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Recap from the last lecture

Proposition (Linear combination of Gaussian RVs)

If x = [x1,..., %] " ~ N(jux, Cx) and
y=Ax+b, beR" AcR™"

(a) y € R™ is Gaussian with
Ely] = Aux + b, Varly] = AGAT

(b) z= [ ; ] is Gaussian with

Aty + b AC, ACAT

=[] W -G ]
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Recap from the last lecture

Proposition (Conditioning for Gaussian RVs)

Let X e R",Y € R™ and

(e &)

Then, X|Y is Gaussian with

(a)

E[X|Y] = pux + Cxy Cyy(y — py) “a posteriori’ mean
Var[X|Y] = Cxx — CXyC;¢CYX “a posteriori” variance
(b)

(a): Shift in the mean

(b): “reduction” of the original uncertainty Cxx
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State estimation: linear Gaussian setting

X1 = Axp + wi
Ve = Cxie + vk
Xo ~ N()?o, Zo)

Assumptions

(a) xo, w; ,vj independent Vi, j
(b) wx ~ WGN(0, W) W >0
(c) ve ~ WGN(O,V) V>0
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State estimation: conditioning on the measured outputs

Yo
Let Yy =
Yk
Xk Xk+1 .
° [ Y, ] and [ Y, ] are Gaussian

o Let xy, = xk| Yk and define

Rijk = Exx| Y]
Tpk = Var[xk| Yi]

Similar notation for x; 1k = xkt1| Yk

Ky|k: filtered state

Rk+41|k: state prediction

Problem: How to compute them along with Zk|k, Zk+1|k?
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Naive method

ORI
Y Ye | Ty Zv,vi

Rk = X+ T Zyy, (Ve — Ya)

Therefore

(similar formula for % 1x)

Problem

The dimension of Yy and Yy, y, grows with time!
— impractical

Kalman Filtering (KF)

A recursive way for computing all desired quantities
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Kalman filter and predictor
At k=0, xg ~ N()_((),Zo). Rename Xy — )?0|,1, 20— ZO|71

[ ;O } is a linear transformation of a Gaussian random vector because
0

x| |1 0 X0

Yo o C / Vo

% T
X0 Xo|-1 Yo-1 Yo-1C D
~N 0 7 N
[yo ] ([ CXoj-1 ] [ CXo-1 Czo|_1CT+ %4 ()

1) Filtering step (measurement update)

then

Xo|yo is Gaussian with mean and variance
Kojo = Xo|-1 + Xo|-1 CT(CZO|—1CT + V) o — CXol-1)
Tojo = Toj-1 — Loj-1C7 (Co-1CT + V)1 Cg4

Remark: the estimate Xg|o is based on the new measurement yo
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2)Prediction step (time update)

- x1|yo is given by A(xo|yo) + wo
- y1lyo is given by C(x1|yo) + w1 (W)
< x1]yo ~ N(A%, AZgjpA” + W)

\A,_/ N————
X1]0 10

Then, using (M)
yilyo ~ N(C%yp, CZ1/0CT + V)

Moreover, x1|yp and yi|yo are linear combinations of Gaussian vectors —
they are jointly Gaussian and, using the formulae for linear combinations of
Gaussian vectors

x1|yo X1/0 210 Y10CT ])
~ N ~ ; %k %k
|: yl’yo :| <|: CX1|0 :| |: CZI\O CZHOCT +V ( )
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Key observation enabling iterations

(k ) is identical to () up to the replacements
Xo|—1 — X1|o

2o—1— Z1)0

Idea: iterate the procedure for k =1,2,...
Kalman predictor and filter
Init Kp—1 € R", X _; € R™" (statistics of xp)
Filtering step:
o def . _ .
Rk = Rujk=1 + Zhjk—1C T (CThk—1CT + V) (v — CRujk—1)

def _
Tulk = Tkt — Zajk—1C T (Cpp—1CT + V) C et

Prediction step:
Rit1jk = ARkjk

i1k = AL AT + W

Remarks
@ Sometimes, in the literature, “Kalman filter” denotes the predictor...
@ Does Xy, coincide with the quantity x,jx = E[xx|Y%] defined before?
v
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Lemma (conditioning on the whole past)

