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Outline of the lecture

Classification of control schemes

The eigenvalue assignment (EA) problem
▶ Systems with scalar input - the Ackermann’s formula

EA for MIMO systems
▶ Approximate methods
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Control schemes: output feedback

DT nonlinear system

x+ = f (x , u)

y = h(x , u)

Output feedback

yo(k): setpoint

u(k): control variable

Output feedback: the controller uses the setpoint and a measurement of
the output to compute the control variable
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Control schemes: state feedback

State feedback

State feedback: the controller uses the setpoint and a measurement of the
state for computing the control variable

Pros

Since y = h(x , u) the output can only contain less information than the
state. Therefore, state feedback usually guarantees better performances

Cons

The state must be measured and this is not always the case. Otherwise
the state must be estimated from measurements of u and y
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Control problems

Terminology

Regulation: make a desired equilibrium state AS

Tracking: make the system output track, according to given criteria,
special classes of setpoints yo

In both problems disturbances must be also attenuated or rejected.

Taxonomy of controllers

Static: the controller is a static system (e.g. proportional control
u(k) = 𝜅(y(k)− yo(k))

Dynamic: the controller is a dynamic system (e.g. PID controllers)

Topics that will be covered in this course

Static and dynamic controllers for LTI discrete-time systems
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Stabilization of the origin
Regulation problem

x+ = f (x , u)

Design the control law u(k) = 𝜅(x(k)) 𝜅 : Rn → R such that the origin of
the closed-loop system

x+ = f (x , 𝜅(x))
is an AS equilibrium state

Remarks

Several industrial systems are designed to work around a nominal
operation point (x̄ , ū) that must be stabilized by the controller
Linearization about this point produces an LTI system ΣL with state
x − x̄ → stabilisation of ΣL about the origin often implies
stabilisation of the original system about x̄
Stabilization of the origin is also at the core of the design of
controllers for tracking problems
For the sake of simplicity, in most cases we will neglect the presence
of disturbances
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State-feedback controllers - LTI systems

Multi-input LTI system

x+ = Ax + Bu, x(k) ∈ Rn, u(k) ∈ Rm

Control law

u(k) = Kx(k), K ∈ Rm×n to be designed for stabilizing x̄ = 0

Closed-loop system: x+ = (A+ BK ) x

Eigenvalue Assignment (EA) problem

Compute, if possible, K such that the eigenvalues of A+ BK take
prescribed values (real or in complex conjugate pairs)
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Solution to the EA problem

Theorem

The EA problem can be solved if and only if the LTI system is reachable

Review

The system x+ = Ax + Bu is reachable if and only if the matrix

Mr =
[︀
B AB A2B · · · An−1B

]︀
has maximal rank.

Mr : reachability matrix

Terminology: the pair (A,B) is reachable
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Solution to the EA problem - single input

Definition

Let u(k) ∈ R. The pair (A,B) is in the canonical controllability form if

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
b

⎤⎥⎥⎥⎥⎥⎦ , b ̸= 0

Remarks

If (A,B) is the canonical controllability form, then Mr has maximal
rank by construction

Let pA(𝜆) be the characteristic polynomial of A. By construction, one
has

pA(𝜆) = 𝜆n + an−1𝜆
n−1 + · · ·+ a1𝜆+ a0
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Solution to the EA problem - single input

Structure of the canonical controllability form

x+1 = x2
x+2 = x3
...
x+n−1 = xn

⎫⎪⎪⎪⎬⎪⎪⎪⎭← shift register storing the last n − 1 states

x+n = a(x) + bu ← the input acts on x+n

where a(x) = −a0x1 − a1x2 − . . .− an−1xn

Idea

If the LTI system is in the canonical controllability form, choose

u =
1

b
(−a(x))⏟  ⏞  

this cancels a(x)

+
1

b
ũ

such that the auxiliary input ũ assigns the closed-loop eigenvalues
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Solution to the EA problem - single input

Algorithm

Let (A,B) be in canonical controllability form

For given desired closed-loop eigenvalues 𝜆̃1, 𝜆̃2, . . . , 𝜆̃n, build up the
polynomial

pD(𝜆) = (𝜆− 𝜆̃1)(𝜆− 𝜆̃2) · · · (𝜆− 𝜆̃n) = 𝜆n+ ãn−1𝜆
n−1+ · · ·+ ã1𝜆+ ã0

Use

u =
1

b
(−a(x) + ã(x))

where ã(x) = −ã0x1 − ã1x2 − . . .− ãn−1xn.
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Solution to the EA problem - single input

Closed-loop system

x+1 = x2
...
x+n−1 = xn

⎫⎪⎬⎪⎭ shift register storing the last n − 1 states

x+n = ã(x)

The matrix Ã of the closed-loop system x+ = Ãx is in the canonical
controllability form: by construction pD(𝜆) is the closed-loop characteristic
polynomial

Matrix K (gain matrix)

u =
1

b
(−a(x) + ã(x)) =

=
1

b
((a0 − ã0) x1 + (a1 − ã1) x2 + · · ·+ (an−1 − ãn−1) xn) = Kx

with K =
1

b

[︀
(a0 − ã0) (a1 − ã1) · · · (an−1 − ãn−1)

]︀
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Solution to the EA problem - single input

How to solve the EA problem if the LTI system is not in the canonical
controllability form ?

