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Summary - previous lecture
Linear Gaussian setting
Xk+1 = Axx + Bug + wy Wi ~ N(O, W) W >0

vk = Cxp + vk vk ~N(0, V) V>0
Xo ~ N()?()?ZO)

Standing statistical assumptions: xg, w;, v; independent Vi, j

KF equations

5 2 -1 5
Rer1jk = ARt + Buk + ALk 1 CT [CEhu1CT + V] (yk — CRap—1)
Ly
1
Tipik = W+ AL 1 AT — A1 CT [Coyuo1CT + V] CoyenAT
Yo1=20

v
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Steady-state Kalman predictor

Problems
© Is Xy 1k converging to a matrix Y as k — +o00?
— If yes, L, converges to a matrix L as well

o Is X positive definite?
— If yes the error becomes, asymptotically, a stationary process

@ Is A— LC Schur?

All answers provided by L@ control through duality
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Steady-state Kalman predictor

Theorem "Q" w LRE

Let By such that W = BqBJ—. If

@ (A, By) is reachable

@ (A, Q) is observable
then

@ the optimal steady-state predictor. is

Rer1lk = ARkjk—1 + Bug + L[yx — CRyu1] =
(A — I:C) )?k\k—l + Buy + Z_yk

where s e T [ e T -1
[=ASCT[cECT + V]| b i
and X is the unique positive definite solution of the ARE
2 _ _ - -1
L= ATAT+ W - ATCT[CECT + V] CEAT
@ The predictor is AS, that is p(A— LC) < 1
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Remarks

@ From LQ control
Observability of (A, C) guarantees uniqueness of the solution ¥ > 0 to
the ARE
Reachability of (A, B,) guarantees that & >0
o The steady-state predictor (often termed the KF).is optimal
(minimizes the error variance) only in the asymptotic regime

Giancarlo Ferrari Trecate Multivariable control EPFL 5/24



EXa m ple 1 KF equations

o o =i o
Ris1lk = ARk + Buk + AZi—1 CT [CZipe1CT + V] (vk — CRegi—r)
et e VAL
Lk
-1
Thrak = W+ A1 AT — AT 1 CT [CEpuer €T + V] CEyur AT
Zo-1=20

xT = Ax+w

y=v +0 x

Riv1/k = ARk|ke1
Ro|-1 = Xo

C=0=1L,=0=

@ y is just noise
@ No information in y about x = the best option is to follow. the free
evolution of the system from X

4h L1 _\L,.
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Example 2

Problem: estimate X € R from noisy measurements c%oded ontie
KF setting: define a fake dynamics

Xk+1 = Xk —-A=1 B=0 C=1
Yk = Xk + Vi
x1 ~ N(x1,1) (initial time k = 1 instead of k = 0)

Problem data: X3 =1, W =0, V=1 x1 =1
Use a time-varying Kalman predictor

-1
1k = AT AT WA, CT [C2k|k_1CT + V] CE AT

22

Kk—1 Y k-1
=YL hi1lk = Tklk—1 — = ()
k-1 Tl -1 tl
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Example 2 - ctd. KF uatons

. N 7= N
Ktk = At + Bu + A%k 1 CT [CTiqea €T + V] (e — Ciget)
e e
i
=
Thsak = W+ ATgu1A” = AZi-1C7 [CEhp1 €T + V]

CEiuaAT
To1 =20

Ly = AT i1 CT [czk|k_1CT n v] B

( %)
2 hk—1 S TS B
=Sly=c——— Q1T T o Sz
T T+l / U R
I VR S
. I By T _)—_Zf
o Setting X490 = 1, from (%), one has Xy = . Then = £
1
L, = ——
Tkt
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g - c?r. L 2R, w8 -X, x4
l T = = =

Example 2 - ctd.

Nt s

A -
-&x X, t % LS"EI&
2t - V2 2 z =
° 2 i

la~_L/ g

Kalman Predictor : z 3
N N . e T X +3% 42 —% -9
Rictalk = Rfk—1 + Lt = K1 + ¢ J: T L 6’2 (B
K=Yk — CRigker = X = %, T 22X 4244282 _
-
Setting X1/ = X1 one has - =
g X1jo 1 i = X eu sl
@ _ Xttt 4 Ykt 2
Xk|k—1 = K

@ average of all data (including X1)
— Best option for estimating a constant from measurements with the same noise
variance.

