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State observers

Motivations: in several applications
@ not all scalar states are accessible

@ sensors are costly — not convenient to measure all scalar states
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State observers

Motivations: in several applications
@ not all scalar states are accessible

@ sensors are costly — not convenient to measure all scalar states

Problems
Knowing just the output, but not the state, prevents from using state
feedback controllers

Solutions

@ Build an observer, that is a dynamical system with

inputs: the inputs and outputs of the system X under observation
outputs: the estimated state of X

@ Use the estimated state in the controller
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State observers

Controller
A

System

State
observer
estimated state
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State observers

Terminology: state observers or state estimators
Challenges: stability of the closed-loop system? Performance?

Controller System
A
State
observer
estimated state

Other uses: estimates of the internal state are also very useful for

detecting malfunctioning and faults on components
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State observers

Controller »  System
A

State
observer

estimated state

Terminology: state observers or state estimators
Challenges: stability of the closed-loop system? Performance?
Other uses: estimates of the internal state are also very useful for
detecting malfunctioning and faults on components

Outline of the lecture

o Full-order observers and filters
Output-feedback controllers: the separation principle

@ Reduced-order observers

@ Choice of the closed-loop eigenvalues

Later: Kalman filtering (stochastic framework)
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Full-order observer

xT = Ax + Bu
Y:{y=Cx
x(0) = xo

o Full-order: reconstruct the whole state x(k)

o Define X(k|k — 1) the estimate available at time k of x(k) using data
(inputs and outputs) known up to k — 1

< Notation for these sequences : u*~1, yk_1
3 Uo
D Wo uy
“p
“
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Full-order observer

Luenberger observer
R(k 4+ 1|k) = AR(k|k — 1) + Bu(k) = L[y(k) — C&(k|lk — 1)]
S =4 p(k) = Ck(klk — 1)
£(0) = %o
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Full-order observer

Luenberger observer
2(k + 1|k) = A%(k|k = 1) + Bu(k) — L [y(k) — CR(k|k—1)]
S =4 p(k) = Ck(klk — 1)
X(0) = %o

Remarks
@ L € R™P: observer gain. Multiplies the output estimation error
@ Recursive update at X: the observer is an LTI system

@ The dynamic of ¥ and 3 are identical, up to the output-error term

v
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Full-order observer

Luenberger observer
2(k + 1|k) = A%(k|k — 1) + Bu(k) — L[y(k) — CR(k|k — 1)]
S =4 p(k) = CR(klk — 1)
X(0) = %o

Remarks

@ L € R™P: observer gain. Multiplies the output estimation error

@ Recursive update at X: the observer is an LTI system

@ The dynamic of ¥ and 3 are identical, up to the output-error term

o If, at k, %(k|k — 1) = x(k), then, X = x, Yk > k (perfect
reconstruction)

@ Xxp is not known, Xp is chosen using "common sense” and,
unavoidably, Xg # xo )
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Observer stability

State
y

observer
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Observer stability

— ™ State

l%

_ Yy | observer

Goal

Guarantee that the estimation error e(k|k — 1) = x(k) — X(k|k — 1) goes
to zero as k — oo.

— recovers from the mismatch xp # Xp.

Key point for observers: analyse the error dynamics (not X)!

/
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Observer stability
System

A
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Observer (x = x(k|k — 1))
xT = Ax + Bu T =A%+ Bu— L(y — CX)
y =Cx y=Cx




Observer stability

System Observer (x = X(k|k — 1))
x* = Ax + Bu T =A%+ Bu—L(y — CR)
y=Cx y=Cx
Error dynamics (e = e(k|k — 1) = x(k) — X(k|k — 1))
/e+:Ae+B’lj—B’ﬁ+ L(Cx— Cx)=(A+ LC)e J

{

XoR¥ 2 Axebl — AR Ba-L(3-<%)
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Observer stability

System Observer (x = X(k|k — 1))
xT = Ax + Bu T =A%+ Bu— L(y — CX)
y = y=Cx

Error dynamics (e = e(k|k — 1) = x(k) — X(k|k — 1))
e" =Ae+Bi—Bi+ L(Cx— CR)=(A+ LC)e

Definition
The observer is asymptotically stable (AS) if the error dynamics has this
property

@ The error dynamics is an autonomous system
» AS = X — x irrespectively of xp and X

