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Recap from the last lecture

Proposition (Linear combination of Gaussian RVs)

If x = [x1, . . . , xn]
T ⇠ N(µx ,Cx) and

y = Ax + b, b 2 Rm, A 2 Rm⇥n

(a) y 2 Rm is Gaussian with

E [y ] = Aµx + b, Var [y ] = ACxA
T

(b) z =


x
y

�
is Gaussian with

E [z ] =


µx

Aµx + b

�
Var [z ] =


Cx CxAT

ACx ACxAT

�
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Recap from the last lecture

Proposition (Conditioning for Gaussian RVs)

Let X 2 Rn,Y 2 Rm and


X
Y

�
⇠ N

✓
µx

µy

�
,


CXX CXY

CYX CYY

�◆

Then,


X
Y

�
is Gaussian with

E [X |Y ] =

(a)z }| {
µX + CXYC

�1

YY (y � µY ) “a posteriori” mean

Var [X |Y ] = CXX � CXYC
�1

YYCYX| {z }
(b)

“a posteriori” variance

(a): Shift in the mean

(b): “reduction” of the original uncertainty CXX
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State estimation: linear Gaussian setting

xk+1 = Axk + wk

yk = Cxk + vk

x0 ⇠ N(x̄0,⌃0)

Assumptions

(a) x0, wi ,vj independent 8i , j
(b) wk ⇠ WGN(0,W ) W � 0

(c) vk ⇠ WGN(0,V ) V > 0
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State estimation: conditioning on the measured outputs

Let Yk =

2

64
y0
...
yk

3

75


xk
Yk

�
and


xk+1

Yk

�
are Gaussian

Let xk|k = xk |Yk and define

x̂k|k = E [xk |Yk ]

⌃k|k = Var [xk |Yk ]

Similar notation for xk+1|k = xk+1|Yk

x̂k|k : filtered state

x̂k+1|k : state prediction

Problem: How to compute them along with ⌃k|k ,⌃k+1|k?
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Naive method


xk
Yk

�
⇠ N

✓
x̄k
Ȳk

�
,


⌃xkxk ⌃xkYk

⌃Ykxk ⌃YkYk

�◆

Therefore
x̂k|k = x̄k + ⌃xkYk⌃

�1

YkYk
(Yk � Ȳk)

(similar formula for x̂k+1|k)

Problem
The dimension of Yk and ⌃YkYk grows with time!
,! impractical

Kalman Filtering (KF)

A recursive way for computing all desired quantities
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Kalman filter and predictor
At k = 0, x0 ⇠ N(x̄0,⌃0). Rename x̄0 ! x̂0|�1, ⌃0 ! ⌃0|�1
x0
y0

�
is a linear transformation of a Gaussian random vector because


x0
y0

�
=


I 0
C I

� 
x0
v0

�

then

x0
y0

�
⇠ N

✓
x̂0|�1

Cx̂0|�1

�
,


⌃0|�1 ⌃0|�1C

T

C⌃0|�1 C⌃0|�1C
T + V

�◆
(⇤)

1) Filtering step (measurement update)

x0|y0 is Gaussian with mean and variance

x̂0|0 = x̂0|�1 + ⌃0|�1C
T (C⌃0|�1C

T + V )�1(y0 � Cx̂0|�1)

⌃0|0 = ⌃0|�1 � ⌃0|�1C
T (C⌃0|�1C

T + V )�1C⌃0|�1

Remark: the estimate x̂0|0 is based on the new measurement y0
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2)Prediction step (time update)

· x1|y0 is given by A(x0|y0) + w0

· y1|y0 is given by C (x1|y0) + v1 (⌅)

,! x1|y0 ⇠ N(Ax̂0|0| {z }
x̂1|0

,A⌃0|0A
T +W

| {z }
⌃1|0

)

Then, using (⌅)

y1|y0 ⇠ N(Cx̂1|0,C⌃1|0C
T + V )

Moreover, x1|y0 and y1|y0 are linear combinations of Gaussian vectors !
they are jointly Gaussian and, using the formulae for linear combinations of
Gaussian vectors


x1|y0
y1|y0

�
⇠ N

✓
x̂1|0
Cx̂1|0

�
,


⌃1|0 ⌃1|0C

T

C⌃1|0 C⌃1|0C
T + V

�◆
(⇤⇤)
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Key observation enabling iterations

(⇤⇤) is identical to (⇤) up to the replacements
x̂0|�1 ! x̂1|0
⌃0|�1 ! ⌃1|0

Idea: iterate the procedure for k = 1, 2, . . .