@ When new measurements are available, the estimate improves
< it makes sense that Lx — 0

@ Since W = B;B] = B, = 0, the pair (A, By) is not reachable
— the steady-state predictor is not guaranteed to be AS.
< indeed itiis.not-because L = 0 and, hence

Xk+1lk = Xk|k—1

which implies ex+1 = ex

V.
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Example 3: comparison of Luenberger and Kalman

estimators
Noiseless system

Xk+1 = aXk, Xk € R (1)
Yk = Xk (2)
Xo =X

Luenberger observer
K1 = afi + L(yk — Xx)

i, error € — Xj — )?k
ex+1 = (a— L)ex

@ Dead beat estimator for a = L (best choice in the deterministic
setting)

Consider now noisy measurements, replacing (2) with
Yk = Xic + Vi vk ~ WGN(0,1)
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Example 3 - ctd.

Error
€k+1 = (a — L)ek ) ka
E . ine El%] — 3
rror variance (assuming E[%] = X) e (
/‘7
Assume |a — L| < 1. Which L minimises the steady-state variance E?
E verifies

Var[exs1] = (a — L)?Var[e] + L2

L2

(a2 2 _
E=(a—L’BE+1>5E T

The optimal gain is L= "2;1 (check at home)

The dead beat estimator is no longer optimal!
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KF equations

Exa mple 3 - Ctd . Suratk = Aujkor + Buk + ATku1 €T [CThma €T + V] ™ (vk — Cughn)
¥

Sppafk = W+ ATy AT — A1 CT [CEyuea €T + V] T CEypms AT
Tol-1 = %o

We show that L is the gain of the steady-state KF

For A=a, B=0, C =1, Var[wk] =0, Var[vk] = 1, under the usual
statistical assumptions we have the KF formulae LE €0
Gt *1)*

L = (a%pk—1) (Zkjk—1 + 1)_1/‘
> = a°% -L +1
k+1|k\a a2 p|k—1 k(/\]\lf 1 )

2y =t Zutenr 'Eldk-{ ’ Z..; o ) — L CE‘“’"‘-”)
a —
Then Xyyqpx = ﬁ and for k — +0oc one has

k-1 = Y=a’-1 (shown in the excercise session)

Zr |
Therefore L, —
L -Eé :-"v.{\,h::l r) :9.2—‘ J
> = - =
E+s o et e
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Generalization: correlated noise

xT = Ax + Bu+w (1)
y=Cx+v (2)

Usual assumptions, except that, for & = [ V“// } ¢ B] o
E[¢ gT]:{Z‘/‘i 5] Z40

Trick: add and substract ZV =1y, in (1)

x+:Ax+Bu@+ZV_1y—ZV_1Cx
=(A-2ZV1C)x+Bu+2zv!
( ) x+ But 2V iy {w)
A u
where@z w—ZV-1ly
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Generalization: correlated noise

@ Key property: wy and v, are uncorrelated

check E[ we v/ | = E[w v |-2ZV'E[w v ] = 0
—_——— —_————
V4 v

o ot Elw]=o

o Var[w]=W-2V1ZT >0 EL (wa2v'v) Cw—-?rv':rY] g

The system = E[:ww"] % E[2v"'vw7V~(ET] +
xt=Axt+ia+w —2E[ WV = (3)
y=Cx+v s Woreviwr 2T (4

- > E‘ g ~nT -
verifies the assumption that w and v are uncorrelated \_EK’\U’/Z ve
— design the KF for (3) and (4)

3]

w~f
w4 av'2-2 2v el

Remark w -2y 2T

o

Note that & is known at each k =0,1,...
The idea is to dump a known term into the input to remove correlations Lok
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Parameter tuning in KF
Input data (under the standard assumptions on noise)

Linear Gaussian setting

Var [wy] = W
Xer = Axk + Buy + wi wi ~ N(0, W) weo
e = O + vk v~ N(0, V) vVeo
Var [Vk] = V 0 ~ N(S,Zp)

Standing statistical assumptions: o, w;, v; independent i, j

Var [Xo] = Zo(: ZO\—I)

@ V models the sensor accuracy: usually known

unknown disturbances | Seldom known apriori

@ ‘W accounts for ) i
model mismatch < trial and error

» W =0: bad choice because L, — 0
Motivation: perfect plant knowledge (W = 0) — the optimal solution
is to do open-loop estimation after the initial condition errors have died
out.
< not realistic as some process noise is always present in reality!
o Var [xp] often unknown as well, but less critical than ~ W (reason: If
Y i41jk converges, this initial condition is forgotten)