The eigenvalues of A+ LC are called the eigenvalues of the observer

Definition J
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Observer design

Problem
Find L such that A+ LC is Schur J

o Spec(A+ LC) =Spec(AT + CTLT)
The problem is identical to the design of K such that (A + BK) has
prescribed eigenvalues, up to the following replacements
A— AT
B—cCT
K— LT
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Observer design

o For single-output systems, y € R, use Ackermann's formula: if

C
CA
My = ) is full rank, set
CAn—l
L"T=—[0 0 -~ 0 1](M) PP (AT)

where PP is the desired characteristic polynomial of A+ LC
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Observer design

o For single-output systems, y € R, use Ackermann's formula: if

C
CA
My = ) is full rank, set
CAn—l
L"T=—[0 0 -~ 0 1](M) PP (AT)

where PP is the desired characteristic polynomial of A+ LC

@ For multi-output systems all methods seen for MIMO control design
can be applied to observer design

|

WMLl -
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Output-feedback controllers: the
separation principle
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Observer & state feedback design: the separation principle

Controller }_u[ System }j)v
System

State
s observer
Observer
<+ — Ax + Bu R+ = AR+ Bu— L(y — CR) Controller
y = Cx Recall: X = &X(k|k — 1)

u=Kx J

=] & = E DA
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Observer & state feedback design: the separation principle

u
Controller ‘ System X
State
observer
estimated state

System Observer
el — flse (2 £t = AR+ Bu £ L(y _ C)?) Controller - J
u= K
y = Cx Recall: X = X(k|k — 1)

Closed-loop system

x| A BK X
%t | T | fLc A+BK£LC || %

F

Separation principle

Spec(F)=Spec(A + BK)USpec(A + LC)
@ If L stabilizes A+ LC and K stabilizes A+ BK, the closed-loop system is AS

@ Each gain is designed independently of the other one
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Proof of the separation principle

Make the error e = x — X appear through the change of variables

ARPRSTRIRES
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Proof of the separation principle

Make the error e = x — X appear through the change of variables
ol I o R A S R R
€ X I -1

A a
° Dynamicsof[x}: [XJF]:F[X]Where
e e e

p_r A BK ;1_[A+BK —BK
= | -LC A+BK+ILC - 0 A+LC
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Proof of the separation principle

Make the error e = x — X appear through the change of variables

HEORSTRIRES

A a
° Dynamicsof[x}: [XJF}:F[X]Where
e e e

p_r A BK +1_[A+BK —BK
~ | -LC A+BK+LC - 0 A+LC
segeds,

o Block- dlagemél structure = Spec(F) =Spec(A + BK)USpec(A + LC)
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Output feedback controllers

u y
H‘ Controller }—>‘ System }*’

State observer + state feedback provides a method for designing output
feedback controllers

£ =A%+ Bu+ L(y — CX)
u=Kx

@ The controller is a dynamical system of order n

Problem

Is it possible to reduce the order of the controller? Yes, by using
reduced-order observers (see later).
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Full-order observers with-no-delay

(filters)
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Observers with no delay

I State
Yy | observer

b

Previously

Compute X(k|k — 1) using u*~* (inputs up to k — 1) and y*~—! (outputs
up to k —1)

Next
Compute X(k|k) using u¥~1 and y*

e Controller u(k) = Kx(k|k)
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Observers with no delay

Pros

@ X(k|k) is "better" than X(k|lk — 1) as it uses more information.

Example: a disturbance at time k can be captured by y* but not by

yk—l
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Observers with no delay

Pros

@ X(k|k) is "better" than X(k|lk — 1) as it uses more information.