Lemma

If (A,B) is reachable, there is an invertible matrix T such that the
equivalent system

x̂+ = Âx̂ + B̂u, Â = TAT−1, B̂ = TB

where x̂ = Tx , is in the canonical controllability form with b = 1.

Computation of T

Mr =
[︀
B AB A2B · · · An−1B

]︀
M̂r =

[︀
B̂ ÂB̂ Â2B̂ · · · Ân−1B̂

]︀
= TMr

}︂
→ T = M̂rM

−1
r
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]︀
= TMr

}︂
→ T = M̂rM

−1
r

Giancarlo Ferrari Trecate Multivariable control EPFL 13 / 33



Solution to the EA problem - single input

Algorithm

Given A, B and the desired closed-loop characteristic polynomial

pD(𝜆) = 𝜆n + ãn−1𝜆
n−1 + · · ·+ ã1𝜆+ ã0

1 compute Mr and verify that (A,B) is reachable

2 compute
pA(𝜆) = 𝜆n + an−1𝜆

n−1 + · · ·+ a1𝜆+ a0

3 builda Â, B̂ and M̂r . Compute T = M̂rM
−1
r

4 buildb K̂ =
[︀
(a0 − ã0) (a1 − ã1) · · · (an−1 − ãn−1)

]︀
5 compute K = K̂T an set u = Kx

aÂ and B̂ are in the canonical controllability form with b = 1. For the computation it
is enough to know pA(𝜆).

bController design in the coordinates x̂ .

Giancarlo Ferrari Trecate Multivariable control EPFL 14 / 33



Ackermann’s formula

In the previous algorithm one can avoid the use of x̂ coordinates and
design directly the controller K as a function of A and B.

Theorem

Let (A,B) be a reachable pair and let

pD(𝜆) = 𝜆n + ãn−1𝜆
n−1 + · · ·+ ã1𝜆+ ã0

be the desired closed-loop polynomial. Then, the controller u = Kx such
that the characteristic polynomial of A+ BK is pD(𝜆) is given by

K = −
[︀
0 0 · · · 1

]︀
M−1

r pD(A) (1)

Equation (1) is called the Ackermann’s formula

Giancarlo Ferrari Trecate Multivariable control EPFL 15 / 33



Proof of the Ackermann’s formula

Being Â in in the canonical controllability form, one can verify that the
first row of Âi , 1 ≤ i < n is composed by zero entries except the entry in
position (1, i + 1) that is 1

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
x x x · · · x x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Â2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
x x x · · · x x
x x x · · · x x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ân−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
x x x · · · x x
...

...
...

. . .
...

...
x x x · · · x x
x x x · · · x x
x x x · · · x x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Proof of the Ackermann’s formula

Since from the Cayley-Hamilton theorem one has
Ân + an−1Â

n−1 + · · ·+ a1Â+ a0I = 0, it follows that

pD(Â) = pD(Â)− 0 = Ân + ãn−1Â
n−1 + · · ·+ ã1Â+ ã0I

−Ân − an−1Â
n−1 − · · · − a1Â− a0I =

(ãn−1 − an−1)Â
n−1 + · · ·+ (ã0 − a0)I

pD(Â) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(ã0 − a0) (ã1 − a1) (ã2 − a2) · · · (ãn−1 − an−1)
x x x · · · x
...

...
...

. . .
...

x x x · · · x
x x x · · · x
x x x · · · x

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and therefore the controller K̂ we have computed before is given by

K̂ = −
[︀
1 0 · · · 0

]︀
pD(Â)
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Proof of the Ackermann’s formula

Since Â = TAT−1, T = M̂rM
−1
r , K = K̂T one has

K = −
[︀
1 0 · · · 0

]︀
pD(Â)T = (2)

= −
[︀
1 0 · · · 0

]︀
TpD(A)T−1T = (3)

= −
[︀
1 0 · · · 0

]︀
M̂rM

−1
r pD(A) (4)

For getting rid of M̂r , we observe that, since Â and B̂ are in canonical
controllability form, one has

M̂r =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
0 0 0 · · · 1 x
...

...
...

. . .
...

