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Section 1

Modes and stability of LTI systems
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Modes and stability of LTI systems

(
x+ = Ax + Bu

x(0) = x0

(x̄ , ū) equilibrium

(1)

Recall: stability of the equilibrium state x̄ .

Definition (Lyapunov stability)
The equilibrium state x̄ is

I stable if 8✏ > 0 9� > 0 : kx̃0 � x̄k  � ) kx̃(k)� x̄k < ✏, 8k � 0

I (globally) asymptotically stable (AS) if it is stable and attractive, i.e.,

lim
k!1

kx̃(k)� x̄k = 0, 8x̃0 2 Rn

I unstable if not stable
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Modes and stability of LTI Systems

Key quantity to analyse: the error

e(k) = x̃(k)� x̄

Proposition
Set e0 = e(0) = x̃(0)� x̄ . The error verifies

e+ = Ae

e(0) = e0
(2)
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Modes and stability of LTI systems

Proof
Note that e(k) = ↵x̃(k) + �x̄(k) with ↵ = 1 and � = �1. From the
superposition principle,

e(k) = x̃(k)� x̄(k) = �(k , 0, x̃0 � x̄ , ū � ū| {z }
0

)

Since � is the transition map of (1), the error satisfies (1) for zero input.
This is (2).

Proof (alternative)
Since x̄ verifies x̄+ = x̄ = Ax̄ + Bū, compute e+ = x+ � x̄+ explicitly and
obtain (2).
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Remarks

Stability/AS of x̄ is the same as stability/AS of ē = 0 for (2).
Check: stability of ē = 0 means

8" > 0, 9� : ke0 � 0k < � =) ke(k)� 0k < ", 8k � 0

which, by using e(k) = x(k)� x̄ coincides with the definition of
stability for x̄ .
(2) is independent of u(k) and x̄ . This proves the following theorem.

Theorem
An equilibrium state of an LTI system is stable/AS/unstable if and only if
all other equilibria have the same properties.

This is why we can say, for an LTI system, that « the system is stable ».
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Stability and free states

For stability analysis, setting u(k) = 0 in x+ = Ax + Bu is not
conservative. =) stability depends only on free states.

Theorem
An LTI system

1 is stable () all free states are bounded
2 is AS () all free states are bounded and go to zero as k ! +1
3 is unstable () there is a free state which is unbounded
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Stability and eigenvalues of A

Each free state x(k) = Akx0 is a linear combination of the modes of A.

eigenvalues modes

�i 2 R
(

0 for k < pi

kpi�k�pi
i for k � pi

, pi = 0, 1, . . . , ⌘i � 1

�i = ⇢iej✓i

AND

(
0 for k < pi

kpi⇢k�pi
i sin(✓i (k � pi ) + 'i ) for k � pi

pi = 0, 1, . . . , ⌘i � 1
�h = �⇤i
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Stability and eigenvalues of A

Recall the macroscopic behaviour of modes

Lemma
If |�i | < 1, all modes associated to �i are bounded and go to zero as
k ! +1.
If |�i | > 1, all modes associated to �i are unbounded.
If |�i | = 1 and ⌫i = ni , all modes associated to �i are bounded.
If |�i | = 1 and ⌫i < ni , there’s an unbounded mode associated to �i

Terminology: « eigenvalues of A » = « eigenvalues of the system »
Combining the previous Lemma and Theorem we have the three
Theorems given next
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Stability and eigenvalues of A

Theorem (test of AS)
An LTI system is AS if and only if all eigenvalues have modulus < 1.

Theorem (test of instability)
An LTI system is unstable if and only if one of the following conditions
occurs.

1 An eigenvalue has modulus > 1.
2 All eigenvalues have modulus  1 and there is an eigenvalue �i with

modulus = 1, algebraic multiplicity ni � 2 and dim(V�i ) < ni .
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Stability and eigenvalues of A

Theorem (test of simple stability)
An LTI system is simply stable if and only if all its eigenvalues have
modulus  1 and, for each eigenvalue �i with modulus 1 and algebraic
multiplicity ni � 2, one has

dim(V�i ) = ni

Recall: dim(V�i ) is the geometric multiplicity of �i .
Remark: AS is the most important property in engineering
applications
Terminology: we say that « A is Schur » if all its eigenvalues have
modulus < 1.
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Exponential Stability

Recall that the equilibrium x̄ of x+ = Ax is exponentially stable if there
are ↵ > 0, ⇢ 2 [0, 1) such that

kx̃(k)� x̄k  ↵⇢kkx̃0 � x̄k, 8x̃0 2 Rn

Lemma
An LTI systems is AS if and only if it is ES.

Sketch of the Proof
AS () all modes of the system go to zero as k ! 1. But if a mode
goes to zero, it does so exponentially fast. This implies that 9 ↵, ⇢
verifying the definition of ES
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Examples

Analyse the stability of x+ = Ax + Bu.

