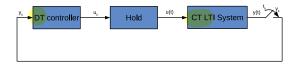
Lecture 4

Discretisation of Continuous Time (CT) systems

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Motivation: digital control of CT systems



- y(t): plant measurements
- y_k : input to controller
- Plant dynamics

$$\dot{x} = Ax + Bu$$
 $x(t) \in \mathbb{R}^n$
 $y = Cx + Du$ $u(t) \in \mathbb{R}^p$
 $x(0) = x_0$ $y(t) \in \mathbb{R}^m$

Model of sample and hold

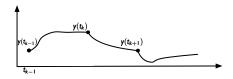
• System CT output y(t) sampled at $\{t_k, k \in \mathbb{N}\}$

$$y_k = y(t_k), \frac{T_k}{t_k} \triangleq t_{k+1} - t_k$$

Hold

$$u(t) = u_k \quad t \in [t_k, t_{k+1})$$

- Problem: obtain DT models representing the cascade Hold + (CT system) + Sampler
 - Next: popular discretisation methods
 - exact
 - approximate



EPFL

CT LTI Systen

Exact discretisation

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$
Hold

CT LTI System

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_k) = x_k$

$$x(t) = e^{A(t-t_k)}x_k + \underbrace{\int_{t_k}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b)}$$

State transition operator e^{As} : pushes x_k ahead by s seconds

Exact discretisation

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$

Hold

CT LTI System

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_k) = x_k$

$$x(t) = e^{A(t-t_k)}x_k + \underbrace{\int_{t_k}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b) \quad \psi(z) = \underbrace{\int_{t_k}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b) \quad \psi$$

Constant-input transmission operator $\Gamma(s) \triangleq \int_0^s e^{Az} dz$

- $ightharpoonup \Gamma(t-t_k)B$ pushes u_k ahead by $t-t_k$ seconds

Exact discretisation

• Sample at times $t_0 = 0, t_1, t_2, \ldots$ and set $T_k = t_{k+1} - t_k$.

• We have
$$x_{k+1} = x(t_{k+1}) = e^{A(t_{k+1} - t_k)} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} Bu(s) ds$$

$$= \underbrace{e^{AT_k}}_{\hat{A}_k} x_k + \underbrace{\Gamma(T_k)B}_{\hat{B}_k} u_k \quad (1)$$

$$y_k = \hat{C}x_k + \hat{D}u_k \quad \text{for} \quad \hat{C} = C, \hat{D} = D$$
 (2)

• (1) - (2) : linear time-varying system

Under uniform sampling (i.e, $T_k = T$, $k = 0, 1, \dots$)

$$\hat{A}=e^{AT}, \quad \hat{B}=\Gamma(T)B
ightarrow \mbox{invariant system}$$

$$\int\limits_{0}^{\infty} x^{+}=\hat{A}x+\hat{B}u$$

$$y=\hat{C}x+\hat{D}u$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かへで

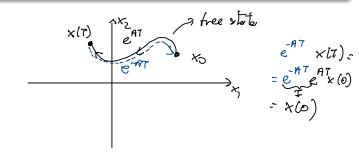
Eigenvalues under exact sampling (1/2)

$$\hat{A} = e^{AT}$$

Properties

One can show that

- $\det(\hat{A}) \neq 0 \text{ always (even if } \det(A) = 0)$ $\det(e^{AT})^{-1} = e^{-AT}$ $\det(\hat{A}) \neq 0 \text{ always (even if } \det(A) = 0)$ Moreover $(e^{AT})^{-1} = e^{-AT} = e^{A(-T)}$ (inverse = "backward in time")



Eigenvalues under exact sampling (1/2)

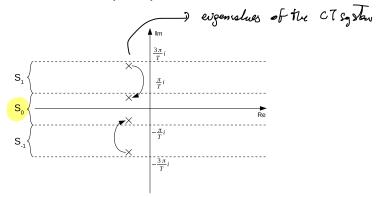
$$\hat{A} = e^{AT}$$

Properties

One can show that

- $\det(\hat{A}) \neq 0$ always (even if $\det(A) = 0$) Moreover $(e^{AT})^{-1} = e^{-AT} = e^{A(-T)}$ (inverse = "backward in time")
 - Implications of (b):
 reachability and controllability coincide for DT systems obtained through exact sampling
 - Implications of (a): $\lambda_1 \neq \lambda_2$ does not imply that $z_1 \neq z_2$ $N \neq C$ Check: take $\lambda_2 = \lambda_1 + j\frac{2\pi}{T}N$, $N = \pm 1, \pm 2, \pm 3, \ldots$ We have $z_2 = e^{\lambda_1 T} e^{j\frac{2\pi}{T}NT}$

Interpretation in the complex plane



- $S_i = \text{Strips of width } 2\pi/T$
- Due to sampling, all strips "collapse" into S₀
 Sampling ⇒ loss of information: can not reconstruct eigenvalues of the CT system from those of the DT one.