...
0 0 1 · · · x x
0 1 x · · · x x
1 x x · · · x x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, −
[︀
1 0 · · · 0

]︀
M̂r = −

[︀
0 0 · · · 1

]︀
.
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Example

Problem

x+1 = x1 + x2 + u

x+2 = u

Compute a state-feedback controller such that the closed-loop system has
all eigenvalues equal to 1

2

Desired closed-loop characteristic polynomial

pD(𝜆) = (𝜆− 1

2
)2 = 𝜆2 + (−1)⏟ ⏞ 

ã1

𝜆+
1

4⏟ ⏞ 
ã0

Computation of Mr

A =

[︂
1 1
0 0

]︂
B =

[︂
1
1

]︂
⇒ Mr =

[︀
B AB

]︀
=

[︂
1 2
1 0

]︂
Mr is full rank ⇒ EA problem can be solved
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Example

Computation of pA(𝜆)

pA(𝜆) = det

(︂[︂
𝜆− 1 −1
0 𝜆

]︂)︂
= 𝜆2 + (−1)⏟ ⏞ 

a1

𝜆+ 0⏟ ⏞ 
a0

Build Â, B̂, M̂r and T

Â =

[︂
0 1
0 1

]︂
B̂ =

[︂
0
1

]︂
⇒ M̂r =

[︀
B̂ ÂB̂

]︀
=

[︂
0 1
1 1

]︂

T = M̂rM
−1
r =

[︂
0 1
1 1

]︂ [︂
0 1
1
2 −1

2

]︂
=

[︂
1
2 −1

2
1
2

1
2

]︂
Build K̂

K̂ =
[︀
(a0 − ã0) (a1 − ã1)

]︀
=

[︀
0− 1

4 −1 + 1
]︀
=

[︀
−1

4 0
]︀
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Example

Build K
K = K̂T =

[︀
−1

8
1
8

]︀
Check the result

A+ BK =

[︂
7
8

9
8

−1
8

1
8

]︂
Eigenvalues of A+ BK : 𝜆1 = 𝜆2 =

1
2
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Example

Using Ackermann’s formula

K = −
[︀
0 1

]︀
M−1

r pD(A)

pD(A) = A2 − A+
1

4
I =

[︂
1
4 0
0 1

4

]︂
Mr =

[︀
B AB

]︀
=

[︂
1 2
1 0

]︂
⇒ M−1

r =

[︂
0 1
1
2 −1

2

]︂

K = −
[︀
0 1

]︀ [︂0 1
4

1
8 −1

8

]︂
=

[︀
−1

8
1
8

]︀
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Example : Single-axis satellite attitude control
Attitude control = proper orientation of the satellite antenna with respect
to earth.

ϑ

Inertial

reference

I𝜃 = MC +MD

I = moment of inertia of the satellite (about the mass center)

MC = control torque applied by thrusters

MD = disturbance torque

𝜃 = angle of satellite
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Example : Single-axis satellite attitude control

Attitude control = proper orientation of the satellite antenna with respect
to earth.

ϑ

Inertial

reference

Model with normalized inputs:

u =
MC

I
, w =

MD

I

𝜃 = u + w
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State-space models

CT LTI models x1 = 𝜃, x2 = 𝜃[︂
ẋ1
ẋ2

]︂
=

[︂
0 1
0 0

]︂ [︂
x1
x2

]︂
+

[︂
0
1

]︂
u +

[︂
0
1

]︂
w

y = 𝜃 =
[︀
1 0

]︀ [︂ x1
x2

]︂
Double integrator dynamics

DT LTI model (exact discretization, sampling time T > 0)[︂
x+1
x+2

]︂
=

[︂
1 T
0 1

]︂
⏟  ⏞  

A

[︂
x1
x2

]︂
+

[︂
T 2

2
T

]︂
⏟  ⏞  

B

(u + w)
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Control design

Goal
Design u = Kx such that the closed-loop eigenvalues are z1,2 = 0.8± j0.25

Desired closed-loop polynomial

pD(𝜆) = (𝜆− z1)(𝜆− z2) = 𝜆2 − 1.6𝜆+ 0.7

Closed-loop polynomial for u =
[︀
𝜅1 𝜅2

]︀
x

pK (𝜆) = det

⎛⎜⎜⎜⎝𝜆

[︂
1 0
0 1

]︂
−

⎛⎜⎜⎜⎝
[︂

1 T
0 1

]︂
⏟  ⏞  

A

+

[︂
T 2

2
T

]︂
⏟  ⏞  

B

[︀
𝜅1 𝜅2

]︀
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ =

𝜆2 +

(︂
−T𝜅2 −

T 2

2
𝜅1 − 2

)︂
𝜆− T 2

2
𝜅1 + T𝜅2 + 1

Idea for design: equate the coefficients of pK and pD ⇒ simple equations for
n = 1, 2 (even easier than using Ackermann’s formula)
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Control design

