Lecture 2 Stability, reachability and controllability

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Section 1

Modes and stability of LTI systems

2/36

Modes and stability of LTI systems

$$\begin{cases} x^{+} = Ax + Bu \\ x(0) = x_{0} \end{cases}$$
 (1)
$$(\bar{x}, \bar{u}) \text{ equilibrium}$$

• Recall: stability of the equilibrium state \bar{x} .

Definition (Lyapunov stability)

The equilibrium state \bar{x} is

- stable if $\forall \epsilon > 0 \ \exists \delta > 0 : \|\tilde{x}_0 \bar{x}\| \le \delta \Rightarrow \|\tilde{x}(k) \bar{x}\| < \epsilon, \forall k \ge 0$
- (globally) asymptotically stable (AS) if it is stable and attractive, i.e.,

$$\lim_{k\to\infty} \|\tilde{x}(k) - \bar{x}\| = 0, \ \forall \tilde{x}_0 \in \mathbb{R}^n$$

unstable if not stable

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ 〇

Modes and stability of LTI Systems

Key quantity to analyse: the error

$$e(k) = \tilde{x}(k) - \bar{x}$$

Proposition

Set $e_0 = e(0) = \tilde{x}(0) - \bar{x}$. The error verifies

$$e^+ = Ae$$

$$e(0) = e_0$$
(2)

Modes and stability of LTI systems

Proof
$$\overline{\chi}(\kappa) = \phi(\kappa, o, \frac{x_o}{x_o}, \overline{u})$$

Note that $e(k) = \alpha \tilde{x}(k) + \beta \dot{\tilde{x}}(k)$ with $\alpha = 1$ and $\beta = -1$. From the superposition principle,

$$e(k) = \tilde{x}(k) - \bar{x}(k) = \phi(k, 0, \tilde{x}_0 - \bar{x}, \underline{\bar{u}} - \underline{\bar{u}})$$

Since ϕ is the transition map of (1), the error satisfies (1) for zero input. This is (2).

Proof (alternative)

Since \bar{x} verifies $\bar{x}^+ = \bar{x} = A\bar{x} + B\bar{u}$, compute $e^+ = x^+ - \bar{x}^+$ explicitly and obtain (2).

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Remarks

• Stability/AS of \bar{x} is the same as stability/AS of $\bar{e} = 0$ for (2). Check: stability of $\bar{e} = 0$ means

$$\forall \varepsilon > 0, \ \exists \delta: \ \|e_0 - 0\| < \delta \implies \|e(k) - 0\| < \varepsilon, \ \forall k \ge 0$$

which, by using $e(k) = x(k) - \bar{x}$ coincides with the definition of stability for \bar{x} .

• (2) is independent of \bar{u} and \bar{x} . This proves the following theorem.

Theorem

An equilibrium state of an LTI system is stable/AS/unstable **if and only if** all other equilibria have the same properties.

This is why we can say, for an LTI system, that « the system is stable ».

Stability and free states

For stability analysis, setting u(k) = 0 in $x^+ = Ax + Bu$ is not conservative. \implies stability depends only on free states.

Theorem

An LTI system

- **2** is $AS \iff$ all free states are **bounded and go to zero as** $k \to +\infty$
- is unstable
 ⇔ there is a free state which is unbounded

sh L2 1

Each free state $x(k) = A^k x_0$ is a linear combination of the modes of A.

eigenvalues	modes
$\lambda_i \in \mathbb{R}$	$egin{cases} 0 & ext{for } k < p_i \ k^{p_i} \lambda_i^{k-p_i} & ext{for } k \geq p_i \end{cases}, p_i = 0, 1, \ldots, \eta_i - 1$
$\lambda_i = \rho_i e^{j\theta_i}$	
	$\int 0 \qquad \qquad \text{for } k < p_i$
AND	$\begin{cases} k^{p_i} ho_i^{k-p_i} \sin(\theta_i (k-p_i) + \varphi_i) & \text{for } k \geq p_i \end{cases}$
	$ ho_i=0,1,\ldots,\eta_i-1$
$\lambda_h = \lambda_i^*$	

