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Motivation: digital control of CT systems

y(t): plant measurements

yk : input to controller

Plant dynamics

ẋ = Ax + Bu x(t) 2 Rn

y = Cx + Du u(t) 2 Rp

x(0) = x0 y(t) 2 Rm
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Model of sample and hold

System CT output y(t)
sampled at {tk , k 2 N}

I yk = y(tk), Tk , tk+1� tk

Hold

u(t) = uk t 2 [tk , tk+1)

Problem: obtain DT models representing the cascade Hold + (CT
system) + Sampler

Next: popular discretisation
methods

I exact
I approximate ⌧���⌧���
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Exact discretisation

Goal: compute the discrete-time dynamics for xk
LTI system

ẋ = Ax + Bu

y = Cx + Du

Set xk = x(tk), yk = y(tk) etc.

Recall the Lagrange formula for the above system with x(tk) = xk

x(t) = eA(t�tk )xk +

Z t

tk

eA(t�⌧)Bu(⌧)d⌧

| {z }
(b)

State transition operator eAs : pushes xk ahead by s seconds
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Exact discretisation

Goal: compute the discrete-time dynamics for xk
LTI system

ẋ = Ax + Bu

y = Cx + Du

Set xk = x(tk), yk = y(tk) etc.

Recall the Lagrange formula for the above system with x(tk) = xk

x(t) = eA(t�tk )xk +

Z t

tk

eA(t�⌧)Bu(⌧)d⌧

| {z }
(b)

Constant-input transmission operator �(s) ,
R s
0 eAzdz

I (b)= �(t � tk)Buk if u(.) = uk on [tk , t].
Proof: (b)=

R t
tk
eA(t�⌧)d⌧Buk = �

R 0
t�tk

eAzdzBuk =
R t�tk
0 eAzdzBuk , where we have

set z = t � ⌧ .

I �(t � tk)B pushes uk ahead by t � tk seconds
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Exact discretisation

Sample at times t0 = 0, t1, t2, . . . and set Tk = tk+1 � tk .

We have
xk+1 = x(tk+1) = eA(tk+1�tk )x(tk) +

Z tk+1

tk

eA(tk+1�s)Bu(s) ds

= eATk
|{z}
Âk

xk + �(Tk)B| {z }
B̂k

uk (1)

yk = Ĉ xk + D̂uk for Ĉ = C , D̂ = D (2)

(1) - (2) : linear time-varying system

Under uniform sampling (i.e, Tk = T , k = 0, 1, . . . )

Â = eAT , B̂ = �(T )B ! invariant system

x+ = Âx + B̂u

y = Ĉ x + D̂u
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Eigenvalues under exact sampling (1/2)

Â = eAT

Properties

One can show that
(a) � 2 Spec(A) ) z = e�T 2 Spec(Â)
(b) det(Â) 6= 0 always (even if det(A) = 0)

Moreover (eAT )�1 = e�AT = eA(�T ) (inverse = ”backward in time”)

Implications of (b) :
reachability and controllability coincide for DT systems obtained
through exact sampling

Implications of (a) :
�1 6= �2 does not imply that z1 6= z2
Check : take �2 = �1 + j 2⇡T N, N = ±1,±2,±3, . . .

We have z2 = e�1T
|{z}
z1

e
j 2⇡

�T
N⇢T

| {z }
1
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Interpretation in the complex plane

Si = Strips of width 2⇡/T

Due to sampling, all strips ”collapse” into S0
Sampling ) loss of information: can not reconstruct eigenvalues of
the CT system from those of the DT one.
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Eigenvalues under exact sampling (2/2)
Map of regions in the �-plane (continuous time) into regions of the z-plane
(discrete-time).

�-plane z-plane
0 1

real negative [0, 1)
real positive (1,+1)

constant imaginary part (�1, 0]
constant damping log spirals

Remark: asymptotically stable eigenvalues � (i.e. Re(�) < 0) are mapped into
asymptotically stable eigenvalue z (i.e. |z | < 1).
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Exact sampling: conclusions
Pros

I xk and yk represent x(tk) and y(tk) with no approximations
I Stability, AS and instability are preserved

Cons
I Â = eAT = I + AT + (AT )2

2 + . . .
I can be di�cult to compute for large systems !

In Matlab, hA=expm(A*T)
I does not preserve the pattern of zeros in A

Example

A =

2

4
�1 1 0
0 �1 1
1 0 �1

3

5 , T = 0.1

! Â = eAT =

2

4
0.905 0.0905 0.0045
0.0045 0.905 0.0905
0.0905 0.0045 0.905

3

5
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Exact sampling: conclusions

Pros
I xk and yk represent x(tk) and y(tk) with no approximations
I Stability, AS and instability are preserved

Cons
I Â = eAT = I + AT + (AT )2

2 + . . .
I can be di�cult to compute for large systems !

