Lecture 11

The time-varying Kalman filter

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Recap from the last lecture

Proposition (Linear combination of Gaussian RVs)

If
$$x = [x_1, \dots, x_n]^T \sim N(\mu_x, C_x)$$
 and $y = Ax + b, \quad b \in \mathbb{R}^m, \ A \in \mathbb{R}^{m \times n}$

(a) $y \in \mathbb{R}^m$ is Gaussian with

$$E[y] = A\mu_x + b, \quad Var[y] = AC_xA^T$$

(b) $z = \begin{bmatrix} x \\ y \end{bmatrix}$ is Gaussian with

$$E[z] = \begin{bmatrix} \mu_x \\ A\mu_x + b \end{bmatrix} \quad Var[z] \qquad = \begin{bmatrix} C_x & C_x A^T \\ AC_x & AC_x A^T \end{bmatrix}$$

Recap from the last lecture

Proposition (Conditioning for Gaussian RVs)

Let
$$X \in \mathbb{R}^n, Y \in \mathbb{R}^m$$
 and

$$\left[\begin{array}{c}X\\Y\end{array}\right] \sim N\left(\left[\begin{array}{c}\mu_{X}\\\mu_{Y}\end{array}\right], \left[\begin{array}{cc}C_{XX} & C_{XY}\\C_{YX} & C_{YY}\end{array}\right]\right)$$

Then, X|Y is Gaussian with

$$E[X|Y] = \overbrace{\mu_X + C_{XY}C_{YY}^{-1}(y - \mu_Y)}^{-1}$$
 "a posteriori" mean
$$Var[X|Y] = \underbrace{C_{XX} - C_{XY}C_{YY}^{-1}C_{YX}}_{(b)}$$
 "a posteriori" variance

- (a): Shift in the mean
- (b): "reduction" of the original uncertainty C_{XX}

State estimation: linear Gaussian setting

$$x_{k+1} = Ax_k + w_k$$

$$y_k = Cx_k + v_k$$

$$x_0 \sim N(\bar{x}_0, \Sigma_0)$$

Assumptions

- (a) x_0 , w_i , v_j independent $\forall i, j$
- (b) $w_k \sim WGN(0, W) \quad W \geq 0$
- (c) $v_k \sim WGN(0, V)$ V > 0

State estimation: conditioning on the measured outputs

Let
$$Y_k = \begin{bmatrix} y_0 \\ \vdots \\ y_k \end{bmatrix}$$

- ullet $\begin{bmatrix} x_k \\ Y_k \end{bmatrix}$ and $\begin{bmatrix} x_{k+1} \\ Y_k \end{bmatrix}$ are Gaussian
- Let $x_{k|k} = x_k | Y_k$ and define

$$\hat{x}_{k|k} = E[x_k|Y_k]$$
$$\Sigma_{k|k} = Var[x_k|Y_k]$$

Similar notation for $x_{k+1|k} = x_{k+1}|Y_k$

 $\hat{x}_{k|k}$: filtered state $\hat{x}_{k+1|k}$: state prediction

Problem: How to compute them along with $\sum_{k|k}, \sum_{k+1|k}$?

Naive method

$$\left[\begin{array}{c} x_k \\ Y_k \end{array}\right] \sim N\left(\left[\begin{array}{c} \bar{x}_k \\ \bar{Y}_k \end{array}\right], \left[\begin{array}{cc} \Sigma_{x_k x_k} & \Sigma_{x_k Y_k} \\ \Sigma_{Y_k x_k} & \Sigma_{Y_k Y_k} \end{array}\right]\right)$$

Therefore

$$\hat{x}_{k|k} = \bar{x}_k + \Sigma_{x_k Y_k} \Sigma_{Y_k Y_k}^{-1} (Y_k - \bar{Y}_k)$$

(similar formula for $\hat{x}_{k+1|k}$)

Problem

The dimension of Y_k and $\Sigma_{Y_kY_k}$ grows with time!