Kalman predictor and filter

Init x̂0|�1 2 Rn,⌃0|�1 2 Rn⇥n (statistics of x0)

Filtering step:

x̂k|k
def
= x̂k|k�1 + ⌃k|k�1C

T (C⌃k|k�1C
T + V )�1(yk � Cx̂k|k�1)

⌃k|k
def
= ⌃k|k�1 � ⌃k|k�1C

T (C⌃k|k�1C
T + V )�1C⌃k|k�1

Prediction step:
x̂k+1|k = Ax̂k|k

⌃k+1|k = A⌃k|kA
T +W

Remarks
Sometimes, in the literature, “Kalman filter” denotes the predictor...
Does x̂k|k coincide with the quantity xk|k = E [xk |Yk ] defined before?
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Lemma (conditioning on the whole past)

xk |Yk ⇠ N(x̂k|k ,⌃k|k)

xk+1|Yk ⇠ N(x̂k+1|k ,⌃k+1|k) (⌅)

Remarks
Lemma ) Optimality of the predictor and the filter in a statistical
sense

⌃k|k and ⌃k+1|k can be computed at all k � 0 before having any
measurement
,! Update = Di↵erence Riccati Equation (DRE) for filtering

Observer form: from the algorithm we obtain

x̂k+1|k = Ax̂k|k�1 +A⌃k|k�1C
T (C⌃k|k�1C

T + V )�1

| {z }
Lk

(yk � Cx̂k|k�1| {z }
estimated output

)

Lk is the (time-varying) Kalman gain
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Generalisation to systems with inputs

System:

xk+1 = Axk + Buk + wk

yk = Cxk + vk

x0 ⇠ N(x̄0,⌃0)

Add the e↵ect of the input in the prediction step, which becomes

x̂k+1|k = Ax̂k|k + Buk

,! Buk just changes the mean of xk+1|k , not the variance
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KF as a minimum variance estimator
System:

xk+1 = Axk + Buk + wk

yk = Cxk + vk

x0 ⇠ N(x̄0,⌃0)

Assume a linear predictor dynamics

x̂k+1|k = Ax̂k|k�1 + Buk + Lk
#

How to tune Lk ?

[yk � Cx̂k|k�1]

x̂0 = x̄0

Dynamics of the error ek|k�1

def
= xk � x̂k|k�1:

ek+1|k = (A� LkC )| {z }
Ac,k

ek|k�1 + wk � Lkvk| {z }
new, compared to Luenberger

= Ac,kek|k�1 + Bc,k⇠k

Bc,k =
⇥
I �Lk

⇤
⇠k =


wk

vk

�
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ek|k�1 is a Gaussian random vector (linear combination of
e0|�1 = x0 � x̄0 and v0, . . . , vk�1,w0, . . . ,wk�1 which are jointly
Gaussian)

Statistics of ek|k�1

E [ek+1|k ] = Ac,kE [ek|k�1]
Setting x̂0 = x̂0|�1 = x̄0, one has E [e0|�1] = 0 and E [ek|k�1] = 0, 8k � 0

Definitions

I Variance of the error: E
h��ek|k�1

��2
i
= E

h
eTk|k�1

ek|k�1

i
2 R

I Covariance of the error: E
h
ek|k�1e

T
k|k�1

i
2 Rn⇥n

Abuse of terminology: so far E
h
ek|k�1e

T
k|k�1

i
was termed “variance”

Problem (variance minimization)

Compute Lk so as to solve
min
Lk

E
h��ek|k�1

��2
i
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Theorem

The matrix Lk minimizing E
h��ek|k�1

��2
i
is

Lk = A⌃k|k�1C
T [C⌃k|k�1C

T + V ]�1

where ⌃k|k�1 = E
h
ek|k�1e

T
k|k�1

i
is given by the DRE

⌃k+1|k = A⌃k|k�1A
T +W � A⌃k|k�1C

T [C⌃k|k�1C
T + V ]�1C⌃k|k�1A

T

with initial condition
⌃0|�1 = ⌃0 (⌅)

Proof by direct minimization (omitted)
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Remarks
Same formulae for ⌃k|k�1 and Lk obtained before

One can show that the filtered error ek|k = xk � x̂k|k has zero mean
and variance Var [ek|k ] = ⌃k|k computed as in KF

Riccati equation for the FH-LQ regulator:

Pk = Q + ATPk+1A� ATPk+1B[B
TPk+1B + R]�1BTPk+1A

. . . for the Kalman predictor:

⌃k+1|k = W +A⌃k|k�1A
T �A⌃k|k�1C

T [C⌃k|k�1C
T +V ]�1C⌃k|k�1A

T
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They are related through the substitutions:

