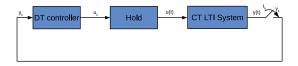
Lecture 4

Discretisation of Continuous Time (CT) systems

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Motivation: digital control of CT systems



- y(t): plant measurements
- *y_k*: input to controller
- Plant dynamics

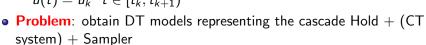
$$\dot{x} = Ax + Bu$$
 $x(t) \in \mathbb{R}^n$
 $y = Cx + Du$ $u(t) \in \mathbb{R}^p$
 $x(0) = x_0$ $y(t) \in \mathbb{R}^m$

Model of sample and hold

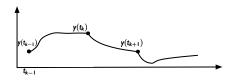
• System CT output y(t) sampled at $\{t_k, k \in \mathbb{N}\}$

Hold

$$u(t) = u_k \quad t \in [t_k, t_{k+1})$$



- Next: popular discretisation methods
 - exact
 - approximate



CT LTI System

Exact discretisation

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$
Hold

CT LTI System

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_k) = x_k$

$$x(t) = e^{A(t-t_k)}x_k + \underbrace{\int_{t_k}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b)}$$

State transition operator e^{As} : pushes x_k ahead by s seconds

Exact discretisation

Goal: compute the discrete-time dynamics for x_k

LTI system

$$\dot{x} = Ax + Bu$$
 $y = Cx + Du$ Hold CT LTI System $y = Cx + Du$

- Set $x_k = x(t_k)$, $y_k = y(t_k)$ etc.
- Recall the Lagrange formula for the above system with $x(t_k) = x_k$

$$x(t) = e^{A(t-t_k)}x_k + \underbrace{\int_{t_k}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{(b)}$$

Constant-input transmission operator $\Gamma(s) \triangleq \int_0^s e^{Az} dz$

- ▶ (b)= $\Gamma(t-t_k)Bu_k$ if $u(.)=u_k$ on $[t_k,t]$. Proof: (b)= $\int_{t_k}^t e^{A(t-\tau)}d\tau Bu_k = -\int_{t-t_k}^0 e^{Az}dz Bu_k = \int_0^{t-t_k} e^{Az}dz Bu_k$, where we have set $z=t-\tau$.
- $ightharpoonup \Gamma(t-t_k)B$ pushes u_k ahead by $t-t_k$ seconds

Exact discretisation

• Sample at times $t_0 = 0, t_1, t_2, \ldots$ and set $T_k = t_{k+1} - t_k$.

• We have
$$x_{k+1} = x(t_{k+1}) = e^{A(t_{k+1} - t_k)} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1} - s)} Bu(s) ds$$

$$= \underbrace{e^{AT_k}}_{\hat{A}_k} x_k + \underbrace{\Gamma(T_k)B}_{\hat{B}_k} u_k \quad (1)$$

$$y_k = \hat{C}x_k + \hat{D}u_k \quad \text{for} \quad \hat{C} = C, \hat{D} = D$$
 (2)

• (1) - (2) : linear time-varying system

Under uniform sampling (i.e, $T_k = T$, $k = 0, 1, \dots$)

$$\hat{A}=e^{AT},\quad \hat{B}=\Gamma(T)B
ightarrow \,$$
 invariant system
$$x^+=\hat{A}x+\hat{B}u \ \ y=\hat{C}x+\hat{D}u$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かへで

Eigenvalues under exact sampling (1/2)

$$\hat{A} = e^{AT}$$

Properties

One can show that

- $egin{aligned} egin{aligned} \det(\hat{A})
 eq 0 \end{aligned} & \det(\hat{A}) = 0 \end{aligned}$ Moreover $(e^{AT})^{-1} = e^{-AT} = e^{A(-T)}$ (inverse = "backward in time")

Eigenvalues under exact sampling (1/2)

$$\hat{A} = e^{AT}$$

Properties

One can show that

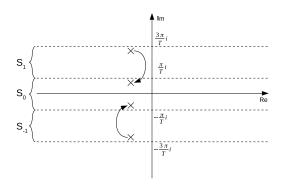
- oxtless det $(\hat{A})
 eq 0$ always (even if det(A) = 0)

 Moreover $(e^{AT})^{-1} = e^{-AT} = e^{A(-T)}$ (inverse = "backward in time")
 - Implications of (b):
 reachability and controllability coincide for DT systems obtained through exact sampling
 - Implications of (a) :

$$\lambda_1 \neq \lambda_2$$
 does not imply that $z_1 \neq z_2$
Check: take $\lambda_2 = \lambda_1 + j \frac{2\pi}{T} N$, $N = \pm 1, \pm 2, \pm 3, \dots$