 $\hookrightarrow \mathsf{impractical}$

Kalman Filtering (KF)

A recursive way for computing all desired quantities

Kalman filter and predictor

At
$$k=0$$
, $x_0 \sim \mathcal{N}(\bar{x}_0, \Sigma_0)$. Rename $\bar{x}_0 \to \hat{x}_{0|-1}$, $\Sigma_0 \to \Sigma_{0|-1}$

 $\begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$ is a linear transformation of a Gaussian random vector because

$$\left[\begin{array}{c} x_0 \\ y_0 \end{array}\right] = \left[\begin{array}{cc} I & 0 \\ C & I \end{array}\right] \left[\begin{array}{c} x_0 \\ v_0 \end{array}\right]$$

then

$$\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \sim N \left(\begin{bmatrix} \hat{x}_{0|-1} \\ C\hat{x}_{0|-1} \end{bmatrix}, \begin{bmatrix} \Sigma_{0|-1} & \Sigma_{0|-1}C^T \\ C\Sigma_{0|-1} & C\Sigma_{0|-1}C^T + V \end{bmatrix} \right) \tag{*}$$

1) Filtering step (measurement update)

 $x_0|y_0$ is Gaussian with mean and variance

$$\hat{x}_{0|0} = \hat{x}_{0|-1} + \Sigma_{0|-1} C^T (C \Sigma_{0|-1} C^T + V)^{-1} (y_0 - C \hat{x}_{0|-1})$$

$$\Sigma_{0|0} = \Sigma_{0|-1} - \Sigma_{0|-1} C^T (C \Sigma_{0|-1} C^T + V)^{-1} C \Sigma_{0|-1}$$

Remark: the estimate $\hat{x}_{0|0}$ is based on the new measurement y_0

2)Prediction step (time update)

$$\cdot x_1|y_0$$
 is given by $A(x_0|y_0) + w_0$
 $\cdot y_1|y_0$ is given by $C(x_1|y_0) + v_1$
 $\hookrightarrow x_1|y_0 \sim N(\underbrace{A\hat{x}_{0|0}}_{\hat{x}_{1|0}}, \underbrace{A\Sigma_{0|0}A^T + W}_{\Sigma_{1|0}})$

Then, using (■)

$$y_1|y_0 \sim N(C\hat{x}_{1|0}, C\Sigma_{1|0}C^T + V)$$

Moreover, $x_1|y_0$ and $y_1|y_0$ are linear combinations of Gaussian vectors \rightarrow they are jointly Gaussian and, using the formulae for linear combinations of Gaussian vectors

$$\begin{bmatrix} x_1|y_0 \\ y_1|y_0 \end{bmatrix} \sim N \left(\begin{bmatrix} \hat{x}_{1|0} \\ C\hat{x}_{1|0} \end{bmatrix}, \begin{bmatrix} \Sigma_{1|0} & \Sigma_{1|0}C^T \\ C\Sigma_{1|0} & C\Sigma_{1|0}C^T + V \end{bmatrix} \right) \qquad (**)$$

Key observation enabling iterations

$$(**)$$
 is identical to $(*)$ up to the replacements $\hat{x}_{0|-1} o \hat{x}_{1|0}$

$$\Sigma_{0|-1} \to \Sigma_{1|0}$$

<u>Idea</u>: iterate the procedure for k = 1, 2, ...

Kalman predictor and filter

Init
$$\hat{x}_{0|-1} \in \mathbb{R}^n, \Sigma_{0|-1} \in \mathbb{R}^{n imes n}$$
 (statistics of x_0)

Filtering step:

$$\hat{x}_{k|k} \stackrel{\text{def}}{=} \hat{x}_{k|k-1} + \sum_{k|k-1} C^T (C \sum_{k|k-1} C^T + V)^{-1} (y_k - C \hat{x}_{k|k-1})$$
$$\sum_{k|k} \stackrel{\text{def}}{=} \sum_{k|k-1} - \sum_{k|k-1} C^T (C \sum_{k|k-1} C^T + V)^{-1} C \sum_{k|k-1}$$

Prediction step:

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k}$$
$$\Sigma_{k+1|k} = A\Sigma_{k|k}A^{T} + W$$

Remarks

- Sometimes, in the literature, "Kalman filter" denotes the predictor...
- Does $\hat{x}_{k|k}$ coincide with the quantity $x_{k|k} = E[x_k|Y_k]$ defined before?