Xk| Yi ~ N(Ri k> Zijk)

Xk+1| Yie ~ N(Rei1)ko Zierajx) (m)
Remarks
@ Lemma = Optimality of the predictor and the filter in a statistical
sense

@ Xk and X )k can be computed at all k > 0 before having any
measurement
— Update = Difference Riccati Equation (DRE) for filtering

@ Observer form: from the algorithm we obtain
Kper1k = ARho1 + ALk 1 CT(Cpp1 CT + V) M —  CRepper )
N——

Ly estimated output

Ly is the (time-varying) Kalman gain

v
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Generalisation to systems with inputs

System:
Xk+1 = Axkx + Buy + wy
Yk = Cxk + vk
xo ~ N(Xo, Zo)

@ Add the effect of the input in the prediction step, which becomes
Riy1/k = ARk + Buk

< Buy just changes the mean of x, 1k, not the variance
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KF as a minimum variance estimator

System:

Xk+1 = Axx + Bug + wy
Vi = O + vy
xo ~ N(Xo, Zo)

Assume a linear predictor dynamics

Ri+1]k

A

X0

= ARyk—1 + Bug + Lf [k — CRik—1l

How to tune L7

:XO

. def N
Dynamics of the error ey 1 = X — Rklk—1:

€k+1|k
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= (A — LkC)ek‘k_l + Wi — Livi
—— —_——
Ac k new, compared to Luenberger

= Ackekk—1 + Bek€k
Berw=[1 L] &= [ Wk]

Vi
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® ek—1 is a Gaussian random vector (linear combination of
-1 = Xo — Xo and v, ..., Vk_1, Wo, . . ., Wk—1 which are jointly
Gaussian)

Statistics of eyx—1

® Efexiijx] = AckElexx—1]
Setting Ko = Xo|_1 = Xo, one has E[eg_1] = 0 and Efexx—1] =0, Vk >0

@ Definitions
Variance of the error: E [Hek‘k_lﬂz} =E [eak_le,qk_l} eER

3 o T nxn
Covariance of the error: E [ek\k—lek|k—1} eR

. . T o s "
@ Abuse of terminology: so far E {ek“(_lek‘k_l} was termed ‘“variance

Problem (variance minimization)

Compute Ly so as to solve

min [ e ]

v
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Theorem

The matrix L, minimizing E [Heklk—luﬂ is
Ly = ATy 1 CT[CTpp 1 CT + V]
where 31 = E [ek|k_1ekT|k71] is given by the DRE

Shpipk = ALt AT + W — AT 1 CT[CEppo1 €T + V]I CEpr AT

with initial condition
Yo-1 =20 (m)

Proof by direct minimization (omitted)
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Remarks
@ Same formulae for ¥ ,_; and Ly obtained before

@ One can show that the filtered error ey, = xx — Xy« has zero mean
and variance Var(ey|] = X« computed as in KF

@ Riccati equation for the FH-LQ regulator:
Pi=Q+ AP 1A= AP 1B[BT P 1B+ R 71BT P 1A
... for the Kalman predictor:

i1k = WAL o1 AT — AL 1 CT[CEpm1 CT + V] CT g AT
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They are related through the substitutions:

FH-LQ Kalman Predictor
—k (reversed!)
AT
CT
w
4
Py Y k-1

TOW>™ x

Called “duality relations”!

Giancarlo Ferrari Trecate Multivariable Control EPFL



Generalization
Straightforward extension to:
@ linear time-varying systems
< Substitute A — Ax, C — Cx, B — By in the formulae for the
Kalman predictor and filter
@ noise with time-varying variance
wy ~ N(0, W), Wi >0
Vi ~ N(07 Vk)r Vk >0
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Innovation sequence

Consider the KF update

-1
Kk = X1 + Zapk-1C T (Czk|k—1 cT+ V) (vk — CXyjk—1)

