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Recap from the last lecture

Proposition (Linear combination of Gaussian RVs)

If x = [x1,..., %] " ~ N(jux, Cx) and
y=Ax+b, beR", AcR™"

(a) y € R™ is Gaussian with
Ely] = Aux + b, Varly] = AGAT

(b) z= [ ; ] is Gaussian with

Aty + b AC, ACAT

=[] W -G ]
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Recap from the last lecture

Proposition (Conditioning for Gaussian RVs)

Let X e R",Y € R™ and
|:X:|NN<|:,U,X:| |:CXX ny:|)
Y iy || Cyx Cyy

Then, [ X ] is Gaussian with

Y
(a)

E[X|Y] = pux + Cxy Cyy(y — py) “a posteriori’ mean

Var[X|Y] = Cxx — CXyC;,l,ny “a posteriori” variance
(b)

(a): Shift in the mean

(b): "reduction” of the original uncertainty Cxx

v

Giancarlo Ferrari Trecate Multivariable Control EPFL



State estimation: linear Gaussian setting

n
Xk+1 = Axk + wi x eR" w e R
Ve = Cxie + vk bévéﬁ%F \Tﬂém f

Xo ~ N()_((), ZO)

Assumptions

(a) xo, w; ,vj independent Vi, j
(b) wx ~ WGN(O,W) W >0
(c) vg ~ WGN(O,V) V>0

w5 (5] [5%8])
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State estimation: conditioning on the measured outputs

Y0 xf/—}x-vv ()
Let Vi = | : %= CXpt Vg
Vi s,z Al ¢ A e

e

° [ Xk ] and [ Xkt ] are Gaussian —> Becswny fluy e lotey C"““h"“’}‘;‘*.‘)
Y, Yy o .
. oF %o, Y%, - We, Vo, ) e
o Let x4, = xk| Yk and define
Rijk = Elxx| Y]
Zk|k = VaI’[Xk‘Yk]

Similar notation for x; 41k = xkt1| Y« P -

<\
Rk filtered state __’/\/'

Xk+41|k: state prediction

Problem: How to compute them along with Zk|k, Zk+1|k?
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Naive method

ORI
Y Ye |l Ty Zvevi

Rk = X+ T Zyy, (Ve — Ya)

Therefore

(similar formula for % 1x)

Problem

The dimension of Yy and Yy, y, grows with time!
— impractical

Kalman Filtering (KF)

A recursive way for computing all desired quantities
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Kalman filter and predictor
At k=0, xg ~ N()_(o,Z()). Rename Xy — )?0|¥1, 20— 20’_1

X0 . . . .
is a linear transformation of a Gaussian random vector because
Yo

Rl nll) e

& T
X So/-1 Tor  IfaC D
~ N 0 7 «
[VO ] ([ CXoj-1 ] [ Cxpjm1 CXo1CT + V ()

1) Filtering step (measurement update)

then

xo|yo is Gaussian with mean and variance
Kojo = Xo|-1 + Xo|-1 CT(CZO|—1CT + V) o — CXol-1)
Yo/ = Toj-1 — o1 G (CToa CT + V) 1 Coig

Remark: the estimate Xg|o is based on the new measurement y
Giancarlo Ferrari Trecate



2)Prediction step (time update)
- x1|yo is given by A(xo|yo) + wo 3 qmﬁ
- y1lyo is given by C(x1|yo0) + w1 i
— X]_|_y() ~ N(AXO|0,AZO‘OA + W)

R T o) [Xise
Y i b
@ »

Then, using (M)

Gaussian vectors
x1|yo X1/0 ] [ 210 Y10CT ])

~ N ~ ] Xk 3k

[ yilyo } ([ CX1j0 CXypo CZHOCT +V (%)
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Key observation enabling iterations

(k ) is identical to (%) up to the replacements
Xo|—1 — X1|o

2o—1— Z1)0

Idea: iterate the procedure for k =1,2,...
Kalman predictor and filter
Init Xp—1 € R", X1 € R™" (statistics of xp)

Filtering step:

. o def _ .
$“W_{"‘3L‘—5 { Rk = Rujk—1 + Zhjk—1C T (CThk—1CT + V) (v — CRujk—1)
°

f _
*olBe & Tk|k & ikt — Zupk—1 CT(CTpho1 CT + V)1 Ch s

Prediction step:
Rit1jk = ARkjk

i1k = AL AT + W

Remarks
@ Sometimes, in the literature, “Kalman filter" denotes the predictor...
@ Does Xy, coincide with the quantity x,jx = E[xx|Y%] defined before?
v
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Lemma (conditioning on the whole past)