@ Common choice: V and W diagonal
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Remark
In several applications, w, is not white
@ generalizations of KF to non-white noise exist

@ practical trick: make w "bigger" for introducing robustness against
non-whiteness of w

does not always work but it is reasonable

o Steady-state KF

output noise vs. process noise — set V "bigger” than W —" slower”
convergence (the filter does not trust the measured outputs)
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Performance of KF

Accuracy is indicated by the error xx — X, but xx is unknown.
Idea

Consider the innovation sequence vk = yx — CXjx—1

Recall

If the system and noise models are perfect (i.e. (A, B, C), o, X, V and
W are perfectly known), then

o vy ~ N(0,Sk), where S = V + CZk|k_1CT. 'Z{“’L’"‘PWZ
(o ykl;and vk, are independent if ky # ko. j\ sbhshiol tert
ere is a mismatch between the real and the assumed model if:
vk has not zero mean or

® vy, and vy,, ki # ko, are correlated or
e Var[vy] is not Sk.
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Innovation-based tests

Simplifying assumption

yk is scalar (hence vy is scalar as well)

Tests

@ Test 1: Consider the confidence interval of a Gaussian distribution,
vk € [—2/Sk,21/Sk] with probability 95%.
o Test 2: Consider that 7y := Sk_%yk, called the normalized innovation
sequence, is WGN(0,1).
The autocorrelation function is 7(7) = E[UkPk+], for any k.
Consider the normalized approximation of 7 given by v(7) =

~

—~
3

—

)
—~

o
~

where 7(7) = L SOV Dkilyr. One has that, for 7 > 0,

V/N~(7) converges in distribution to A/(0,1), as N — +oc.
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Example!

Xy~

e

Applying KF to the following system
 doschhon ofF "l_(;’%”E'D: Vbéq,%

Xkp1 = [ (1) AlT } Xk + wi, AT =1, (1)
yk:[l O]Xk-l—vk, (2)
where AT3/3 AT?)2
W, = 0.01 [ AT AT ] Vi =0.1.

1|an Reid. Estimation Il
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Example (ctd.)

@ Performance of the time-varying KF under perfect system model

2 Vs

Y

K

N b’l'a)
-
|

‘A A
o i

A A
BV B

Figure 1 Innovation and innovation std bounds

Remark

o Figure 1 : vy is consistent with S.

Figure 2 Plot of ()

o Figure 2 : grisswhite. Notice that v(7) = 7(7)/7(0) is the
approximate normalized autocorrelation.
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EX@WPA@ [(@EQSS) noise variance Wy is underestimated by a factor 10
25,

: é,q,br BAD |

Figure 3 Estimated state Figure 4 Innovation and innovation std bounds Figure 5 Plot of ~(7)

s L

Figure 6 True state

Remark

@ The estimation of the true state (which is known only because we are
simulating the system) is poor

@ v is not consistent with Sy and Dk is not white.
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Example (ctd.)

@ If the measurment noise 'V is underestimated by a factor 10

LooDh

Figure 7 Estimated state Figure 8 Innovation and innovation std bounds Figure 9 Plot of 7(7)

Remark
@ vy exceeds the 20 bounds, but the autocorrelation sequence does not
show obvious time correlation.
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Example (ctd.)

o Modelling error: suppose the motion follows a constant-acceleration
model, however the KF utilizes the previous constant-velocity model.

The true process is described by poschon
R
1 AT AT?)2 aceeloohs.
Xkr1 = | O 1 AT Xk + Wk, (1)
0 0 1
L seeliatne ve wi“ﬂgw/feé
while the process noise is described by Wil

AT®/20 AT*/8 AT3/6
W, =10"%| AT*/8 AT3/3 AT?)2
AT3/6 AT?/2 AT
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Example (ctd.)

@ The KF performance when the model is wrong

- BA .
w | BRD h BAD
350 LY
. VWV
e o
- . ) u
) \
4 ‘)VZ
150
100 B
00| ~
—
Fa— 6w w e e % W m % W TR w % W
Figure 10 Estimated state Figure 11 Innovation and innovation std bounds Figure 12 Plot of 7(7)

e E[n] #0

. . .. of r
@ The autocorrelation is non-negligible even for large T

e.8 v Yt vofesd
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