For x 2 R2

A =


2 1
0 0

�
=)

(
�1 = 2
�2 = 0

=) unstable

A =


1 0
0 0

�
=)

(
�1 = 1
�2 = 0

=) stable but not AS

A =


1 1
0 1

�
=) �1 = �2 = 1 =) alg. multiplictity n1 = 2

V1 =

⇢
v : A


v1
v2

�
=


v1
v2

��
=

(
v :

v1 + v2 = v1

v2 = v2

)
=

⇢
↵
0

�
,↵ 2 R

�

=) dim(V1) = 1 < n1, therefore the system is unstable
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Section 2

Reachability and controllability
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Key properties of dynamical systems

Reachability
Is it possible to steer the state x0 = 0 to a desired value by acting on the
inputs?

Controllability
Is it possible to steer the state x0 2 Rn to the origin by acting on the
inputs?
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Reachability

Example

C

x2

Cẋ2

R RCẋ1 = RCẋ2

C

x1

Cẋ1

u C = 1
R = 1
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Reachability

Example

Model
8
><

>:

u = x1 + x2 + ẋ1

u = x1 + x2 + ẋ2

y = x1

Discretization
dx
dt

=
x(k + 1)� x(k)

T
, T = 0.1

=)

8
><

>:

x+
1 = �9x1 � 10x2 + 10u
x+
2 = �10x1 � 9x2 + 10u
y = x1

Can we modify x1 independently of x2? It seems not: in the CT model the currents in
the upper and lower branches are identical.
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Change of coordinates to highlight this phenomenon

x̂ = Tx , T =


1 �1
1 1

�
=)

(
x̂1 = x1 � x2

x̂2 = x1 + x2

x̂+ = TAT�1x̂ + TBu, T�1 =


+0.5 0.5
�0.5 0.5

�

By direct calculation:
x̂+1 = x̂1

x̂+2 = �19x̂2 + 20u

The difference of the voltages is constant and it cannot be affected by the
input. =) states x̃ 2 R2 with x̃1 � x̃2 6= x1(0)� x2(0) cannot be reached.
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Reachability: definitions

x+ = Ax + Bu (3)
y = Cx + Du (4)

where x 2 Rn, u 2 Rm, y 2 Rp

Definition
A state x̃ is reachable if 9 k̃ > 0 and ũ(k), k = 0, 1, . . . , k̃ such that

x(k̃) = �(k̃ , 0, 0, ũ) = x̃ (5)

If all states are reachable, then the system is termed « reachable ».
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Reachability: definitions

Remarks
Reachability = reachability from the origin as x(0) = 0 in (5)
Reachability = property of the pair (A,B) only
Problem: Difficult to check if a system is reachable using the
definition (infinitely many x̃ should be tested)
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Reachability test

Definition
The reachability matrix is defined as

Mr =
⇥
B AB A2B · · · An�1B

⇤
2 Rn⇥mn (6)

Remark: powers of A from 0 to n � 1 only.

Theorem
1 x̃ 2 Rn is reachable only if it belongs to

Xr = span(Mr ) (7)

where span(Mr ) is the subspace spanned by the columns of Mr .
2 If x̃ is reachable, it can be reached in k̃  n steps.
3 The system is reachable if and only if rank(Mr ) = n
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Reachability test

Remarks
For LTI systems, reachability is a finitely determined property.
The orthogonal subspace X?

r is termed the « unreachable subspace ».
The point 3 in the above theorem is a maximal rank condition
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Reachability test

Proof
Setting x(0) = 0 one has

x(1) = Bu(0) =) lin. comb. of columns of B

x(2) = Bu(1) + ABu(0) =
⇥
B AB

⇤ u(1)
u(0)

�

=) lin. comb. of columns of
⇥
B AB

⇤

...

x(k) =
⇥
B AB · · · Ak�1B

⇤

2

6664

u(k � 1)
u(k � 2)

...
u(0)

3

7775
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Reachability test

Proof cont.
From the theorem of Cayley-Hamilton, if
 (�) = �n +↵1�n�1 + . . .+↵n�1�+↵n is the characteristic polynomial of
A, then  (A) = 0, i.e.

An = �(↵1A
n�1 + ↵2A

n�2 + . . .+ ↵n�1A+ ↵nI )

Therefore, the columns of AnB are a linear combination of the columns of
matrices AiB , i = 0, 1, . . . , n � 1.
This shows that a state is reachable only if it can be reached in at most n
steps and that the set of reachable states is given by (7).
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Unreachable systems

If the system is not reachable, the unreachable part can be isolated.

