed-loop system can be assigned by choosing K and L independently

Reduced-order observers

Reduced-order observers

Goal: Design observers with order strictly less than *n*

Idea $y = Cx \in \mathbb{R}^p$ carries (partial) information on x.

Find a state transformation x = Tx such that p states coincide with y and reconstruct only the remaining n - p states through an observer of order n - p.

Reduced-order observers

Goal: Design observers with order strictly less than *n*

Idea

 $y = Cx \in \mathbb{R}^p$ carries (partial) information on x.

Find a state transformation $\bar{x} = Tx$ such that p states coincide with y and reconstruct only the remaining n - p states through an observer of order n - p.

System dynamics

$$x^+ = Ax + Bu$$
$$v = Cx$$

Set

where T_1 is such that $det(T) \neq 0$ (T_1 is not unique)

Change of coordinates

System with state $\bar{x} = Tx$

$$\bar{x}^+ = \bar{A}\bar{x} + \bar{B}u$$

$$y = \bar{C}\bar{x}$$
(*)

where $\overline{A} = TAT^{-1}$, $\overline{B} = TB$, $\overline{C} = CT^{-1}$ and, by construction,

$$\bar{x} = \begin{bmatrix} C \\ T_1 \end{bmatrix} x = \begin{bmatrix} y \\ w \end{bmatrix}$$

$$\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Change of coordinates

System with state $\bar{x} = Tx$

$$\bar{x}^{+} = \bar{A}\bar{x} + \bar{B}u
y = \bar{C}\bar{x}$$
(*)

where $\bar{A}=TAT^{-1}$, $\bar{B}=TB$, $\bar{C}=CT^{-1}$ and, by construction, $\bar{x}=\begin{bmatrix} C \\ T_1 \end{bmatrix}x=\begin{bmatrix} y \\ w \end{bmatrix}$

$$\bar{C} = \begin{bmatrix} I & 0 \end{bmatrix}$$

• Partition \bar{A} , \bar{B} as

$$ar{oldsymbol{\mathcal{A}}} = \left[egin{array}{cc} ar{A}_{11} & ar{A}_{12} \ ar{A}_{21} & ar{A}_{22} \end{array}
ight], \quad ar{A}_{11} \in \mathbb{R}^{p \times p}, \quad ar{B} = \left[egin{array}{cc} ar{B}_{1} \ ar{B}_{2} \end{array}
ight]$$

The system (*) becomes

$$y(k+1) = \bar{A}_{11}y(k) + \bar{A}_{12}w(k) + \bar{B}_1u(k)$$

 $w(k+1) = \bar{A}_{21}y(k) + \bar{A}_{22}w(k) + \bar{B}_2u(k)$

Dynamics of w(k)

$$\Sigma_w = \begin{cases} w(k+1) = \bar{A}_{22}w(k) + \underbrace{\left[\bar{A}_{21}y(k) + \bar{B}_2u(k)\right]}_{\text{Known input } \bar{u}(k)} \\ \underbrace{y(k+1) - \bar{A}_{11}y(k) - \bar{B}_1u(k)}_{\text{Measured output } \bar{y}(k+1)} = \bar{A}_{12}w(k) \end{cases}$$

Dynamics of w(k)

$$\Sigma_{w} = \begin{cases} w(k+1) = \bar{A}_{22}w(k) + \underbrace{\left[\bar{A}_{21}y(k) + \bar{B}_{2}u(k)\right]}_{\text{Known input } \bar{u}(k)} \\ \underbrace{y(k+1) - \bar{A}_{11}y(k) - \bar{B}_{1}u(k)}_{\text{Measured output } \bar{y}(k+1)} = \bar{A}_{12}w(k) \end{cases}$$

Design of the estimator $\bar{y}(k) o \hat{w}(k|k)$

Full order observer (without delay) for Σ_w .