Lemma (conditioning on the whole past)

$$\begin{aligned} x_k | Y_k &\sim N(\hat{x}_{k|k}, \Sigma_{k|k}) \\ x_{k+1} | Y_k &\sim N(\hat{x}_{k+1|k}, \Sigma_{k+1|k}) \end{aligned} \tag{\blacksquare}$$

Remarks

- Lemma ⇒ Optimality of the predictor and the filter in a statistical sense
- $\Sigma_{k|k}$ and $\Sigma_{k+1|k}$ can be computed at all $k \geq 0$ before having any measurement
 - \hookrightarrow Update = Difference Riccati Equation (DRE) for filtering
- Observer form: from the algorithm we obtain

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k-1} + \underbrace{A\Sigma_{k|k-1}C^T(C\Sigma_{k|k-1}C^T + V)^{-1}}_{L_k} (y_k - \underbrace{C\hat{x}_{k|k-1}}_{\text{estimated output}})$$

 L_k is the (time-varying) Kalman gain

Generalisation to systems with inputs

System:

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$
$$x_0 \sim N(\bar{x}_0, \Sigma_0)$$

Add the effect of the input in the prediction step, which becomes

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k} + Bu_k$$

 $\hookrightarrow Bu_k$ just changes the mean of $x_{k+1|k}$, not the variance

KF as a minimum variance estimator

System:

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + v_k$$
$$x_0 \sim N(\bar{x}_0, \Sigma_0)$$

Assume a linear predictor dynamics

$$\hat{x}_{k+1|k} = A\hat{x}_{k|k-1} + Bu_k + \underset{\text{How to tune } L_k?}{\overset{\downarrow}{\downarrow}} [y_k - C\hat{x}_{k|k-1}]$$

$$\hat{x}_0 = \bar{x}_0$$

Dynamics of the error $e_{k|k-1} \stackrel{\text{def}}{=} x_k - \hat{x}_{k|k-1}$:

$$e_{k+1|k} = \underbrace{(A - L_k C)}_{A_{c,k}} e_{k|k-1} + \underbrace{w_k - L_k v_k}_{\text{new, compared to Luenberger}}$$

$$= A_{c,k} e_{k|k-1} + B_{c,k} \xi_k$$

$$B_{c,k} = \begin{bmatrix} I & -L_k \end{bmatrix} \quad \xi_k = \begin{bmatrix} w_k \\ v_k \end{bmatrix}$$

• $e_{k|k-1}$ is a Gaussian random vector (linear combination of $e_{0|-1}=x_0-\bar{x}_0$ and $v_0,\ldots,v_{k-1},w_0,\ldots,w_{k-1}$ which are jointly Gaussian)

Statistics of $e_{k|k-1}$

- $E[e_{k+1|k}] = A_{c,k} E[e_{k|k-1}]$ Setting $\hat{x}_0 = \hat{x}_{0|-1} = \bar{x}_0$, one has $E[e_{0|-1}] = 0$ and $E[e_{k|k-1}] = 0$, $\forall k \ge 0$
- Definitions
 - Variance of the error: $E\left[\left\|e_{k|k-1}
 ight\|^2
 ight]=E\left[e_{k|k-1}^Te_{k|k-1}
 ight]\in\mathbb{R}$
 - Covariance of the error: $E\left[e_{k|k-1}e_{k|k-1}^{T}\right] \in \mathbb{R}^{n \times n}$
- ullet Abuse of terminology: so far $E\left[e_{k|k-1}e_{k|k-1}^T
 ight]$ was termed "variance"