Recall the macroscopic behaviour of modes

Lemma

- If $|\lambda_i| < 1$, all modes associated to λ_i are bounded and go to zero as $k \to +\infty$.
- If $|\lambda_i| > 1$, all modes associated to λ_i are **unbounded**.
- If $|\lambda_i| = 1$ and $\nu_i = n_i$, all modes associated to λ_i are **bounded**.
- ullet If $|\lambda_i|=1$ and $u_i < n_i$, there's an **unbounded** mode associated to λ_i
- **Terminology**: « eigenvalues of $A \gg =$ « eigenvalues of the system »
- Combining the previous Lemma and Theorem we have the three Theorems given next

Theorem (test of AS)

An LTI system is AS if and only if all its eigenvalues have modulus < 1.

Theorem (test of instability)

An LTI system is unstable **if and only if** one of the following conditions occurs.

- A system eigenvalue has modulus > 1.
- 2 All system eigenvalues have modulus ≤ 1 and there is an eigenvalue λ_i with modulus = 1, algebraic multiplicity $n_i \geq 2$ and $\dim(V_{\lambda_i}) < n_i$.

Theorem (test of simple stability)

An LTI system is simply stable if and only if all its eigenvalues have modulus ≤ 1 and, for each eigenvalue λ_i with modulus 1 and algebraic multiplicity $n_i \geq 2$, one has

$$dim(V_{\lambda_i}) = n_i$$

- Recall: $\dim(V_{\lambda_i})$ is the geometric multiplicity of λ_i .
- Remark: AS is the most important property in engineering applications
- Terminology: we say that « A is Schur » if all its eigenvalues have modulus < 1.

Exponential Stability

Recall that the equilibrium \bar{x} of $x^+ = Ax$ is **exponentially stable** if there are $\alpha > 0, \rho \in [0, 1)$ such that

$$\|\tilde{x}(k) - \bar{x}\| \le \alpha \rho^k \|\tilde{x}_0 - \bar{x}\|, \quad \forall \tilde{x}_0 \in \mathbb{R}^n$$

Lemma

An LTI systems is AS if and only if it is ES.

Sketch of the Proof

AS \iff all modes of the system go to zero as $k \to \infty$. But if a mode goes to zero, it does so exponentially fast. This implies that $\exists \ \alpha, \rho$ verifying the definition of ES

Examples

Analyse the stability of $x^+ = Ax + Bu$.

For $x \in \mathbb{R}^2$

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \implies \begin{cases} \lambda_1 = 2 \\ \lambda_2 = 0 \end{cases} \implies \text{unstable}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \implies \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 0 \end{cases} \implies \text{stable but not AS}$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = \lambda_2 = 1 \implies \text{alg. multiplictity } n_1 = 2$$

$$V_1 = \begin{cases} v : A \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \end{cases} = \begin{cases} v : v_1 + v_2 = v_1 \\ v_2 = v_2 \end{cases} = \begin{cases} \begin{bmatrix} \alpha \\ 0 \end{bmatrix}, \alpha \in \mathbb{R} \end{cases}$$

$$\implies \dim(V_1) = 1 < n_1, \text{ therefore the system is unstable}$$

Section 2

Reachability and controllability

Key properties of dynamical systems

Reachability

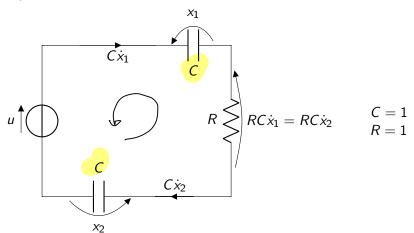
Is it possible to steer the state $x_0 = 0$ to a desired value by acting on the inputs?

Controllability

Is it possible to steer the state $x_0 \in \mathbb{R}^n$ to the origin by acting on the inputs?