Example: a disturbance at time k can be captured by y* but not by

yk—l

Cons
Timing of the computations (uniform sampling period T)
KT+e |

|
T I
KT (k+1)T

~Y

o Measure y(k) = y(kT) at time kT
o X(k|k) is available at time kT + ¢
@ u(k) is available at time kT + ¢, at earliest

Applicable if € is "small” compared to T
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Observers with no delay

Terminology
P x(ic)-~ 34%‘%/&12
N

o X(k|k): filtered estimate .
o X(k + 1|k): predicted estimate ey k:‘l ,;
o X(k —\1]/{): smoothed estimate ]

‘\
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Luenberger filter

Filter dynamics (X(k) = X(k|k))

R(k +1) = AR(K) + Bu(k) = L(y(k + 1) = C (A%(K) + Bu(k)))

estimate of y(k+1)

o 5 = = }2ENE
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Luenberger filter
Filter dynamics (X(k) = X(k|k))
X(k +1) = AR(k) + Bu(k) — L(y(k + 1) —\C (Ax(k) + Bu(k)l)

-
estimate of y(k+1)

Error dynamics (e(é)ajjx(k) — x(k)) 2 lee 1)

e(k + 1) = Ax(K) + Buky — A%(k) — BufkT + LCx(k + 1) — LCAR(K)

— [CBu(k

= Ae(k) + LC (Ax(k) + Butk)) — LCAR(k) — k€Bu(k)
= (A+ LCA) e(k)

Filter design : find L such that A+ LCA is Schur
e Eigenvalue assignment for the pair (A, CA), if it is observable
Definition

The eigenvalues of A+ LCA are termed the filter eigenvalues

Giancarlo Ferrari Trecate Multivariable control EPFL
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Luenberger filter

Remarks
o (A, C) observable = (A, CA) observable
@ The observability matrix for (A, CA) is

ca 17 c 17
= CA? e CA
Mo = . =A Mo Mo = .

CA" CARE

If det(A) = 0, M, is not full rank, even if M, is
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Luenberger filter

Remarks
@ (A, C) observable = (A, CA) observable
@ The observability matrix for (A, CA) is

ca 1’ c 17
N CA2 . CA
Mo — . =A Mo Mo = .

CA" CAn-1

If det(A) = 0, M, is not full rank, even if M, is
@ Possible to prove that if A =0 is an eigenvalue of A, then it is an
unobservable eigenvalue of (A, CA)

Not critical, however, because the mode associated to A = 0 is AS
(vanishes in n steps)

v
-i’-_‘t/l Lo/
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Example

+ _
xT = Ax + Bu A:[O 1}, B:[O], c

y = Cx 01 1 [10]

Observability analysis: det(M,) # 0 but det(M) = 0

w5]-D3) & o))
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Example

xt = Ax+ Bu 0 1 0 B
y = Cx A_[O 1}’ B_[l}’ c=[10]

Observability analysis: det(M,) # 0 but det(M,) =0
Assignment of the observer eigenvalues

CR
[k [0 1 W] 7 [0 h+t
_[/2] A+LCA_[01]+[/2][O 1]_[012+1]

@ Spec(A+ LCA) ={0, + 1}. The eigenvalue A = 0 cannot be
modified. However, this is not a problem for the observer stability
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Separation principle

Proceeding as in the case of the observer with state X(k|k — 1), one can
prove that

{closed-loop eigenvalues} =Spec(A + BK)USpec(A + LCA)

e If (A, B) is controllable and (A, CA) is observable, all eigenvalues of
the closed-loop system can be assigned by choosing K and L
independently
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Reduced-order observers
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Reduced-order observers

Goal: Design observers with order strictly less than n

E.g.
ldea /? %:Eﬁo]E:; ~ 4= 5_x

PR
&
y = Cx € RP carries (partia|W
Find a state transformation X= Tx such that p states coincide with y and

reconstruct only the remaining n — p states through an observer of order n — p.
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Reduced-order observers

Goal: Design observers with order strictly less than n

Idea

y = Cx € RP carries (partial) information on x.
Find a state transformation X = Tx such that p states coincide with y and
reconstruct only the remaining n — p states through an observer of order n — p.

System dynamics
xt = Ax + Bu
y=Cx

Set
T_ C | } prows
| 71| } n—prows

where T is such that det(T) # 0 (Ty is not unique)
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Change of coordinates
System with state X = Tx

xt

where A= TAT 1, B= TB,

C
|
[
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Change of coordinates
System with state X = Tx

o Partition A, B as
i A Ap ] A x 5 [ B ]
A= |2t M2\ ZLeRPP, B=| 2

[ A Ax H B>
@ The system () becomes

y(k+1) = Auy(k) + Araw(k) + Bru(k)
W(k + ].) = /Z\Qly(k) + A22W(k) + E2u(k)
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Observer design
Dynamics of w(k)