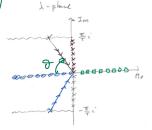
Eigenvalues under exact sampling (2/2)

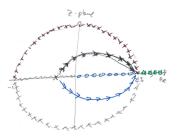
Map of regions in the λ -plane (continuous time) into regions of the z-plane

. (discrete-time).
Two a consideration with real part < 0 3=e, 17

and an experience with	λ -plane	z-plane
52 + 23 S+7 -	0	1
with the second	real negative	[0, 1)
w, >0 natural frequency	real positive	$(1, +\infty)$
John John Mar (19/19/19/	constant imaginary part	(1 0]

ant imaginary part 3 € (0, 1] dampry constant damping log spirals





• Remark: asymptotically stable eigenvalues λ (i.e. $Re(\lambda) < 0$) are mapped into asymptotically stable eigenvalue z (i.e. |z| < 1).

Exact sampling: conclusions

- Pros
 - \triangleright x_k and y_k represent $x(t_k)$ and $y(t_k)$ with no approximations
 - Stability, AS and instability are preserved
- Cons
 - $\hat{A} = e^{AT} = I + AT + \frac{(AT)^2}{2} + \dots$
 - can be difficult to compute for large systems ! In Matlab, hA=expm (A*T)
 - does not preserve the pattern of zeros in A

Example

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, \quad T = 0.1$$

$$\rightarrow \quad \hat{A} = e^{AT} = \begin{bmatrix} 0.905 & 0.0905 & 0.0045 \\ 0.0045 & 0.905 & 0.0905 \\ 0.0905 & 0.0045 & 0.905 \end{bmatrix}$$

Exact sampling: conclusions

- Pros
 - \triangleright x_k and y_k represent $x(t_k)$ and $y(t_k)$ with no approximations
 - Stability, AS and instability are preserved
- Cons
 - $\hat{A} = e^{AT} = I + AT + \frac{(AT)^2}{2} + \dots$
 - ▶ can be difficult to compute for large systems ! In Matlab, hA=expm(A*T)
 - does not preserve the pattern of zeros in A

Generalisations

What happens if u(t) or x(t) are affected by delays ? \to see the class "Networked Control Systems"

Approximate discretisation methods

• Goal: avoid the computation of e^{AT} and preserve the structure of A

CT LTI System

$$\dot{x} = Ax + Bu \tag{1}$$

$$y = Cx + Du (2)$$

Assumption

Uniform sampling period T

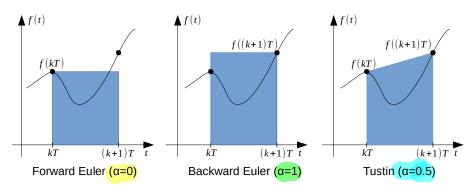
• Integrating (1) on [kT, (k+1)T] and setting $x_k = x(kT)$ gives

$$x_{k+1} - x_k = A \int_{kT}^{(k+1)T} x(t) dt + B \int_{kT}^{(k+1)T} u(t) dt$$

Approximate discretisation methods

• To make u(kT) and x(kT) appear in the right hand side, we use the following numerical integration scheme, written for a generic function $f(t): \mathbb{R} \to \mathbb{R}^n$

$$\int_{kT}^{(k+1)T} f(t) dt \simeq \left[(1-\alpha)f(kT) + \alpha f((k+1)T) \right] T, \quad 0 \le \alpha \le 1$$



DT Models

: Forward Euler (FE) $\alpha = 0$

: Backward Euler (BE) $\alpha = 1$

Trapezoidal method or Tustin method $\alpha = 0.5$

In all cases, loss of information. Is stability preserved?