Reachability

Example



Reachability

Example

Model

$$\begin{cases} u = x_1 + x_2 + \dot{x}_1 \\ u = x_1 + x_2 + \dot{x}_2 \\ y = x_1 \end{cases}$$

Discretization

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x(k+1) - x(k)}{T}, \quad T = 0.1$$

$$\implies \begin{cases} x_1^+ = -9x_1 - 10x_2 + 10u \\ x_2^+ = -10x_1 - 9x_2 + 10u \\ y = x_1 \end{cases}$$

Can we modify x_1 independently of x_2 ? It seems not: in the CT model the currents in the upper and lower branches are identical.

Change of coordinates to highlight this phenomenon

$$\hat{x} = Tx, \quad T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \implies \begin{cases} \hat{x}_1 = x_1 - x_2 \\ \hat{x}_2 = x_1 + x_2 \end{cases}$$

$$\hat{x}^+ = TAT^{-1}\hat{x} + TBu, \quad T^{-1} = \begin{bmatrix} +0.5 & 0.5 \\ -0.5 & 0.5 \end{bmatrix}$$

By direct calculation:

$$\hat{x}_1^+ = \hat{x}_1$$
 $\hat{x}_1' (0) = \hat{x}_1' (1) = \dots$

$$\hat{x}_2^+ = -19\hat{x}_2 + 20u$$

The difference of the voltages is constant and it cannot be affected by the input. \implies states $\tilde{x} \in \mathbb{R}^2$ with $\tilde{x}_1 - \tilde{x}_2 \neq x_1(0) - x_2(0)$ cannot be reached.

Reachability: definitions

$$x^+ = Ax + Bu \tag{3}$$

$$y = Cx + Du (4)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$

Definition

A state \tilde{x} is reachable if $\exists \tilde{k} > 0$ and $\tilde{u}(k), k = 0, 1, ..., \tilde{k}$ such that

$$x(\tilde{k}) = \phi(\tilde{k}, 0, 0, \tilde{u}) = \tilde{x}$$
 (5)

If all states are reachable, then the system is termed « reachable ».

Reachability: definitions

Remarks

- Reachability = reachability from the origin as x(0) = 0 in (5)
- Reachability = property of the pair (A, B) only
- Problem: Difficult to check if a system is reachable using the definition (infinitely many \tilde{x} should be tested)

Definition

The reachability matrix is defined as

$$M_r = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} \in \mathbb{R}^{n \times mn}$$
 (6)

Remark: powers of A from 0 to n-1 only.

Theorem

① $\tilde{x} \in \mathbb{R}^n$ is reachable only if it belongs to

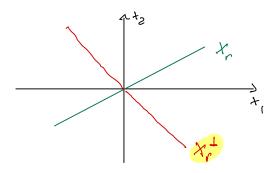
$$X_r = span(M_r) \tag{7}$$

where $span(M_r)$ is the subspace spanned by the columns of M_r .

- ② If \tilde{x} is reachable, it can be reached in $\tilde{k} \leq n$ steps.
- **3** The system is reachable if and only if $rank(M_r) = n$

Remarks

- For LTI systems, reachability is a finitely determined property.
- The orthogonal subspace X_r^{\perp} is termed the « unreachable subspace ».
- The point 3 in the above theorem is a maximal rank condition



Proof Setting x(0) = 0 one has $x \stackrel{!}{\sim} A \times + B \subset A \times + B$ $x(2) = Bu(1) + ABu(0) = \begin{bmatrix} B & AB \end{bmatrix} \begin{bmatrix} u(1) \\ u(0) \end{bmatrix}$ \implies lin. comb. of columns of $\begin{bmatrix} B & AB \end{bmatrix}$

$$x(k) = \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} \begin{bmatrix} u(k-1) \\ u(k-2) \\ \vdots \\ u(0) \end{bmatrix}$$

Proof cont.

From the theorem of Cayley-Hamilton, if $\psi(\lambda) = \lambda^n + \alpha_1 \lambda^{n-1} + \ldots + \alpha_{n-1} \lambda + \alpha_n$ is the characteristic polynomial of A, then $\psi(A) = 0$, *i.e.*

$$A^{n} = -(\alpha_1 A^{n-1} + \alpha_2 A^{n-2} + \ldots + \alpha_{n-1} A + \alpha_n I)$$

Therefore, the columns of A^nB are a linear combination of the columns of matrices A^iB , $i=0,1,\ldots,n-1$.