In Matlab, hA=expm(A*T)
I does not preserve the pattern of zeros in A

Generalisations

What happens if u(t) or x(t) are a↵ected by delays ? ! see the class
”Networked Control Systems”
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Approximate discretisation methods

Goal: avoid the computation of eAT and preserve the structure of A

CT LTI System

ẋ = Ax + Bu (1)

y = Cx + Du (2)

Assumption

Uniform sampling period T

Integrating (1) on [kT , (k + 1)T ] and setting xk = x(kT ) gives

xk+1 � xk = A

Z (k+1)T

kT
x(t) dt + B

Z (k+1)T

kT
u(t) dt
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Approximate discretisation methods

To make u(kT ) and x(kT ) appear in the right hand side, we use the
following numerical integration scheme, written for a generic function
f (t) : R ! Rn

Z (k+1)T

kT
f (t) dt ' [(1� ↵)f (kT ) + ↵f ((k + 1)T )]T , 0  ↵  1

f (t) f (t) f ( t)

tttkT (k+1)T kT (k+1)T kT (k+1)T

f (kT )

Forward Euler (α=0)

f ((k+1)T ) f ((k+1)T )

f (kT )

Backward Euler (α=1) Tustin (α=0.5)
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DT Models

↵ = 0 : Forward Euler (FE)

↵ = 1 : Backward Euler (BE)

↵ = 0.5 : Trapezoidal method or Tustin method

In all cases, loss of information. Is stability preserved ?

Resulting DT system
xk+1 � xk = A [(1� ↵)xk + ↵xk+1]T + BT [(1� ↵)uk + ↵uk+1]

↵ = 0 (FE)
xk+1 = (AT + I )xk + BTuk

↵ = 1 (BE)
xk+1 = ATxk+1 + xk + BTuk+1

↵ = 0.5 (Tustin)

xk+1 = (
1

2
AT + I )xk +

1

2
ATxk+1 + BT

1

2
[uk + uk+1]
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Analysis of FE (↵ = 0)

Remark

FE provides a causal DT system with Â = AT + I , B̂ = BT

Lemma (properties of FE)
(a) The o↵-diagonal zero entries of A and AT + I are in the same

positions
(b) if A is Hurwitz stable, then AT + I is Schur stable if and only if

T < T ⇤ = min
i=1,...,n

�2Re(�i )

|�i |2
(1)

where �i are the eigenvalues of A.
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Remark
If � is an eigenvalue of A, then �T + 1 is an eigenvalue of AT + I . The function
� 7! �T + 1 maps the set {� 2 C : Re(�) < 0} in the shaded region below

Remark

eAT = I + AT +
(AT )2

2
+ · · ·

Therefore FE can be seen as a first order Taylor approximation of eAT
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E↵ect of discretization on reachability and observability

Discretisation ) loss of information

We expect that sampling may impair reachability/observability. . .

CT LTI System

ẋ = Ax + Bu
y = Cx + Du

(⇤)

Theorem

Assume that (⇤) is controllable and observable. The DT system obtained
through exact discretisation is controllable and observable if and only if,
for any pair of eigenvalues �i , �j of A

Re(�i ) = Re(�j) ) Im(�i � �j) 6=
2n⇡

T
n = ±1,±2, . . .

where T is the sampling period.
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E↵ect of discretization on reachability and observability

Remarks
Recall the relations between eigenvalues under exact sampling

The CT system has real eigenvalues only ) no loss of
reachability/observability

Always possible to avoid losses of reachability/observability by
choosing T > 0 small enough
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Example

ẋ1
ẋ2

�
=


0 1
�1 0

� 
x1
x2

�
+


0
1

�
u (⇤⇤)

y =
⇥
1 0

⇤  x1
x2

�

Check at home that (⇤⇤) is reachable and observable (the tests are
the same for CT and DT systems)

System eigenvalues �1 = j , �2 = �j

DT system (sampling time T > 0)

x+1
x+2

�
=


cos(T ) sin(T )
� sin(T ) cos(T )

�

| {z }
Â


x1
x2

�
+


1� cos(T )
sin(T )

�

| {z }
B̂

u

y =
⇥
1 0

⇤
| {z }

Ĉ


x1
x2

�
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Reachability of the DT system

Mr =
⇥
B̂ ÂB̂

⇤
=


1� cos(T ) cos(T ) + 1� 2 cos2(T )
sin(T ) � sin(T ) + 2 cos(T ) sin(T )

�

Rank(Mr ) = 2 , T 6= n⇡ n = 1, 2, 3 . . .

By applying the Theorem
Re(�1) = Re(�2) = 0. Then, the system is reachable if and only if

Im(�1 � �2)| {z }
Im(2j)=2

6= 2n⇡

T
, T 6= n⇡
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Conclusions

Time-discretization ) loss of information

Exact sampling : best possible choice but it does not
I preserve structure
I apply to nonlinear systems

! What about the simultaneous presence of sampling and time delays?
Master course ”Networked Control Systems”

Giancarlo Ferrari Trecate Multivariable control EPFL 18 / 18



Conclusions

Time-discretization ) loss of information

Exact sampling : best possible choice but it does not
I preserve structure
I apply to nonlinear systems

! What about the simultaneous presence of sampling and time delays?
Master course ”Networked Control Systems”

Giancarlo Ferrari Trecate Multivariable control EPFL 18 / 18