Theorem
Let nr = rank(Mr ) � 1. There is a suitable and non-unique change of state coordinates

x̂(k) = Trx(k), det(Tr ) 6= 0

such that x+ = Ax + Bu is equivalent to

x̂+ = Âx̂ + B̂u

where

Â =


Âa Âab

0 Âb

�
Âa 2 Rnr⇥nr

B̂ =


B̂a

0

�
B̂a 2 Rnr⇥m

rank
�⇥
B̂a ÂaB̂a · · · Ânr�1

a B̂a

⇤�
= nr (8)

Terminology: (Â, B̂) is called the « reachability form » of (A,B)
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Unreachable systems

The zero blocks in (Â, B̂) reveal the unreachable part. Setting
x̂ =

⇥
x̂Ta x̂Tb

⇤T
, x̂a 2 Rnr , we have

x̂+a = Âax̂a + Âab x̂b + B̂au (9)

x̂+b = Âb x̂b (10)

(9) is the reachable part. Since (Âa, B̂a) is reachable, one can steer x̂a
to an arbitrary position; (c.f. (8)).
(10) is the unreachable part: x̂b is not affected by u, neither directly,
nor through x̂a.
Terminology: the eigenvalues of Âa are termed « reachable ». Those
of Âb, « unreachable ». The same for the corresponding modes.
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How to build Tr?

Build Mr =
⇥
B AB · · · An�1B

⇤
, rank[Mr ] = nr . Let v1, v2, . . . , vnr

be linearly independent columns of Mr .
Build T�1

r =
⇥
v1 · · · vnr z1 · · · zn�nr

⇤
, where zi are arbitrary

vectors guaranteeing that det
�
T�1
r

�
6= 0.

Example (ctd)

x+ =


�9 �10
�10 �9

�
x +


10
10

�
u

Mr =
⇥
B AB

⇤
=


10 �190
10 �190

�
, nr = 1

T�1
r =


10 �10
10 10

�
=) Tr =

1
20


1 1
�1 1

�

Â = TrAT
�1
r =


�19 0
0 1

�
and B̂ = TrB =


1
0

�
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Section 3

Controllability
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Controllability

x+ = Ax + Bu (11)
y = Cx + Du (12)

Definition
A state x̂ is controllable if 9 k̂ > 0 and û(k), k = 0, 1, . . . , k̂ such that

0 = �(k̂ , 0, x̂ , û)

If all states are controllable, then the system is termed «controllable».

Remarks
Controllability = controllability to the origin
Property of (A,B) only
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Controllability
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Controllability and reachability: do they coincide?

Example

x+ =


0 1
0 0

�
x +


1
0

�
u,

x(k) 2 R2

u(k) 2 R

Every state x̂ is controllable using u(·) = û(·) = 0

x(0) = x̂ =


x̂1
x̂2

�
=) x(1) =


x̂2
0

�
=) x(2) =


0
0

�

The state x̃ =
⇥
0 1

⇤T cannot be reached by x(0) = 0.

x(0) =

0
0

�
=) x(1) =


u(0)

0

�
=) x(2) =


u(1)

0

�
=) . . .

Intuition: all eigenvalues of A are zero =) free states go naturally to zero.
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Controllability and reachability: do they coincide?

Lemma
One has:
(i) (A,B) reachable =) (A,B) controllable
(ii) if det(A) 6= 0:

(A,B) controllable =) (A,B) reachable

Remark
LTI systems with det(A) 6= 0 are termed reversible.

Giancarlo Ferrari Trecate Multivariable control EPFL 32 / 36



Controllability and reachability: do they coincide?
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Controllability and reachability: do they coincide?

Proof of (i)
For x(0) = x̂ , setting uk =

⇥
uT (k � 1) · · · uT (0)

⇤T , one has

x(k) = Ak x̂ +
⇥
B AB · · · Ak�1B

⇤
| {z }

Mk
r

uk

By setting x(k) = 0 one has

x̂ is controllable , 9uk such that � Ak x̂ =
⇥
B AB · · · Ak�1B

⇤
uk (13)

Formula (13) is also the same as requiring that �Ak x̂ is reachable from the origin in k
steps. Equivalently,

� Ak x̂ 2 span(Mk
r )| {z }

Xk
r

(14)

If (A,B) is reachable, then X n
r = Rn and (14) is verified for all x̂ 2 Rn if k = n. This

proves point (i).
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Controllability and reachability: do they coincide?

Proof of (ii)
As for point (ii), by assumption, for any x̂ 2 Rn, 9 k ,uk s.t.

�Ak x̂ = Mruk

Therefore, any x̄ that can be written as

x̄ = �Ak x̂ for some x̂

is reachable. But since det(A) 6= 0, the previous equation always has a
solution x̂ for any given x̄ 2 Rn.
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Final remarks

A continuous-time LTI system is always reversible, meaning that
det

�
eAt

�
6= 0 for any A 2 Rn⇥n.

x1

x2

x0

x(T )

If 9 u(t) 2 [0,T ] transferring x0 into
x(T ), then there is u0(t) 2 [0,T ]
transferring x(T ) into x0.

Controllability and reachability coincide for continuous-time LTI
systems
Discrete-time LTI systems are substantially different
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