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Motivation: digital control of CT systems

y(t): plant measurements

yk : input to controller

Plant dynamics

ẋ = Ax + Bu x(t) ∈ Rn

y = Cx + Du u(t) ∈ Rp

x(0) = x0 y(t) ∈ Rm
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Model of sample and hold

System CT output y(t)
sampled at {tk , k ∈ N}

I yk = y(tk), Tk , tk+1− tk

Hold

u(t) = uk t ∈ [tk , tk+1)

Problem: obtain DT models representing the cascade Hold + (CT
system) + Sampler

Next: popular discretisation
methods

I exact
I approximate τ�−�τ�−�
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Exact discretisation

Goal: compute the discrete-time dynamics for xk
LTI system

ẋ = Ax + Bu

y = Cx + Du

Set xk = x(tk), yk = y(tk) etc.

Recall the Lagrange formula for the above system with x(tk) = xk

x(t) = eA(t−tk )xk +

∫︁ t

tk

eA(t−𝜏)Bu(𝜏)d𝜏⏟  ⏞  
(b)

State transition operator eAs : pushes xk ahead by s seconds
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Exact discretisation

Goal: compute the discrete-time dynamics for xk
LTI system

ẋ = Ax + Bu

y = Cx + Du

Set xk = x(tk), yk = y(tk) etc.

Recall the Lagrange formula for the above system with x(tk) = xk

x(t) = eA(t−tk )xk +

∫︁ t

tk

eA(t−𝜏)Bu(𝜏)d𝜏⏟  ⏞  
(b)

Constant-input transmission operator Γ(s) ,
∫︀ s
0 eAzdz

I (b)= Γ(t − tk)Buk if u(.) = uk on [tk , t].
Proof: (b)=

∫︀ t
tk
eA(t−𝜏)d𝜏Buk = −

∫︀ 0
t−tk

eAzdzBuk =
∫︀ t−tk
0 eAzdzBuk , where we have

set z = t − 𝜏 .

I Γ(t − tk)B pushes uk ahead by t − tk seconds
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Exact discretisation

Sample at times t0 = 0, t1, t2, . . . and set Tk = tk+1 − tk .

We have
xk+1 = x(tk+1) = eA(tk+1−tk )x(tk) +

∫︁ tk+1

tk

eA(tk+1−s)Bu(s) ds

= eATk⏟ ⏞ 
Âk

xk + Γ(Tk)B⏟  ⏞  
B̂k

uk (1)

yk = Ĉ xk + D̂uk for Ĉ = C , D̂ = D (2)

(1) - (2) : linear time-varying system

Under uniform sampling (i.e, Tk = T , k = 0, 1, . . . )

Â = eAT , B̂ = Γ(T )B → invariant system

x+ = Âx + B̂u

y = Ĉ x + D̂u
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Eigenvalues under exact sampling (1/2)

Â = eAT

Properties

One can show that

(a) 𝜆 ∈ Spec(A) ⇒ z = e𝜆T ∈ Spec(Â)

(b) det(Â) ̸= 0 always (even if det(A) = 0)
Moreover (eAT )−1 = e−AT = eA(−T ) (inverse = ”backward in time”)

Implications of (b) :
reachability and controllability coincide for DT systems obtained
through exact sampling

Implications of (a) :
𝜆1 ̸= 𝜆2 does not imply that z1 ̸= z2
Check : take 𝜆2 = 𝜆1 + j 2𝜋T N, N = ±1,±2,±3, . . .

We have z2 = e𝜆1T⏟ ⏞ 
z1

e
j 2𝜋

�T
N�T⏟  ⏞  

1
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Interpretation in the complex plane

Si = Strips of width 2𝜋/T

Due to sampling, all strips ”collapse” into S0
Sampling ⇒ loss of information: can not reconstruct eigenvalues of
the CT system from those of the DT one.
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Eigenvalues under exact sampling (2/2)
Map of regions in the 𝜆-plane (continuous time) into regions of the z-plane
(discrete-time).

𝜆-plane z-plane
0 1

real negative [0, 1)

real positive (1,+∞)

constant imaginary part (−1, 0]

constant damping log spirals

Remark: asymptotically stable eigenvalues 𝜆 (i.e. Re(𝜆) < 0) are mapped into
asymptotically stable eigenvalue z (i.e. |z | < 1).
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Exact sampling: conclusions
Pros

I xk and yk represent x(tk) and y(tk) with no approximations
I Stability, AS and instability are preserved

Cons
I Â = eAT = I + AT + (AT )2

2 + . . .
I can be difficult to compute for large systems !

In Matlab, hA=expm(A*T)
I does not preserve the pattern of zeros in A

Example

A =

⎡⎣ −1 1 0
0 −1 1
1 0 −1

⎤⎦ , T = 0.1

→ Â = eAT =

⎡⎣ 0.905 0.0905 0.0045
0.0045 0.905 0.0905
0.0905 0.0045 0.905

⎤⎦
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Exact sampling: conclusions

Pros
I xk and yk represent x(tk) and y(tk) with no approximations
I Stability, AS and instability are preserved

Cons
I Â = eAT = I + AT + (AT )2

2 + . . .
I can be difficult to compute for large systems !