W(k + 1) = Azgw(k) + [Azly(k) aF Bzu(k)]

~ /

Yy = Known input G(k)
é/(k TF 1) - A11y(k) - Blu(kl = A12W(k)

Measured output y(k+1)
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Observer design
Dynamics of w(k)

W(k + 1) = Azzw(k) + [Azly(k) aF Ezu(k)]

~ /

DA Known input G(k)
é/(k TF 1) - Al]_y(k) - Blu(k)J = A12W(k)

Measured output y(k+1)

Design of the estimator y(k) — w(k|k)
Full order observer (without delay) for .
Set w(k) = w(k|k) € R"P,
Bk +1) = Apiv(K) + G(K) — L (7(k + 1) — Apab(K))
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Observer design
Dynamics of w(k)
W(k + 1) = Azzw(k) + [Azly(k) I é2u(k)]
Y, = _ _ Known in_put a(k)
é/(k TF 1) - Al]_y(k) - Blu(k) = A12W(k)

Measured output y(k+1)

Design of the estimator y(k) — w(k|k)
Full order observer (without delay) for .
Set w(k) = w(k|k) € R"™P.
W(k +1) = Apa (k) + d(k) — L (y(k + 1) — A (k))

Error dynamics (check at home)
8(k+1) = w(k +1) — w(k + 1) = (Axp + LA) é(k)
o (Ax,A) observable = design L € R("™=P)X" for assigning the
eigenvalues of Ay + LAj> with the usual procedures
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Observer design

Lemma

If (A, C) is observable, then (A, A1) is observable.
The (not obvious) proof is omitted. ..

=] & = E DA
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Observer design

Lemma

If (A, C) is observable, then (Az, A12) is observable.

The (not obvious) proof is omitted. ..

Reconstruction of the full state

- [

Remarks

Using the control law
u(k) = Kx(kl|k)

one can prove a separation principle : under the reachability and
observability of suitable pairs, att eigenvalues of the closed-loop system can

be assigned through K and L. L an-po

v
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Example: satellite attitude control - output feedback

Attitude control: proper orientation of the satellite antenna with respect
to earth

o)

Inertial 3/\ L

reference

b=uv+w, u=——  w=—

@ /: moment of inertia of the satellite (about the mass center)
@ Mpc: control torque applied by thrusters
@ Mp disturbance torque

@ f=angle of satellite
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DT model (x; =60, x, =0, 'y =0, exact discretisation)

As seen in lecture 5,

—_—— N—_——
A B
y = [ 10 ]x
In the sequel :
w=0  T=0.1
Problem
Design a state observer J
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First design: standard Luenberger observer

Goal
Synthetize a full-order observer with eigenvalues z; > = 0.4 & 0.4 J

@ Design of L in Matlab for assigning the eigenvalues of A4 LC

= 0.1

=[1T; 0 1]

[1 0]

= [0.4+1%0.4 ; 0.4-1%0.4]
= —acker(a', C', p)'

HDT QA
Il
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First design: Luenberger observer

Goal
Synthetize a full-order observer with eigenvalues z; > = 0.4 & 0.4 J
% = x(klk — 1)
KR =A%+ Bu—L(y — CX)
y=Cx

Time history of error - Luenberger observer

eyhomoted e
ens/S
—

ESTIMATE ERRORS, X1 and X2
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Second design: observer with no delays (filter)
% = %(k|k)
%(k+1) = A(k) + Bu— L(y(k + 1) — C (A%(k) + Bu(k)))

o Design of L in Matlab for assigning the eigenvalues of A+ LCA

= —acker (A", ATxCT, p)T

157

~ ™
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Second design: observer with no delays (filter)
% = %(k|k)
%(k+1) = A(k) + Bu— L(y(k + 1) — C (A%(k) + Bu(k)))

e Design of L in Matlab for assigning the eigenvalues of A+ LCA
= —acker (AT, ATxC", p)T"
~ { 0.68 }
- 5.2 Frewmn
J P

‘Time history of error - Luenberger observer

.
.
\%ﬁ—

~ ™

‘Time history of error - Luenberger filter

1
05
0¢—o oo ¢ — 5

ESTIMATE ERRORS, X1 and X2
ESTIMATE ERRORS, X1 and X2

Time (sec) Time (sec)
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Third design: ‘reduced-order observer
Goal J