This shows that a state is reachable only if it can be reached in at most n steps and that the set of reachable states is given by (7).

zh LZ

Unreachable systems

If the system is not reachable, the unreachable part can be isolated.

Theorem

Let $n_r = rank(M_r) \ge 1$. There is a suitable and non-unique change of state coordinates

$$\hat{x}(k) = T_r x(k), \quad \det(T_r) \neq 0$$

such that
$$x^+=Ax+Bu$$
 is equivalent to
$$\hat{x}^+=\hat{A}\hat{x}+\hat{B}u$$

where

$$\hat{A} = \begin{bmatrix} \hat{A}_{a} & \hat{A}_{ab} \\ 0 & \hat{A}_{b} \end{bmatrix} \quad \hat{x}_{a} \begin{bmatrix} \hat{x}_{a} \\ \hat{x}_{b} \end{bmatrix} \qquad \hat{A}_{a} \in \mathbb{R}^{n_{r} \times n_{r}}$$

$$\hat{B} = \begin{bmatrix} \hat{B}_{a} \\ 0 \end{bmatrix} \qquad \hat{B}_{a} \in \mathbb{R}^{n_{r} \times m}$$

$$rank([\hat{B}_{a} \quad \hat{A}_{a}\hat{B}_{a} \quad \cdots \quad \hat{A}_{a}^{n_{r}-1}\hat{B}_{a}]) = n_{r}$$

Terminology: (\hat{A}, \hat{B}) is called the « reachability form » of (A, B)

(8)

Unreachable systems

The zero blocks in (\hat{A}, \hat{B}) reveal the **unreachable** part. Setting $\hat{x} = \begin{bmatrix} \hat{x}_a^T & \hat{x}_b^T \end{bmatrix}^T$, $\hat{x}_a \in \mathbb{R}^{n_r}$, we have

$$\hat{\mathbf{x}}_{\mathsf{a}}^{+} = \hat{A}_{\mathsf{a}}\hat{\mathbf{x}}_{\mathsf{a}} + \hat{A}_{\mathsf{a}\mathsf{b}}\hat{\mathbf{x}}_{\mathsf{b}} + \hat{B}_{\mathsf{a}}\mathbf{u} \tag{9}$$

$$\hat{\mathbf{x}}_b^+ = \hat{A}_b \hat{\mathbf{x}}_b \tag{10}$$

- (9) is the reachable part. Since (\hat{A}_a, \hat{B}_a) is reachable, one can steer \hat{x}_a to an arbitrary position; (c.f. (8)).
- (10) is the unreachable part: \hat{x}_b is not affected by u, neither directly, nor through \hat{x}_a .
- Terminology: the eigenvalues of \hat{A}_a are termed « reachable ». Those of \hat{A}_b , « unreachable ». The same for the corresponding modes.

How to build T_r ?

- Build $M_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$, rank $[M_r] = n_r$. Let v_1, v_2, \dots, v_{n_r} be linearly independent columns of M_r .
- Build $T_r^{-1} = \begin{bmatrix} v_1 & \cdots & v_{n_r} \mid z_1 & \cdots & z_{n-n_r} \end{bmatrix}$, where z_i are arbitrary vectors guaranteeing that $\det(T_r^{-1}) \neq 0$.

Example (ctd) $x^{+} = \begin{bmatrix} -9 & -10 \\ -10 & -9 \end{bmatrix} x + \begin{bmatrix} 10 \\ 10 \end{bmatrix} u$

$$M_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 10 & -190 \\ 10 & -190 \end{bmatrix}, \quad n_r = 1$$

$$T_r^{-1} = \begin{bmatrix} 10 & -10 \\ 10 & 10 \end{bmatrix} \quad \Longrightarrow \quad T_r = \frac{1}{20} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$\hat{A} = T_r A T_r^{-1} = \begin{bmatrix} -19 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\hat{B} = T_r B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Section 3

Controllability

Controllability

$$x^+ = Ax + Bu \tag{11}$$

$$y = Cx + Du (12)$$

Definition

A state \hat{x} is controllable if $\exists \hat{k} > 0$ and $\hat{u}(k)$, $k = 0, 1, ..., \hat{k}$ such that

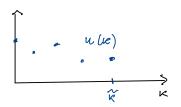
$$0 = \phi(\hat{k}, 0, \hat{x}, \hat{u})$$

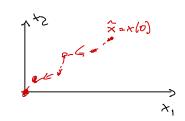
If all states are controllable, then the system is termed «controllable».