Set
$$\hat{w}(k) = \hat{w}(k|k) \in \mathbb{R}^{n-p}$$
.

$$\hat{w}(k+1) = \bar{A}_{22}\hat{w}(k) + \bar{u}(k) - L(\bar{y}(k+1) - \bar{A}_{12}\hat{w}(k))$$

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

EPFL

25/39

Dynamics of w(k)

$$\Sigma_{w} = \begin{cases} w(k+1) = \overline{A}_{22}w(k) + \underbrace{\left[\overline{A}_{21}y(k) + \overline{B}_{2}u(k)\right]}_{\text{Known input } \overline{u}(k)} \\ \underbrace{y(k+1) - \overline{A}_{11}y(k) - \overline{B}_{1}u(k)}_{\text{Measured output } \overline{y}(k+1)} = \overline{A}_{12}w(k) \end{cases}$$

Design of the estimator $\bar{y}(k) \rightarrow \hat{w}(k|k)$

Full order observer (without delay) for Σ_w .

Set
$$\hat{w}(k) = \hat{w}(k|k) \in \mathbb{R}^{n-p}$$
.

$$\hat{w}(k+1) = \frac{\bar{A}_{22}\hat{w}(k) + \bar{u}(k) - L(\bar{y}(k+1) - \bar{A}_{12}\hat{w}(k))$$

Error dynamics (check at home)

$$\hat{e}(k+1) = w(k+1) - \hat{w}(k+1) = (\bar{A}_{22} + L\bar{A}_{12}) \hat{e}(k)$$

• $(\bar{A}_{22}, \bar{A}_{12})$ observable \Rightarrow design $L \in \mathbb{R}^{(n-p)\times n}$ for assigning the eigenvalues of $\bar{A}_{22} + L\bar{A}_{12}$ with the usual procedures

Lemma

If (A, C) is observable, then $(\bar{A}_{22}, \bar{A}_{12})$ is observable.

The (not obvious) proof is omitted...

Lemma

If (A, C) is observable, then $(\bar{A}_{22}, \bar{A}_{12})$ is observable.

The (not obvious) proof is omitted...

Reconstruction of the full state

$$\hat{x}(k|k) = T^{-1} \left[\begin{array}{c} y(k) \\ \hat{w}(k|k) \end{array} \right]$$

Remarks

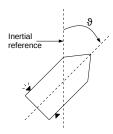
Using the control law

$$u(k) = K\hat{x}(k|k)$$

one can prove a separation principle: under the reachability and observability of suitable pairs, all eigenvalues of the closed-loop system can be assigned through K and L.

Example: satellite attitude control - output feedback

Attitude control: proper orientation of the satellite antenna with respect to earth



$$\ddot{\theta} = u + w, \quad u = \frac{M_C}{I}, \quad w = \frac{M_D}{I}$$

- 1: moment of inertia of the satellite (about the mass center)
- M_C : control torque applied by thrusters
- *M_D* disturbance torque
- θ =angle of satellite

DT model
$$(x_1 = \theta, x_2 = \dot{\theta}, y = \theta, \text{ exact discretisation})$$

As seen in lecture 5,

$$\begin{bmatrix} x_1^+ \\ x_2^+ \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix}}_{B} (u + \mathbf{w})$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

In the sequel:

$$w = 0, T = 0.1$$

Problem

Design a state observer

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

First design: standard Luenberger observer

Goal

Synthetize a full-order observer with eigenvalues $z_{1,2}=0.4\pm j0.4$

$$\hat{x} = \hat{x}(k|k-1)$$

$$\begin{cases} \hat{x}^+ = A\hat{x} + Bu - L(y - C\hat{x}) \\ \hat{y} = C\hat{x} \end{cases}$$

• Design of L in Matlab for assigning the eigenvalues of A + LC

$$T = 0.1$$
 $A = [1 T; 0 1]$
 $C = [1 0]$
 $p = [0.4+i*0.4; 0.4-i*0.4]$
 $L = -acker(A', C', p)'$

$$L = \left[\begin{array}{c} 1.2 \\ 5.2 \end{array} \right]$$

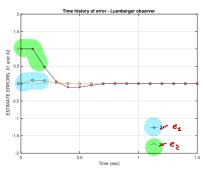
First design: Luenberger observer

Goal

Synthetize a full-order observer with eigenvalues $z_{1,2} = 0.4 \pm j0.4$

$$\hat{x} = \hat{x}(k|k-1)$$

$$\begin{cases} \hat{x}^+ = A\hat{x} + Bu - L(y - C\hat{x}) \\ \hat{y} = C\hat{x} \end{cases}$$