FH-LQ Kalman Predictor
k �k (reversed!)
A AT

B CT

Q W
R V
Pk ⌃k|k�1

Called “duality relations”!
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Generalization
Straightforward extension to:

linear time-varying systems
,! Substitute A ! Ak , C ! Ck , B ! Bk in the formulae for the
Kalman predictor and filter

noise with time-varying variance
wk ⇠ N(0,Wk), Wk � 0
vk ⇠ N(0,Vk), Vk > 0
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Innovation sequence

Consider the KF update

x̂k|k = x̂k|k�1 + ⌃k|k�1C
T
⇣
C⌃k|k�1C

T + V
⌘�1

(yk � Cx̂k|k�1)

Definition
The innovation is ⌫k = yk � Cx̂k|k�1

Remarks
⌫k quantifies the additional “information content” brought by the
measurement yk , compared to the prediction Cx̂k|k�1 which is based on
measurements yk�1, yk�2, . . .
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Statistics of the innovation

⌫k are jointly Gaussian random vectors

Zero mean, conditioned to the past measurements

E [⌫k+1|Yk ] = E [yk+1 � Cx̂k+1|k| {z }
deterministic

|Yk ] = E [yk+1|Yk ]� Cx̂k+1|k = 0

Variance given by

Sk+1 = E
h
⌫k+1 ⌫

T
k+1

i
= E

h�
yk+1 � Cx̂k+1|k

� �
yk+1 � Cx̂k+1|k

�T i

= V + C⌃k+1|kC
T
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⌫k is NOT correlated with ⌫j , j 6= k (proof omitted), i.e. ⌫k is white
Gaussian noise

I This can be used for checking if the KF works well and for tuining KF
parameters (see later)

I Note that yk and yj , k 6= j , are correlated

⌫k is also uncorrelated with past measurements yj , j < k (proof
omitted)

I expected, if ⌫k captures all and only the additional information brought
by yk
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Example 1: estimation of position and velocity of a ground
vehicle1

Motivation: develop a navigation and tracking system for vehicle

Problem: How can the vehicle know its position and velocity?

Solution 1: use encoders attached to the vehicle wheels
,! imprecise ! the estimated and real positions can be far away from
the real ones

Solution 2: use GPS measurements
,! can give much better results, but measurements are noisy and
velocities are not measured

Idea: Use GPS with a KF!

1
mathworks.com/help/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html
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Example 1 (cont.)

The vehicle moves in 2-D space: position and velocity in the north and
east directions.

For simulation: non-linear
non-holonomic model where the
input is steering angle of the vehicle
(u )

For the KF: discrete-time linear
model describing the evolution of
the position and velocity over time
in response to model initial
conditions as well as position
measurements obtained from GPS
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Example 1 (cont.)

Variables of interest:

x̂1(k): east position estimate

x̂2(k): north position estimate

v̂1(k): east velocity estimate

v̂2(k): north velocity estimate

x̂(k) =

2

664

x̂1(k)
x̂2(k)
v̂1(k)
v̂2(k)

3

775

Linear model:
x(k + 1) = Ax(k) + Gw(k)

y(k) = Cx(k) + v(k)

where x is the state vector, y 2 R2 is the vector of measured positions,

w(k) =
h
w1(k)
w2(k)

i
is the process noise and v(k) =

h
v1(k)
v2(k)

i
is the

measurement noise
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Example 1 (cont.)

x(k + 1) = Ax(k) + Gw(k)

y(k) = Cx(k) + v(k)

A =

2

664

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

3

775 G =

2

664

Ts
2

0
0 Ts

2

1 0
0 1

3

775 C =


1 0 0 0
0 1 0 0

�

Considerations:
velocites are modelled as a random walk:

vi (k + 1) = vi (k) + wi (k), i 2 {1, 2}
positions are represented by the following discretization of d

dt x = v :

xi (k + 1)� xi (k)

Ts
=

vi (k + 1) + vi (k)

2
, i 2 {1, 2}

Ts = 1s
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Example 1 (cont.)

w ⇠ N(0,Wk) and v ⇠ N(0,V )

variance of the measurement noise: V = diag {50, 50}
variance of the process noise: it should describe how much the vehicle
velocity can change over one sampling interval ! time-varying W

Wk = GQ(k)GT Q(k) =

"
1 + 250

fsat(v̂2

1
(k))

0

0 1 + 250

fsat(v̂2

2
(k))

#

where fsat(z) = min(max(z , 25), 625) (values obtained
experimentally) and v̂1, v̂2 are the estimated velocities

,! Captures the intuition that typical values of w are smaller when
velocity is large.
,! A diagonal Wk represents the naive assumption that the velocity
changes in the north and east directions are uncorrelated

Initial state: x0 ⇠ N(0, 10I )
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Example 1 (cont.)