Definition
The innovation is vx = yx — CRyjk—1

Remarks

v quantifies the additional “information content” brought by the

measurement yx, compared to the prediction CX,_; which is based on
measurements Vi 1, Yk—2, - - -
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Statistics of the innovation

@ vy are jointly Gaussian random vectors

@ Zero mean, conditioned to the past measurements

E[vk1] Ye] = Eyk+1 — CRigrpk [ Ykl = E [ykra|Yi] = CRqrje =0
———

deterministic

@ Variance given by

Skr1=E [Vk+1 V;Z—H} =E [(Yk—f—l — CRis1pk) (Vkr1 — CRus1ik) T}

Giancarlo Ferrari Trecate Multivariable Control EPFL



o v, is NOT correlated with v}, j # k (proof omitted), i.e. vy is white
Gaussian noise

» This can be used for checking if the KF works well and for tuining KF
parameters (see later)
» Note that y, and y;, k # j, are correlated

@ vy is also uncorrelated with past measurements y;, j < k (proof
omitted)

» expected, if v, captures all and only the additional information brought
by vk
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Example 1: estimation of position and velocity of a ground
vehicle!

Motivation: develop a navigation and tracking system for vehicle

Problem: How can the vehicle know its position and velocity?

@ Solution 1: use encoders attached to the vehicle wheels
— imprecise — the estimated and real positions can be far away from
the real ones

@ Solution 2: use GPS measurements
— can give much better results, but measurements are noisy and
velocities are not measured

Idea: Use GPS with a KF!

1
mathworks.com/help/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html
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mathworks.com/help/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html

Example 1 (cont.)

The vehicle moves in 2-D space: position and velocity in the north and
east directions.

@ For simulation: non-linear

non-holonomic model where the

! input is steering angle of the vehicle

T (uyp)

A o For the KF: discrete-time linear
model describing the evolution of
the position and velocity over time

East in response to model initial

conditions as well as position

measurements obtained from GPS

T North (ﬂ

(ze(t), za(t))
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Example 1 (cont.)

Variables of interest:

@ X1(k): east position estimate fl(k)

@ %(k): north position estimate R(k) = )AQE/;;
Vi

@ V1(k): east velocity estimate 02 (k)

@ »(k): north velocity estimate

Linear model:
x(k + 1) = Ax(k) + Gw(k)
y(k) = Ox(k) + v(k)
where x is the state vector, y € R? is the vector of measured positions,
w(k) = [ﬁgi” is the process noise and v(k) = [Vl(k)} is the

va(k)
measurement noise
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Example 1 (cont.)

x(k + 1) = Ax(k) + Gw(k)
y(k) = Cx(k) + v(k)

10T, 0 X0
o1 0 T o L ~[too00
A=loo 1 o0 c=11 ¢ C_[0100]
00 0 1 0 1

Considerations:
@ velocites are modelled as a random walk:

vilk +1) = vi(k) + wi(k),  i€{1,2}
@ positions are represented by the following discretization of %x =v:

xi(k +1) — xi(k) _ vilk +1) + vi(k) .
T = 5 , ie{1,2}

o T,=1s
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Example 1 (cont.)

w ~ N(0, Wy) and v ~ N(0, V)

@ variance of the measurement noise: V = diag {50,50}

@ variance of the process noise: it should describe how much the vehicle
velocity can change over one sampling interval — time-varying W

1+ 20~ 0
Wi = GR(K)GT  Q(k) = fsaé(vf(k)) 1 250
1 (#2(00)
where f;¢(z) = min(max(z,25),625) (values obtained
experimentally) and V1, V» are the estimated velocities

— Captures the intuition that typical values of w are smaller when
velocity is large.

— A diagonal Wy represents the naive assumption that the velocity
changes in the north and east directions are uncorrelated

o Initial state: xo ~ N(0,10/)
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Example 1 (cont.)

Simulation scenario: the vehicle makes the following maneuvers:
Q@ At t = 0 the vehicle is at x.(0) = 0, x,(0) = 0 and is stationary
@ Heading east, it accelerates to 25m/s. It decelerates to 5m/s at

t=20s.

At t = 100s, it turns toward north and accelerates to 10m/s.