Second design: observer with no delays (filter)

$$\hat{x} = \hat{x}(k|k)$$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu - \hat{L}(y(k+1) - C(A\hat{x}(k) + Bu(k)))$$

• Design of \hat{L} in Matlab for assigning the eigenvalues of $A + \hat{L}CA$

$$\hat{L} = -\operatorname{acker}(A^{T}, A^{T} * C^{T}, p)^{T}$$

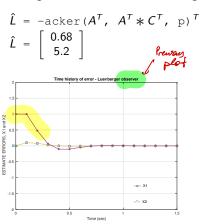
$$\hat{L} = \begin{bmatrix} 0.68 \\ 5.2 \end{bmatrix}$$

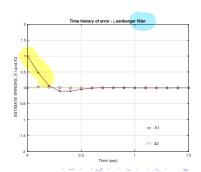
Second design: observer with no delays (filter)

$$\hat{x} = \hat{x}(k|k)$$

$$\hat{x}(k+1) = A\hat{x}(k) + Bu - \hat{L}(y(k+1) - C(A\hat{x}(k) + Bu(k)))$$

ullet Design of \hat{L} in Matlab for assigning the eigenvalues of $A+\hat{L}CA$





31 / 39

Third design: reduced-order observer

Goal

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

$$\bar{x}^+ = \bar{A}\bar{x} + \bar{B}u$$
$$y = \bar{C}\bar{x}$$

with
$$\bar{x} = \begin{bmatrix} y \\ w \end{bmatrix}$$
, $\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Third design: reduced-order observer

Goal

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

$$\bar{x}^+ = \bar{A}\bar{x} + \bar{B}u$$

$$y = \bar{C}\bar{x}$$

with
$$\bar{x} = \begin{bmatrix} y \\ w \end{bmatrix}$$
, $\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

• The DT model is already in the reference form

$$ar{A} = \left[egin{array}{cc} ar{A}_{11} & ar{A}_{12} \ ar{A}_{21} & ar{A}_{22} \end{array}
ight] = \left[egin{array}{cc} 1 & T \ 0 & 1 \end{array}
ight], \quad ar{B} = \left[egin{array}{cc} rac{T^2}{2} \ T \end{array}
ight], \quad ar{C} = \left[egin{array}{cc} 1 & 0 \end{array}
ight]$$

Third design: reduced-order observer

Goal

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

$$\bar{x}^+ = \bar{A}\bar{x} + \bar{B}u$$

 $y = \bar{C}\bar{x}$

with
$$\bar{x} = \begin{bmatrix} y \\ w \end{bmatrix}$$
, $\bar{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

The DT model is already in the reference form

$$ar{A} = \left[egin{array}{ccc} ar{A}_{11} & ar{A}_{12} \\ ar{A}_{21} & ar{A}_{22} \end{array}
ight] = \left[egin{array}{ccc} 1 & T \\ 0 & 1 \end{array}
ight], \quad ar{B} = \left[egin{array}{ccc} rac{T^2}{2} \\ T \end{array}
ight], \quad ar{C} = \left[egin{array}{ccc} 1 & 0 \end{array}
ight]$$

ullet $(ar{A}_{22},ar{A}_{12})$ is observable \Rightarrow design $ar{L}$ such that

$$\bar{A}_{22} + \bar{L}\bar{A}_{12} = 0.5 \rightarrow 1 + \bar{L}T = 0.5$$

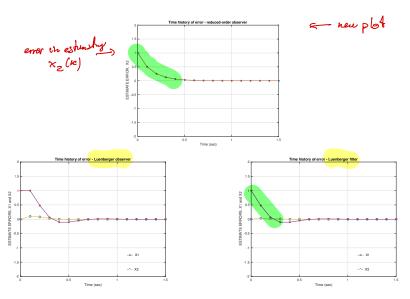
$$T = 0.1 \rightarrow \bar{L} = -5$$

Estimator dynamics

Since $w=x_2$, by using the notation $\hat{x}_2(k+1)=\hat{x}_2(k+1|k+1)$, we have $\hat{x}_2(k+1)=\bar{A}_{22}\hat{x}_2(k)+\bar{u}(k)-\bar{L}(\bar{y}(k+1)-\bar{A}_{12}\hat{x}_2(k))$ $\hat{x}(k)=\left[\begin{array}{c}y(k)\\\hat{x}_2(k)\end{array}\right]$