We have
$$z_2 = \underbrace{e^{\lambda_1 T}}_{z_1} \underbrace{e^{j\frac{2\pi}{T}N\mathcal{X}}}_1$$

Interpretation in the complex plane

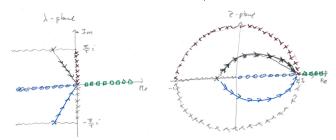


- $S_i = \text{Strips of width } 2\pi/T$
- Due to sampling, all strips "collapse" into S₀
 Sampling ⇒ loss of information: can not reconstruct eigenvalues of the CT system from those of the DT one.

Eigenvalues under exact sampling (2/2)

Map of regions in the λ -plane (continuous time) into regions of the z-plane (discrete-time).

λ -plane	z-plane
0	1
real negative	[0,1)
real positive	$(1,+\infty)$
constant imaginary part	[-1,0]
constant damping	log spirals



• Remark: asymptotically stable eigenvalues λ (i.e. $Re(\lambda) < 0$) are mapped into asymptotically stable eigenvalue z (i.e. |z| < 1).

Exact sampling: conclusions

- Pros
 - \triangleright x_k and y_k represent $x(t_k)$ and $y(t_k)$ with no approximations
 - Stability, AS and instability are preserved
- Cons
 - $\hat{A} = e^{AT} = I + AT + \frac{(AT)^2}{2} + \dots$
 - can be difficult to compute for large systems ! In Matlab, hA=expm(A*T)
 - does not preserve the pattern of zeros in A

Example

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, \quad T = 0.1$$

$$\rightarrow \hat{A} = e^{AT} = \begin{bmatrix} 0.905 & 0.0905 & 0.0045 \\ 0.0045 & 0.905 & 0.0905 \\ 0.0905 & 0.0045 & 0.905 \end{bmatrix}$$

Exact sampling: conclusions

- Pros
 - \triangleright x_k and y_k represent $x(t_k)$ and $y(t_k)$ with no approximations
 - Stability, AS and instability are preserved
- Cons
 - $\hat{A} = e^{AT} = I + AT + \frac{(AT)^2}{2} + \dots$
 - can be difficult to compute for large systems! In Matlab, hA=expm(A*T)
 - does not preserve the pattern of zeros in A

Generalisations

What happens if u(t) or x(t) are affected by delays ? \to see the class "Networked Control Systems"

Approximate discretisation methods

ullet Goal: avoid the computation of e^{AT} and preserve the structure of A

CT LTI System

$$\dot{x} = Ax + Bu \tag{1}$$

$$y = Cx + Du (2)$$

Assumption

Uniform sampling period T

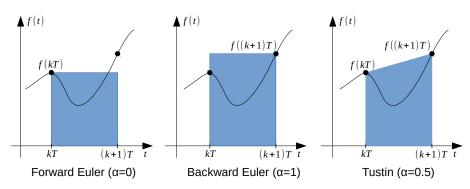
• Integrating (1) on [kT, (k+1)T] and setting $x_k = x(kT)$ gives

$$x_{k+1} - x_k = A \int_{kT}^{(k+1)T} x(t) dt + B \int_{kT}^{(k+1)T} u(t) dt$$

Approximate discretisation methods

• To make u(kT) and x(kT) appear in the right hand side, we use the following numerical integration scheme, written for a generic function $f(t): \mathbb{R} \to \mathbb{R}^n$

$$\int_{kT}^{(k+1)T} f(t) dt \simeq \left[(1-\alpha)f(kT) + \alpha f((k+1)T) \right] T, \quad 0 \le \alpha \le 1$$



4D > 4A > 4B > 4B > B 990

DT Models

 $\alpha = 0$: Forward Euler (FE)

 $\alpha=1$: Backward Euler (BE)

lpha=0.5 : Trapezoidal method or Tustin method

In all cases, loss of information. Is stability preserved?