Problem (variance minimization)

Compute L_k so as to solve

$$\min_{l} E \left[\left\| e_{k|k-1} \right\|^2 \right]$$

Theorem

The matrix L_k minimizing $E\left[\left\|e_{k|k-1}\right\|^2\right]$ is

$$L_k = A\Sigma_{k|k-1}C^T[C\Sigma_{k|k-1}C^T + V]^{-1}$$

where $\Sigma_{k|k-1} = E\left[e_{k|k-1}e_{k|k-1}^T\right]$ is given by the DRE

$$\Sigma_{k+1|k} = A\Sigma_{k|k-1}A^{T} + W - A\Sigma_{k|k-1}C^{T}[C\Sigma_{k|k-1}C^{T} + V]^{-1}C\Sigma_{k|k-1}A^{T}$$

with initial condition

$$\Sigma_{0|-1} = \Sigma_0 \tag{\blacksquare}$$

Proof by direct minimization (omitted)

Remarks

- Same formulae for $\Sigma_{k|k-1}$ and L_k obtained before
- One can show that the filtered error $e_{k|k} = x_k \hat{x}_{k|k}$ has zero mean and variance $Var[e_{k|k}] = \Sigma_{k|k}$ computed as in KF
- Riccati equation for the FH-LQ regulator:

$$P_k = Q + A^T P_{k+1} A - A^T P_{k+1} B [B^T P_{k+1} B + R]^{-1} B^T P_{k+1} A$$

... for the Kalman predictor:

$$\Sigma_{k+1|k} = W + A\Sigma_{k|k-1}A^{T} - A\Sigma_{k|k-1}C^{T}[C\Sigma_{k|k-1}C^{T} + V]^{-1}C\Sigma_{k|k-1}A^{T}$$

They are related through the substitutions:

FH-LQ	Kalman Predictor
k	-k (reversed!)
\boldsymbol{A}	A^T
В	C^T
Q	W
R	V
P_k	$\sum_{k k-1}$

Called "duality relations"!

Generalization

Straightforward extension to:

- linear time-varying systems \hookrightarrow Substitute $A \to A_k$, $C \to C_k$, $B \to B_k$ in the formulae for the Kalman predictor and filter
- noise with time-varying variance $w_k \sim N(0, W_k), W_k \geq 0$ $v_k \sim N(0, V_k), V_k > 0$

Innovation sequence

Consider the KF update

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + \Sigma_{k|k-1}C^{T} \left(C\Sigma_{k|k-1}C^{T} + V\right)^{-1} (y_{k} - C\hat{x}_{k|k-1})$$

Definition

The innovation is $\nu_k = y_k - C\hat{x}_{k|k-1}$

Remarks

 ν_k quantifies the additional "information content" brought by the measurement y_k , compared to the prediction $C\hat{x}_{k|k-1}$ which is based on measurements y_{k-1}, y_{k-2}, \ldots

Statistics of the innovation

- ν_k are jointly Gaussian random vectors
- Zero mean, conditioned to the past measurements

$$E[\nu_{k+1}|Y_k] = E[y_{k+1} - \underbrace{C\hat{x}_{k+1|k}}_{\text{deterministic}}|Y_k] = E[y_{k+1}|Y_k] - C\hat{x}_{k+1|k} = 0$$

Variance given by

$$S_{k+1} = E\left[\nu_{k+1} \nu_{k+1}^{T}\right] = E\left[\left(y_{k+1} - C\hat{x}_{k+1|k}\right) \left(y_{k+1} - C\hat{x}_{k+1|k}\right)^{T}\right]$$