Resulting DT system

$$x_{k+1} - x_k = A[(1 - \alpha)x_k + \alpha x_{k+1}]T + BT[(1 - \alpha)u_k + \alpha u_{k+1}]$$

 \bullet $\alpha = 0$ (FE)

$$x_{k+1} = (AT + I)x_k + BTu_k$$

• $\alpha = 1$ (BE)

$$x_{k+1} = ATx_{k+1} + x_k + BTu_{k+1}$$

• $\alpha = 0.5$ (Tustin)

$$x_{k+1} = (\frac{1}{2}AT + I)x_k + \frac{1}{2}ATx_{k+1} + BT\frac{1}{2}[u_k + u_{k+1}]$$

Analysis of FE ($\alpha = 0$)

Remark

FE provides a causal DT system with $\hat{A} = AT + I$, $\hat{B} = BT$

Lemma (properties of FE)

- The off-diagonal zero entries of A and AT + I are in the same positions $R_{\epsilon}(\lambda) < 0$
- positions $\Re(\lambda) < 0$ | 2 < 1 | only if A is Hurwitz stable, then AT + I is Schur stable if and only if

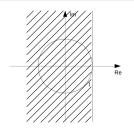
$$T < T^* = \min_{i=1,\dots,n} \frac{-2\operatorname{Re}(\lambda_i)}{|\lambda_i|^2}$$
 of the R (1)

where λ_i are the eigenvalues of A.

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Remark

If λ is an eigenvalue of A, then $\lambda T + 1$ is an eigenvalue of AT + I. The function $\lambda \mapsto \lambda T + 1$ maps the set $\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) < 0\}$ in the shaded region below



Remark

$$e^{AT} = I + AT + \frac{(AT)^2}{2} + \cdots$$

Therefore FE can be seen as a first order Taylor approximation of e^{AT}

4D > 4A > 4B > 4B > B 990

Giancarlo Ferrari Trecate

Effect of discretization on reachability and observability

- Discretisation ⇒ loss of information
- We expect that sampling may impair reachability/observability...

CT LTI System

$$\dot{x} = Ax + Bu \\
y = Cx + Du$$
(*)

Theorem

ssume that (*) is controllable

Assume that (*) is controllable and observable. The DT system obtained through exact discretisation is controllable and observable if and only if, for any pair of eigenvalues λ_i , λ_j of A

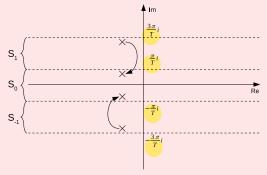
$$\operatorname{Re}(\lambda_i) = \operatorname{Re}(\lambda_j) \Rightarrow \operatorname{Im}(\lambda_i - \lambda_j) \neq \frac{2n\pi}{T} \quad n = \pm 1, \pm 2, \dots$$

where T is the sampling period.

Effect of discretization on reachability and observability

Remarks

• Recall the relations between eigenvalues under exact sampling



- The CT system has real eigenvalues only ⇒ no loss of reachability/observability
- Always possible to avoid losses of reachability/observability by choosing T > 0 small enough

Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad (**)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Check at home that (**) is reachable and observable (the tests are the same for CT and DT systems)
- System eigenvalues $\lambda_1 = j, \quad \lambda_2 = -j$

DT system (sampling time T > 0)

$$\begin{bmatrix} x_1^+ \\ x_2^+ \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(T) & \sin(T) \\ -\sin(T) & \cos(T) \end{bmatrix}}_{\hat{A}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 1 - \cos(T) \\ \sin(T) \end{bmatrix}}_{\hat{B}} u$$

$$y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\hat{A}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Reachability of the DT system

$$M_{r} = \begin{bmatrix} \hat{B} & \hat{A}\hat{B} \end{bmatrix} = \begin{bmatrix} 1 - \cos(T) & \cos(T) + 1 - 2\cos^{2}(T) \\ \sin(T) & -\sin(T) + 2\cos(T)\sin(T) \end{bmatrix}$$

$$Rank(M_{r}) = 2 \Leftrightarrow T \neq n\pi \quad n = 1, 2, 3 \dots$$

$$Sun (n\pi) = 0$$

$$Sun (n\pi) = 0$$

$$For first Tandom for Tandom$$

• By applying the Theorem $Re(\lambda_1) = Re(\lambda_2) = 0$. Then, the system is reachable if and only if

$$\underbrace{\mathsf{Im}(\lambda_1 - \lambda_2)}_{\mathsf{Im}(2j) = 2} \neq \frac{2n\pi}{T} \quad \Leftrightarrow \quad T \neq n\pi$$

Conclusions

- Time-discretization ⇒ loss of information
- Exact sampling : best possible choice but it does not
 - preserve structure
 - apply to nonlinear systems

Conclusions

- Time-discretization ⇒ loss of information
- Exact sampling : best possible choice but it does not
 - preserve structure
 - apply to nonlinear systems

 \rightarrow What about the simultaneous presence of sampling and time delays? Master course "Networked Control Systems"

18 / 18