In Matlab, hA=expm(A*T)
I does not preserve the pattern of zeros in A

Generalisations

What happens if u(t) or x(t) are affected by delays ? → see the class
”Networked Control Systems”
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Approximate discretisation methods

Goal: avoid the computation of eAT and preserve the structure of A

CT LTI System

ẋ = Ax + Bu (1)

y = Cx + Du (2)

Assumption

Uniform sampling period T

Integrating (1) on [kT , (k + 1)T ] and setting xk = x(kT ) gives

xk+1 − xk = A

∫︁ (k+1)T

kT
x(t) dt + B

∫︁ (k+1)T

kT
u(t) dt
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Approximate discretisation methods

To make u(kT ) and x(kT ) appear in the right hand side, we use the
following numerical integration scheme, written for a generic function
f (t) : R → Rn∫︁ (k+1)T

kT
f (t) dt ≃ [(1− 𝛼)f (kT ) + 𝛼f ((k + 1)T )]T , 0 ≤ 𝛼 ≤ 1

f (t) f (t) f ( t)

tttkT (k+1)T kT (k+1)T kT (k+1)T

f (kT )

Forward Euler (α=0)

f ((k+1)T ) f ((k+1)T )

f (kT )

Backward Euler (α=1) Tustin (α=0.5)
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DT Models

𝛼 = 0 : Forward Euler (FE)

𝛼 = 1 : Backward Euler (BE)

𝛼 = 0.5 : Trapezoidal method or Tustin method

In all cases, loss of information. Is stability preserved ?

Resulting DT system

xk+1 − xk = A [(1− 𝛼)xk + 𝛼xk+1]T + BT [(1− 𝛼)uk + 𝛼uk+1]

𝛼 = 0 (FE)
xk+1 = (AT + I )xk + BTuk

𝛼 = 1 (BE)
xk+1 = ATxk+1 + xk + BTuk+1

𝛼 = 0.5 (Tustin)

xk+1 = (
1

2
AT + I )xk +

1

2
ATxk+1 + BT

1

2
[uk + uk+1]
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Analysis of FE (𝛼 = 0)

Remark

FE provides a causal DT system with Â = AT + I , B̂ = BT

Lemma (properties of FE)

(a) The off-diagonal zero entries of A and AT + I are in the same
positions

(b) if A is Hurwitz stable, then AT + I is Schur stable if and only if

T < T * = min
i=1,...,n

−2Re(𝜆i )

|𝜆i |2
(1)

where 𝜆i are the eigenvalues of A.
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Remark
If 𝜆 is an eigenvalue of A, then 𝜆T + 1 is an eigenvalue of AT + I . The function
𝜆 ↦→ 𝜆T + 1 maps the set {𝜆 ∈ C : Re(𝜆) < 0} in the shaded region below

Remark

eAT = I + AT +
(AT )2

2
+ · · ·

Therefore FE can be seen as a first order Taylor approximation of eAT
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Effect of discretization on reachability and observability

Discretisation ⇒ loss of information

We expect that sampling may impair reachability/observability. . .

CT LTI System

ẋ = Ax + Bu
y = Cx + Du

(*)

Theorem

Assume that (*) is controllable and observable. The DT system obtained
through exact discretisation is controllable and observable if and only if,
for any pair of eigenvalues 𝜆i , 𝜆j of A

Re(𝜆i ) = Re(𝜆j) ⇒ Im(𝜆i − 𝜆j) ̸=
2n𝜋

T
n = ±1,±2, . . .

where T is the sampling period.
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Effect of discretization on reachability and observability

Remarks

Recall the relations between eigenvalues under exact sampling

The CT system has real eigenvalues only ⇒ no loss of
reachability/observability

Always possible to avoid losses of reachability/observability by
choosing T > 0 small enough
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Example [︂
ẋ1
ẋ2

]︂
=

[︂
0 1
−1 0

]︂ [︂
x1
x2

]︂
+

[︂
0
1

]︂
u (**)

y =
[︀
1 0

]︀ [︂ x1
x2

]︂
Check at home that (**) is reachable and observable (the tests are
the same for CT and DT systems)

System eigenvalues 𝜆1 = j , 𝜆2 = −j

DT system (sampling time T > 0)[︂
x+1
x+2

]︂
=

[︂
cos(T ) sin(T )
− sin(T ) cos(T )

]︂
⏟  ⏞  

Â

[︂
x1
x2

]︂
+

[︂
1− cos(T )
sin(T )

]︂
⏟  ⏞  

B̂

u

y =
[︀
1 0

]︀⏟  ⏞  
Ĉ

[︂
x1
x2

]︂
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Reachability of the DT system

Mr =
[︀
B̂ ÂB̂

]︀
=

[︂
1− cos(T ) cos(T ) + 1− 2 cos2(T )
sin(T ) − sin(T ) + 2 cos(T ) sin(T )

]︂
Rank(Mr ) = 2 ⇔ T ̸= n𝜋 n = 1, 2, 3 . . .

By applying the Theorem
Re(𝜆1) = Re(𝜆2) = 0. Then, the system is reachable if and only if

Im(𝜆1 − 𝜆2)⏟  ⏞  
Im(2j)=2

̸= 2n𝜋

T
⇔ T ̸= n𝜋
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Conclusions

Time-discretization ⇒ loss of information

Exact sampling : best possible choice but it does not
I preserve structure
I apply to nonlinear systems

→ What about the simultaneous presence of sampling and time delays?
Master course ”Networked Control Systems”
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