= $V + C\Sigma_{k+1|k}C^{T}$

- ν_k is NOT correlated with ν_j , $j \neq k$ (proof omitted), i.e. ν_k is white Gaussian noise
 - ► This can be used for checking if the KF works well and for tuining KF parameters (see later)
 - ▶ Note that y_k and y_i , $k \neq j$, are correlated
- ν_k is also uncorrelated with past measurements y_j , j < k (proof omitted)
 - ightharpoonup expected, if u_k captures all and only the additional information brought by y_k

Example 1: estimation of position and velocity of a ground vehicle¹

Motivation: develop a navigation and tracking system for vehicle

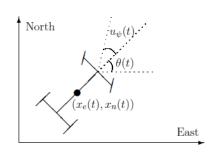
Problem: How can the vehicle know its position and velocity?

Idea: Use GPS with a KF!

Giancarlo Ferrari Trecate Multivariable Control

 $[\]frac{1}{\texttt{mathworks.com/help/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html}$

The vehicle moves in 2-D space: position and velocity in the north and east directions.



- For simulation: non-linear non-holonomic model where the input is steering angle of the vehicle (u_{ψ})
- For the KF: discrete-time linear model describing the evolution of the position and velocity over time in response to model initial conditions as well as position measurements obtained from GPS

Variables of interest:

• $\hat{x}_1(k)$: east position estimate • $\hat{x}_2(k)$: north position estimate • $\hat{v}_1(k)$: east velocity estimate • $\hat{v}_2(k)$: north velocity estimate • $\hat{v}_2(k)$: north velocity estimate

Linear model:

$$x(k+1) = Ax(k) + Gw(k)$$
$$y(k) = Cx(k) + v(k)$$

where x is the state vector, $y \in \mathbb{R}^2$ is the vector of measured positions, $w(k) = \begin{bmatrix} w_1(k) \\ w_2(k) \end{bmatrix}$ is the process noise and $v(k) = \begin{bmatrix} v_1(k) \\ v_2(k) \end{bmatrix}$ is the measurement noise

$$x(k+1) = Ax(k) + Gw(k)$$
$$y(k) = Cx(k) + v(k)$$

$$A = \begin{bmatrix} 1 & 0 & T_s & 0 \\ 0 & 1 & 0 & T_s \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} \frac{T_s}{2} & 0 \\ 0 & \frac{T_s}{2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Considerations:

velocites are modelled as a random walk:

$$v_i(k+1) = v_i(k) + w_i(k), \qquad i \in \{1,2\}$$

• positions are represented by the following discretization of $\frac{d}{dt}x = v$:

$$\frac{x_i(k+1)-x_i(k)}{T_c} = \frac{v_i(k+1)+v_i(k)}{2}, \qquad i \in \{1,2\}$$

• $T_s = 1s$

$$w \sim N(0, W_k)$$
 and $v \sim N(0, V)$

- variance of the measurement noise: $V = diag\{50, 50\}$
- variance of the process noise: it should describe how much the vehicle velocity can change over one sampling interval \rightarrow time-varying W

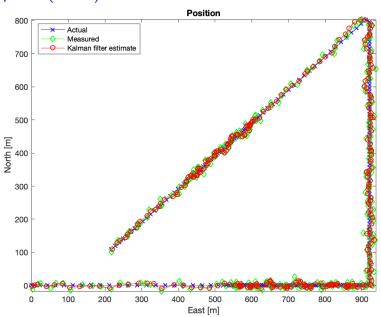
$$W_k = GQ(k)G^T$$
 $Q(k) = \begin{bmatrix} 1 + rac{250}{f_{sat}(\hat{v}_1^2(k))} & 0 \\ 0 & 1 + rac{250}{f_{sat}(\hat{v}_2^2(k))} \end{bmatrix}$

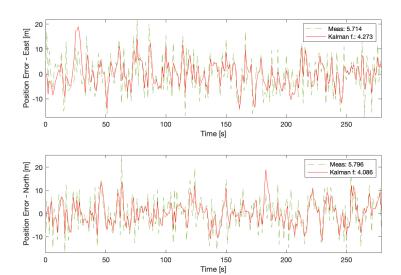
where $f_{sat}(z) = min(max(z, 25), 625)$ (values obtained experimentally) and \hat{v}_1 , \hat{v}_2 are the estimated velocities