Simulation scenario: the vehicle makes the following maneuvers:

1 At t = 0 the vehicle is at xe(0) = 0, xn(0) = 0 and is stationary

2 Heading east, it accelerates to 25m/s. It decelerates to 5m/s at
t=20s.

3 At t = 100s, it turns toward north and accelerates to 10m/s.

4 At t = 180s, it accelerates to 20m/s with southwest direction.

5 At t = 200s, it decelerates to 5m/s.

6 At t = 260s, it accelerates to 15m/s.
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Example 1 (cont.)
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Meas:
1

Ns

NsX

k=1

|xi (k)� yi (k)| Kalman f:
1

Ns

NsX

k=1

|xi (k)� x̂i (k)| i = {1, 2}
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Kalman filter:
1

Ns

NsX

k=1

|v1(k)� v̂1(k)|
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Kalman filter:
1

Ns

NsX

k=1

|v2(k)� v̂2(k)|
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Comments:

The Kalman filters gives better position estimates than the raw
measurements

I error reduction: ⇠25% on the east position and ⇠30% on the north
position

The peaks in the velocity match with the sharp turn and sudden
acceleration of the car, e.g.:

I at t = 20s and t = 200s in the east velocity
I at t = 1800s and t = 200s in the north velocity

,! After a few time steps, the filter estimates catch up with the
actual velocity.
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Additional example
(check at home!)
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Example 2: Channel estimation in communication systems2

Wireless communications systems ! signals from the transmitter may not
reach the receiver directly due to scattering ! DELAYS!

2
N. Kovvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example 2 (cont.)
The received signal at time k is a superposition of:

I scaled version of emitted signal at time k

I scaled and shifted versions of emitted signals at
time k � 1, k � 2, ...

I noise

9
>>>>=

>>>>;

Multipath
propagation

The propagation channel changes over time due to:
I movements of the transmitter/receiver
I changes of the environment

A time-varying Finite Impulse Response (FIR) filter let us model the
multipath channel:
! Consider the sequence {c(k)} as the sent signal and

y(k) =
3X

d=1

xd(k) c(k � d + 1) + v(k)

where y(k) is the received signal, xi (k) for i = 1, 2, 3, ... are the time
varying FIR coe�cients and v(k) represents additive noise

Giancarlo Ferrari Trecate Multivariable Control EPFL



Example 2 (cont.)
FIR coe�cients can be estimated by transmitting and receiving a (known)
test signal through the channel.

We can use KF to estimate the FIR coe�cients of the channel!

One possible model: “random walk”
xi (k + 1) = xi (k) + wi (k) w(k) ⇠ N(0,W )

Other option:
! Take into account the correlation (↵i ) between two sequent values

xi (k + 1) = ↵ixi (k) + wi (k) w(k) ⇠ N(0,W )

I Model the channel as a time-varying FIR filter of order D = 3

I Let x(k) =


x1(k)
x2(k)
x3(k)

�
be the channel (FIR) coe�cients at time step k

I Consider ↵1, ↵2 and ↵3 as given constants (they depend on the
sampling time and the frequency of the received signal)

I Consider iid noise w(k) =


w1(k)
w2(k)
w3(k)

�
⇠ N(0,W )
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Example 2 (cont.)
State-space model of the FIR coe�cients:

x(k + 1) =

2

4
↵1 0 0
0 ↵2 0
0 0 ↵3

3

5 x(k) + w(k) (⇤)

Measurements: obtained as the filtered output for a test signal {c(k)}
propagated through the channel (modelled as a FIR)

y(k) =
3X

d=1

xd(k) c(k � d + 1) + v(k)

where v(k) ⇠ N(0,V )

In matrix notation,

y(k) =
⇥
c(k) c(k � 1) c(k � 2)

⇤
x(k) + v(k) (⇤⇤)

Remark: (⇤) and (⇤⇤) provide a LTV system
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Example 2 (cont.)

Simulations:
Set

↵1 = 0.85, ↵2 = 1 and ↵3 = �0.95

W = diag {0.1, 0.1, 0.1}
V = 0.1

and generate a test signal sequence c(k) (for example a random but
known signal).
Also consider:

initial channel coe�cients x(0) ⇠ N(0, I )

KF initial variance ⌃0|�1 = I

! After performing N = 500 time steps of Kalman filtering, the actual
and estimated channel coe�cients are shown in the plots.
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Example 2 (cont.)
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Example 2 (cont.)
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Example 2 (cont.)
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Example 2 (cont.)

Remarks:

The vertical scale of coe�cient 2 is larger that the others

The sign of the values of coe�cient 3 usually changes since ↵3 < 0

The Kalman filter is able to estimate the time-varying channel coe�cients
with good accuracy.
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