Equating the coefficients of the two polynomials for T = 0.1{︃
−T𝜅2 − T 2

2 𝜅1 − 2 = −1.6
−T 2

2 𝜅1 + T𝜅2 + 1 = 0.7
→

{︃
𝜅1 = −0.1

T 2 = −10
𝜅2 = −0.35

T = −3.5

Same results through Ackermann’s formula

Matlab code

T = 0.1

A = [1 T ; 0 1], B = [T 2

2
; T]

p = [0.8+i*0.25 ; 0.8-i*0.25]
K = -acker(A, B, p)
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Simulations

ϑ

Inertial

reference

-2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4
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Eigenvalue assignment for MIMO systems

Problems

If m > 1, there is no Ackermann’s formula

Possible to find a change of variables x̃ = Tx such that ÃD and B̃D

are in a suitable ”canonical form” simplifying the computation of K̃
(and then K ) → Hard to compute T

▶ not covered in this class

In MatLab: K = -place(A, B, p)
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Eigenvalue assignment for MIMO systems

Alternative approach
1) Compute the desired closed-loop characteristic polynomial

pD(𝜆) = 𝜆n + ãn−1𝜆
n−1 + · · ·+ ã1𝜆

1 + ã0

2) Compute the characteristic polynomial pK (𝜆) of A+ BK , where
entries of

K =

⎡⎢⎣ K11 · · · K1n
...

. . .
...

Km1 · · · Kmn

⎤⎥⎦
are free parameters

3) Choose Kij , i = 1, . . . ,m, j = 1, . . . , n so as to make each coefficient
of pK (𝜆) equal to the corresponding coefficient of pD(𝜆)

→˓ Solve a system of nonlinear equations (can be difficult)
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Simplified methods for MIMO systems
Next: two simplified algorithms - but they cannot be always used

Method 1 : feedback on a scalar channel

x+ = Ax + Bu B =
[︀
b1 b2 · · · bm

]︀
∈ Rn×m

Assumption : system reachable from a single input

Can be u1, without loss of generality, i.e. (A, b1) is reachable.

Idea: use only u1 for assigning the eigenvalues.

1) Set u(k) = K1v(k), K1 =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ ∈ Rm×1 where v(k) ∈ R is an

auxiliary input.
Closed-loop system

x+ = Ax + BK1v = Ax + b1v
2) Set v(k) = K2x(k) and use Ackermann’s formula for assigning the

eigenvalues of
(A+ b1K2) = (A+ BK1K2)

Giancarlo Ferrari Trecate Multivariable control EPFL 30 / 33



Simplified methods for MIMO systems
Next: two simplified algorithms - but they cannot be always used

Method 1 : feedback on a scalar channel

x+ = Ax + Bu B =
[︀
b1 b2 · · · bm

]︀
∈ Rn×m

Assumption : system reachable from a single input

Can be u1, without loss of generality, i.e. (A, b1) is reachable.

Idea: use only u1 for assigning the eigenvalues.

1) Set u(k) = K1v(k), K1 =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ ∈ Rm×1 where v(k) ∈ R is an

auxiliary input.
Closed-loop system

x+ = Ax + BK1v = Ax + b1v
2) Set v(k) = K2x(k) and use Ackermann’s formula for assigning the

eigenvalues of
(A+ b1K2) = (A+ BK1K2)

Giancarlo Ferrari Trecate Multivariable control EPFL 30 / 33



Simplified methods for MIMO systems

Feedback gain

K = K1K2 =

⎡⎢⎢⎢⎣
𝜅1 𝜅2 · · · 𝜅n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎦

Drawbacks

Only a single input is used, all others are set to zero
▶ Can be a nonsense if inputs are physical variables that cannot be set to

zero

If the system is reachable from multiple scalar inputs, the choice of
the channel is arbitrary
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Simplified methods for MIMO system

Method 2 - Probabilistic approach
1) Parametrize the control law as

u(k) = K2x(k) + K3v(k) K2 ∈ Rm×n,K3 ∈ Rm×1

where v(k) ∈ R is an auxiliary input
Partial closed-loop system

x+ = (A+ BK2)x + BK3v

Lemma

By choosing randomly K2 and K3, the pair (A+ BK2,BK3) is reachable
with probability one

2) Use Ackermann’s formula for designing K1, such that the closed-loop
system

x+ = (A+ BK2 + BK3K1)x

has the desired eigenvalues.
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Simplified methods for MIMO systems

Feedback gain

K = K2 + K3K1

Drawbacks

Same problems as in method 1

The random choice of K2, K3 is independent of the system physics
and can be meaningless
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