33 / 39

Estimator dynamics



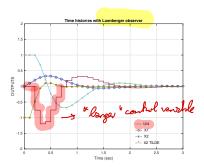
Output-feedback controller

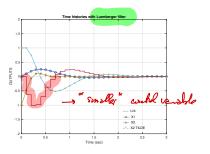
Goal

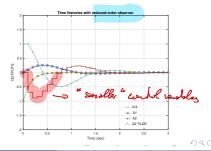
Design $u = K\hat{x}$ such that the remaining eigenvalues of the closed-loop system are $z = 0.8 \pm j0.25$

ullet Already done (see Lecture 5) ightarrow $K = \left[egin{array}{cc} -10 & -3.5 \end{array}
ight]$

Output-feedback controller







Output-feedback controller

- Luenberger filter: faster response than Luenberger observer (as expected)
- ullet Reduced-order observer: first-order response of the estimator o slightly reduced control effort compared to Luenberger observer

Choice of the closed-loop eigenvalues

How to choose the closed-loop eigenvalues?

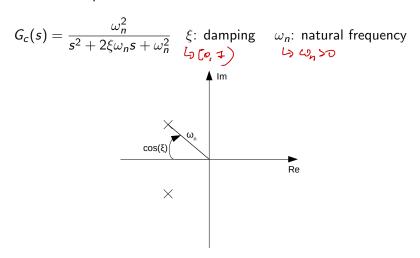
- State feedback + full-order observer : assign $\nu = 2n$ eigenvalues
- State feedback + reduced-order observer : assign $\nu = n + (n-p)$ eigenvalues

First heuristic approach

- Assign $\nu 2$ eigenvalues to the origin
 - Deadbeat behaviour
- Set 2 "dominant" eigenvalues as desired

Assignment of dominant eigenvalues: first heuristic method

Desired closed-loop continuous-time transfer function



Assignment of dominant eigenvalues: first heuristic method

Exact discretisation of $G_c(s)$ with sampling time T_c results in a DT system with eigenvalues

$$\begin{aligned} & \rho_1 = -2e^{-\xi\omega_n T_c} \cos(\omega_n T_c \sqrt{1 - \xi^2}) \\ & \rho_2 = e^{-2\xi\omega_n T_c} \end{aligned}$$

Algorithm

Choose desired ξ and $\omega_n \to \text{compute } p_1$ and p_2

Recall the golden rules from basic control theory

- If the CT LTI system (A, B, C, D) is a low pass filter with pass-band $[0, \bar{\omega}]$, do not set $\omega_n >> \bar{\omega}$. Otherwise
 - the magnitude of control variables might be large and actuator limits might be reached
 - high-frequency disturbances might start playing a significant role

Second set of heuristic criteria

- Choose control eigenvalues no more than 2 ÷ 6 times faster than open-loop eigenvalues
 - Good for limiting the actuator effort
- Choose observer eigenvalues faster than control eigenvalues
 - ► They do not impact on actuators
 - However, if estimation errors due to sensor noise are significant, one has to slow down the observer eigenvalues
 - Closed-loop performance will be dominated by control eigenvalues

Take home messages

- Observers are essential for systems where not all states can be measured
- Duality + separation principle: eigenvalue assignment is the key tool for designing output-feedback controllers

Take home messages

- Observers are essential for systems where not all states can be measured
- Duality + separation principle: eigenvalue assignment is the key tool for designing output-feedback controllers

Problem

How stochastic disturbances affect state estimation ? See later (Kalman filtering)