At t = 180s, it accelerates to 20m/s with southwest direction.

At t = 200s, it decelerates to 5m/s.

At t = 260s, it accelerates to 15m/s.

© 000
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Example 1 (cont.)
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Comments:

@ The Kalman filters gives better position estimates than the raw
measurements

» error reduction: ~25% on the east position and ~30% on the north
position
@ The peaks in the velocity match with the sharp turn and sudden

acceleration of the car, e.g.:

» at t = 20s and t = 200s in the east velocity

» at t = 1800s and t = 200s in the north velocity
— After a few time steps, the filter estimates catch up with the
actual velocity.
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Additional example
(check at home!)




Example 2: Channel estimation in communication systems?

Wireless communications systems — signals from the transmitter may not
reach the receiver directly due to scattering — DELAYS!

reflection

i receiver

transmitter

) direct path
reflection

2N. Kowvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example 2 (cont.)
@ The received signal at time k is a superposition of:
> scaled version of emitted signal at time k

» scaled and shifted versions of emitted signals at Multipath
time k—1,k—2,... propagation
> noise

@ The propagation channel changes over time due to:
» movements of the transmitter/receiver
» changes of the environment

A time-varying Finite Impulse Response (FIR) filter let us model the
multipath channel:
— Consider the sequence {c(k)} as the sent signal and

3
y(k) = xa(k) c(k — d + 1)+ v(k)
d=1

where y(k) is the received signal, x;(k) for i = 1,2,3,... are the time
varying FIR coefficients and v(k) represents additive noise
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Example 2 (cont.)
FIR coefficients can be estimated by transmitting and receiving a (known)
test signal through the channel.

We can use KF to estimate the FIR coefficients of the channell

@ One possible model: “random walk”
xi(k +1) = xi(k) + wi(k) w(k) ~ N(0, W)
@ Other option:

— Take into account the correlation («;) between two sequent values
xi(k +1) = aixi(k) + wi(k)  w(k) ~ N(O, W)

» Model the channel as a time-varying FIR filter of order D =3

x1(k)
> Let x(k) = [xz(k)] be the channel (FIR) coefficients at time step k
x3(k)
» Consider ay, ap and a3 as given constants (they depend on the
sampling time and the frequency of the received signal)

wi (k)
> Consider iid noise w(k) = [wl(k)] ~ N(0, W)
ws(k)
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Example 2 (cont.)

State-space model of the FIR coefficients:

(5] 0 0
x(tk+1)=10 a2 0] x(k)+ w(k) (%)
0 0 a3

Measurements: obtained as the filtered output for a test signal {c(k)}
propagated through the channel (modelled as a FIR)

3
y(k) = xa(k) c(k — d + 1)+ v(k)
d=1
where v(k) ~ N(0, V)
In matrix notation,
y(k) = [c(k) c(k=1) c(k=2)]x(k)+ v(k) ()

Remark: (x) and (xx) provide a LTV system
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Example 2 (cont.)

Simulations:
Set

@ a1 =0.85, ap =1 and a3 = —0.95
e W = diag {0.1,0.1,0.1}
e V=01

and generate a test signal sequence c(k) (for example a random but
known signal).
Also consider:

e initial channel coefficients x(0) ~ N(0, /)

o KF initial variance 2q_; =/
— After performing N = 500 time steps of Kalman filtering, the actual
and estimated channel coefficients are shown in the plots.
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Example 2 (cont.)

a8 Ch | Estimation in Communication Systems using Kalman Filter
T T T T T T T

06 B

04 |

T
e

02

coefficient 1

08 1 L L 1 L L 1 L L
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Example 2 (cont.)

Channel Estimation in Communication Systems using Kalman Filter
T T T T T T T

2 T T
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A h
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Example 2 (cont.)

; Channel Estimation in Communication Systems using Kalman Filter
T T T

coefficient 3
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Example 2 (cont.)

Remarks:
@ The vertical scale of coefficient 2 is larger that the others

@ The sign of the values of coefficient 3 usually changes since a3 < 0

The Kalman filter is able to estimate the time-varying channel coefficients
with good accuracy.
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