- \hookrightarrow Captures the intuition that typical values of w are smaller when velocity is large.
- \hookrightarrow A diagonal W_k represents the naive assumption that the velocity changes in the north and east directions are uncorrelated
- Initial state: $x_0 \sim N(0, 10I)$

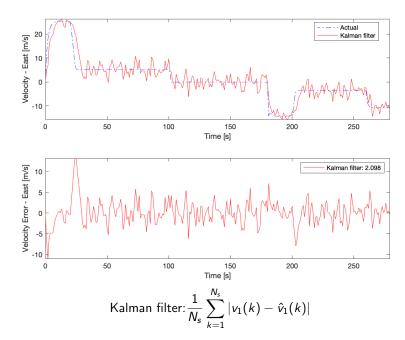
Simulation scenario: the vehicle makes the following maneuvers:

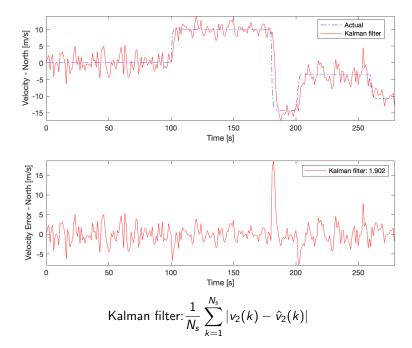
- ① At t = 0 the vehicle is at $x_e(0) = 0$, $x_n(0) = 0$ and is stationary
- ② Heading east, it accelerates to 25m/s. It decelerates to 5m/s at t=20s.
- **3** At t = 100s, it turns toward north and accelerates to 10m/s.
- At t = 180s, it accelerates to 20m/s with southwest direction.
- **1** At t = 200s, it decelerates to 5m/s.
- At t = 260s, it accelerates to 15m/s.





Meas:
$$\frac{1}{N_s} \sum_{k=1}^{N_s} |x_i(k) - y_i(k)|$$
 Kalman f: $\frac{1}{N_s} \sum_{k=1}^{N_s} |x_i(k) - \hat{x}_i(k)|$ $i = \{1, 2\}$





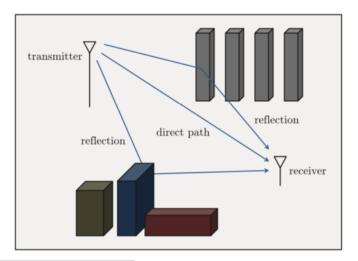
Comments:

- The Kalman filters gives better position estimates than the raw measurements
 - error reduction: \sim 25% on the east position and \sim 30% on the north position
- The peaks in the velocity match with the sharp turn and sudden acceleration of the car, e.g.:
 - ▶ at t = 20s and t = 200s in the east velocity
 - ▶ at t = 1800s and t = 200s in the north velocity
 - \hookrightarrow After a few time steps, the filter estimates catch up with the actual velocity.

Additional example (check at home!)

Example 2: Channel estimation in communication systems²

Wireless communications systems \rightarrow signals from the transmitter may not reach the receiver directly due to scattering \rightarrow DELAYS!



²N. Kovvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.

Giancarlo Ferrari Trecate Multivariable Control

- The received signal at time *k* is a superposition of:
 - scaled version of emitted signal at time k
 - scaled and shifted versions of emitted signals at time k-1, k-2, ...
 - noise
- The propagation channel changes over time due to:
 - movements of the transmitter/receiver
 - changes of the environment

A time-varying Finite Impulse Response (FIR) filter let us model the multipath channel:

 \rightarrow Consider the sequence $\{c(k)\}\$ as the sent signal and

$$y(k) = \sum_{d=1}^{3} x_d(k) c(k-d+1) + v(k)$$

where y(k) is the received signal, $x_i(k)$ for i = 1, 2, 3, ... are the time varying FIR coefficients and v(k) represents additive noise

Multipath propagation

FIR coefficients can be estimated by transmitting and receiving a (known) test signal through the channel.