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

xt = Ax + Bu
y:C)'(
withiz[y}, C=[1 0]
w
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Third design: reduced-order observer
Goal

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

xt = Ax + Bu
y:(._'>'<
withiz[y}, C=[1 0]
w

@ The DT model is already in the reference form

- [An Ap] [1 T 5 772 =
R o 3] e
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Third design: reduced-order observer
Goal

Synthetize a reduced-order observer with eigenvalue z = 0.5

First step: put the system dynamics in the reference form

xt = Ax + Bu
y:(._'>'<
mmg:[y}, C=[1 0]
w

@ The DT model is already in the reference form
- [An Ap] [1 T s [ % =
4 B)-d) o [F) 0o
° (Agg, A12) is observable = design L such that

Ay + LA, =05 — 1+LT =05
T=01 — L=-5

Giancarlo Ferrari Trecate Multivariable control
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Estimator dynamics

Since w = xo, by using the notation X2(k + 1) = % (k + 1|k + 1), we have

Ro(k + 1) = AxRo(k) + d(k) — L(y(k + 1) — Aa%a(k))

= 20 |
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Estimator dynamics

e g e plot

"
ers; th @ L5 g
2 ) g
5
2
£
W oo
Eos
)
"
2
T )
2 Time history of error - Luenberger observer N Time history of error - Luenberger filter
o ot
% 8
x 5% 08
2 2 o
£ £
& &
" £
£ £
H =
& &
. )
o ox
: .
Time (sec) Time (sec)

[} = =
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Output-feedback controller

Goal

Design u = KX such that the remaining eigenvalues of the closed-loop
system are z = 0.8 £ 0.25

o Already done (see Lecture 5) - K =[ —10 —3.5 |
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Output-feedback controller

Time histories with Luenberger observer

oUTPUTS

o 05 1 5 2 25 3
Time (sec)

Time histories with reduced-order observer

ouTPUTS

15
Time (soc)
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Output-feedback controller

@ Luenberger filter: faster response than Luenberger observer (as
expected)

@ Reduced-order observer: first-order response of the estimator —
slightly reduced control effort compared to Luenberger observer
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Choice of the closed-loop
eigenvalues
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How to choose the closed-loop eigenvalues 7

o State feedback + full-order observer : assign v = 2n eigenvalues

o State feedback + reduced-order observer : assign v = n+ (n — p)
eigenvalues

First heuristic approach

@ Assign v — 2 eigenvalues to the origin
Deadbeat behaviour

@ Set 2 "dominant” eigenvalues as desired

LhL(}L_
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Assignment of dominant eigenvalues: first heuristic method

Desired closed-loop continuous-time transfer function

2

Wh

Gc(s)

= &: damping  wp: natural frequency
2 2
5% 4+ 28wps + w? Ly Co, :&) Ly ey, 5D

Am

cos(§)
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Assignment of dominant eigenvalues: first heuristic method

Exact discretisation of G¢(s) with sampling time T, results in a DT
system with eigenvalues

p1 = —2e &wnle cos(wp Te/1 — £2)

p2 — e_2fwn Tc

Algorithm
Choose desired £ and w, — compute p; and p>

Recall the golden rules from basic control theory

o If the CT LTI system (A, B, C, D) is a low pass filter with pass-band
[0,&], do not set w, >> &. Otherwise
the magnitude of control variables might be large and actuator limits
might be reached
high-frequency disturbances might start playing a significant role

4
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Second set of heuristic criteria

@ Choose control eigenvalues no more than 2 =- 6 times faster than
open-loop eigenvalues
» Good for limiting the actuator effort
@ Choose observer eigenvalues faster than control eigenvalues
» They do not impact on actuators

* However, if estimation errors due to sensor noise are significant, one
has to slow down the observer eigenvalues

» Closed-loop performance will be-dominated by control eigenvalues
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Take home messages

@ Observers are essential for systems where not all states can be
measured

@ Duality + separation principle: eigenvalue assignment is the key tool
for designing output-feedback controllers
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Take home messages

@ Observers are essential for systems where not all states can be
measured

@ Duality + separation principle: eigenvalue assignment is the key tool
for designing output-feedback controllers

Problem

How stochastic disturbances affect state estimation ?
See later (Kalman filtering)
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