Resulting DT system

$$x_{k+1} - x_k = A[(1-\alpha)x_k + \alpha x_{k+1}]T + BT[(1-\alpha)u_k + \alpha u_{k+1}]$$

• $\alpha = 0$ (FE)

$$x_{k+1} = (AT + I)x_k + BTu_k$$

• $\alpha = 1$ (BE)

$$x_{k+1} = ATx_{k+1} + x_k + BTu_{k+1}$$

• $\alpha = 0.5$ (Tustin)

$$x_{k+1} = (\frac{1}{2}AT + I)x_k + \frac{1}{2}ATx_{k+1} + BT\frac{1}{2}[u_k + u_{k+1}]$$

Analysis of FE ($\alpha = 0$)

Remark

FE provides a causal DT system with $\hat{A} = AT + I$, $\hat{B} = BT$

Lemma (properties of FE)

- \bigcirc The off-diagonal zero entries of A and AT + I are in the same positions
- \bigcirc if A is Hurwitz stable, then AT + I is Schur stable if and only if

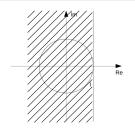
$$T < T^* = \min_{i=1,\dots,n} \frac{-2\operatorname{Re}(\lambda_i)}{|\lambda_i|^2} \tag{1}$$

where λ_i are the eigenvalues of A.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Remark

If λ is an eigenvalue of A, then $\lambda T+1$ is an eigenvalue of AT+I. The function $\lambda\mapsto \lambda T+1$ maps the set $\{\lambda\in\mathbb{C}: \operatorname{Re}(\lambda)<0\}$ in the shaded region below



Remark

$$e^{AT} = I + AT + \frac{(AT)^2}{2} + \cdots$$

Therefore FE can be seen as a first order Taylor approximation of e^{AT}

14 / 18

Giancarlo Ferrari Trecate Multivariable control EPFL

Effect of discretization on reachability and observability

- Discretisation ⇒ loss of information
- We expect that sampling may impair reachability/observability...

CT LTI System

$$\dot{x} = Ax + Bu
y = Cx + Du$$
(*)

Theorem

Assume that (*) is controllable and observable. The DT system obtained through exact discretisation is controllable and observable if and only if, for any pair of eigenvalues λ_i , λ_j of A

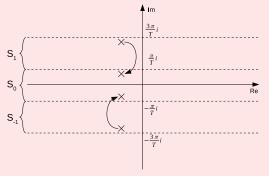
$$\operatorname{Re}(\lambda_i) = \operatorname{Re}(\lambda_j) \Rightarrow \operatorname{Im}(\lambda_i - \lambda_j) \neq \frac{2n\pi}{T} \quad n = \pm 1, \pm 2, \dots$$

where T is the sampling period.

Effect of discretization on reachability and observability

Remarks

Recall the relations between eigenvalues under exact sampling



- The CT system has real eigenvalues only ⇒ no loss of reachability/observability
- Always possible to avoid losses of reachability/observability by choosing ${\cal T}>0$ small enough

Example

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- Check at home that (**) is reachable and observable (the tests are the same for CT and DT systems)
- System eigenvalues $\lambda_1 = j, \quad \lambda_2 = -j$

DT system (sampling time T > 0)

$$\begin{bmatrix} x_1^+ \\ x_2^+ \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(T) & \sin(T) \\ -\sin(T) & \cos(T) \end{bmatrix}}_{\hat{A}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 1 - \cos(T) \\ \sin(T) \end{bmatrix}}_{\hat{B}} u$$

$$y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\hat{A}} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Reachability of the DT system

$$M_r = \begin{bmatrix} \hat{B} & \hat{A}\hat{B} \end{bmatrix} = \begin{bmatrix} 1 - \cos(T) & \cos(T) + 1 - 2\cos^2(T) \\ \sin(T) & -\sin(T) + 2\cos(T)\sin(T) \end{bmatrix}$$

$$Rank(M_r) = 2 \quad \Leftrightarrow \quad T \neq n\pi \quad n = 1, 2, 3 \dots$$

• By applying the Theorem $\text{Re}(\lambda_1) = \text{Re}(\lambda_2) = 0. \text{ Then, the system is reachable if and only if } \underbrace{\text{Im}(\lambda_1 - \lambda_2)}_{\text{Im}(2j) = 2} \neq \frac{2n\pi}{T} \quad \Leftrightarrow \quad T \neq n\pi$

Conclusions

- Time-discretization ⇒ loss of information
- Exact sampling : best possible choice but it does not
 - preserve structure
 - apply to nonlinear systems

Conclusions

- Time-discretization ⇒ loss of information
- Exact sampling : best possible choice but it does not
 - preserve structure
 - apply to nonlinear systems

 \rightarrow What about the simultaneous presence of sampling and time delays? Master course "Networked Control Systems"