We can use KF to estimate the FIR coefficients of the channel!

• One possible model: "random walk"

$$x_i(k+1) = x_i(k) + w_i(k)$$
 $w(k) \sim N(0, W)$

- Other option:
 - \rightarrow Take into account the correlation (α_i) between two sequent values $x_i(k+1) = \alpha_i x_i(k) + w_i(k)$ $w(k) \sim N(0, W)$
- ightharpoonup Model the channel as a time-varying FIR filter of order D=3
- Let $x(k) = \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix}$ be the channel (FIR) coefficients at time step k
- Consider α_1 , α_2 and α_3 as given constants (they depend on the sampling time and the frequency of the received signal)
- ► Consider iid noise $w(k) = \begin{bmatrix} w_1(k) \\ w_2(k) \\ w_3(k) \end{bmatrix} \sim N(0, W)$

State-space model of the FIR coefficients:

$$x(k+1) = \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix} x(k) + w(k) \tag{*}$$

Measurements: obtained as the filtered output for a test signal $\{c(k)\}$ propagated through the channel (modelled as a FIR)

$$y(k) = \sum_{d=1}^{3} x_d(k) c(k-d+1) + v(k)$$

where $v(k) \sim N(0, V)$

In matrix notation,

$$y(k) = [c(k) \ c(k-1) \ c(k-2)] x(k) + v(k)$$
 (**)

Remark: (*) and (**) provide a LTV system

Simulations:

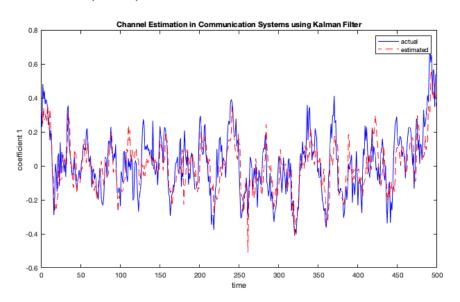
Set

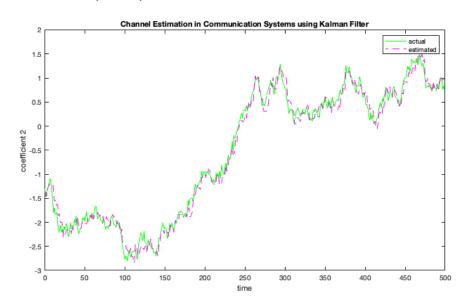
- $\alpha_1 = 0.85$, $\alpha_2 = 1$ and $\alpha_3 = -0.95$
- $W = diag\{0.1, 0.1, 0.1\}$
- V = 0.1

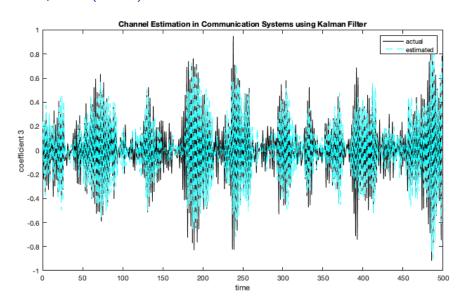
and generate a test signal sequence c(k) (for example a random but known signal).

Also consider:

- initial channel coefficients $x(0) \sim N(0, I)$
- KF initial variance $\Sigma_{0|-1} = I$
- \rightarrow After performing N=500 time steps of Kalman filtering, the actual and estimated channel coefficients are shown in the plots.







Remarks:

- The vertical scale of coefficient 2 is larger that the others
- ullet The sign of the values of coefficient 3 usually changes since $\alpha_3 < 0$

The Kalman filter is able to estimate the time-varying channel coefficients with good accuracy.