Remarks

- Controllability = controllability to the origin
- Property of (A, B) only

Controllability





Example of a system which is controllable but not veschable

$$x^+ = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \quad \begin{array}{l} x(k) \in \mathbb{R}^2 \\ u(k) \in \mathbb{R} \end{array}$$

• Every state \hat{x} is controllable using $u(\cdot) = \hat{u}(\cdot) = 0$

$$x(0) = \hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix} \implies x(1) = \begin{bmatrix} \hat{x}_2 \\ 0 \end{bmatrix} \implies x(2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• The state $\tilde{x} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ cannot be reached by x(0) = 0.

$$x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x(1) = \begin{bmatrix} u(0) \\ 0 \end{bmatrix} \implies x(2) = \begin{bmatrix} u(1) \\ 0 \end{bmatrix} \implies \dots$$

ullet Intuition: all eigenvalues of A are zero \Longrightarrow free states go naturally to zero.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Lemma

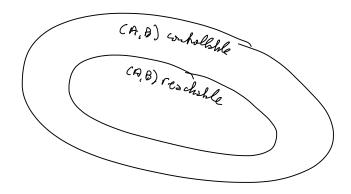
One has:

- (A, B) reachable $\implies (A, B)$ controllable
- ① if $det(A) \neq 0$:

(A, B) controllable $\implies (A, B)$ reachable

Remark

LTI systems with $det(A) \neq 0$ are termed reversible.



For $x(0) = \hat{x}$, setting $u^k = \begin{bmatrix} u^T(k-1) & \cdots & u^T(0) \end{bmatrix}^T$, one has

$$x(k) = A^{k}\hat{x} + \underbrace{\begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix}}_{M_{r}^{k}} \boldsymbol{u}^{k}$$

By setting x(k) = 0 one has

$$\hat{x}$$
 is controllable $\Leftrightarrow \exists u^k$ such that $-A^k \hat{x} = \begin{bmatrix} B & AB & \cdots & A^{k-1}B \end{bmatrix} u^k$ (13)

Formula (13) is also the same as requiring that $-A^k \hat{x}$ is reachable from the origin in k steps. Equivalently,

$$-A^{k}\hat{x} \in \underbrace{\operatorname{span}(M_{r}^{k})}_{X_{r}^{k}} \tag{14}$$

If (A, B) is reachable, then $X_r^n = \mathbb{R}^n$ and (14) is verified for all $\hat{x} \in \mathbb{R}^n$ if k = n. This proves point (i).

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

Proof of (ii) If A is invertible, then (AB) whollshe => (AB) vez holls

As for point (ii), by assumption, for any $\hat{x} \in \mathbb{R}^n, \ \exists \ k, \boldsymbol{u}^k$ s.t.

$$-A^k\hat{x}=M_r\boldsymbol{u}^k$$

Therefore, any \bar{x} that can be written as

$$\bar{x} = -A^k \hat{x}$$
 for some \hat{x}

is reachable. But since $\det(A) \neq 0$, the previous equation always has a solution \hat{x} for any given $\bar{x} \in \mathbb{R}^n$.

Final remarks

A continuous-time LTI system is always reversible, meaning that $det(e^{At}) \neq 0$ for any $A \in \mathbb{R}^{n \times n}$.

$$x_2$$
 x_0
 x_1

If $\exists u(t) \in [0, T]$ transferring x_0 into x(T), then there is $u'(t) \in [0, T]$ transferring x(T) into x_0 .

- Controllability and reachability coincide for continuous-time LTI systems
- Discrete-time LTI systems are substantially different