Xk| Yi ~ N(Ri k> Ziik)

Xk+1] Yie ~ N(Rei1)ko Zierajk) (m)
Remarks
@ Lemma = Optimality of the predictor and the filter in a statistical
sense

® Xk and X )k can be computed at all k > 0 before having any
measurement
— Update = Difference Riccati Equation (DRE) for filtering

@ Observer form: from the algorithm we obtain
Kper1k = A1 + ALk 1 CT(Cp1 CT+ V) Mk —  CReper )

——
Ly estimated output

Ly is the (time-varying) Kalman gain

v
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Generalisation to systems with inputs

System:
Xk+1 = Axx + Buy + wy
Yk = Cxk + vk
xo ~ N(Xo, Xo)

@ Add the effect of the input in the prediction step, which becomes
Riy1ik = ARk + Buk

< Buy just changes the mean of x|k, not the variance
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KF as a minimum variance estimator

System:

Xk+1 = Axx + Bug + wy
Vi = O + vy
xo ~ N(X0, Zo)

Assume a linear predictor dynamics

Ri+1]k

A

X0

= ARyk—1 + Bug + Lf [k — CRik—1l

How to tune L7

:XO

. def N
Dynamics of the error ey_1 = X — Rklk—1:

€k+1|k

Giancarlo Ferrari Trecate

= (A — LkC)ek‘k_l + Wi — Livi
—— ————
Ac i new, compared to Luenberger

= Ackekk—1 + Bek€k
Berw=[1 L] &= [ Wk]

Vi
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® ek—1 is a Gaussian random vector (linear combination of
€|—1 = Xo — Xo and v, ..., Vk_1, Wo, . . ., wk—1 which are jointly
Gaussian)

Statistics of eyx_1

® Efexi1jx] = AckElexx—1]
Setting Ko = Xo|_1 = Xo, one has E[eg_1] = 0 and Efexx—1] =0, Vk >0

@ Definitions
Variance of the error: E [Hek‘k_lﬂz} =E [eak_le,qk_l} eR

3 o T nxn
Covariance of the error: E [ek\k—lek|k—1} eR

. . T o s 1
@ Abuse of terminology: so far E {ek“(_lek‘k_l} was termed ‘“variance

Problem (variance minimization)

Compute Ly so as to solve

min [ e[

v

Giancarlo Ferrari Trecate Multivariable Control EPFL




Theorem

The matrix L, minimizing E [Heklk—luﬂ is
L= ATy 1 CT[CThp 1 CT + V]
where 31 = E [ek|k_1ekT|k71] is given by the DRE

Thpifk = ALt AT + W — AT 1 CT[CEppo1 €T + V]I CE s AT

with initial condition
Yo-1 =20 (m)

Proof by direct minimization (omitted)
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Remarks
@ Same formulae for X ,_; and Ly obtained before
@ One can show that the filtered error ey, = xx — Xy« has zero mean
and variance Var[ey|] = X« computed as in KF

@ Riccati equation for the FH-LQ regulator: - - (\"‘ k;' S

Pi=Q+ AP 1A— AP 1B[BT P 1B+ R 1BT P 1A

... for the Kalman predictor: Y
e Kes

Tipih = WHAT 1 AT — AT 1 CT[CE e CT + V]ilczk\kflAT/

-
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They are related through the substitutions:

FH-LQ Kalman Predictor
—k (reversed!)
AT
CT
w
4
Py Y k-1

TOW>™ x

Called “duality relations”!
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Generalization
Straightforward extension to:
@ linear time-varying systems
< Substitute A — Ax, C — Cx, B — By in the formulae for the
Kalman predictor and filter
@ noise with time-varying variance
wy ~ N(0, W), Wi >0
Vi ~ N(07 Vk)r Vk >0
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Innovation sequence

Consider the KF update

-1
Kk = X1+ Zapk-1C T (Czk|k—1 cT+ V) (vk — CXyjk—1)

Definition
The innovation is vx = yx — CRyjk—1

Remarks

vk quantifies the additional “information content” brought by the

measurement yx, compared to the prediction CXj,_; which is based on
measurements Vi 1, Yk—2, - - -
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Statistics of the innovation

@ v are jointly Gaussian random vectors

@ Zero mean, conditioned to the past measurements

E[vkt1l Ye] = E k1 — CRigrpk [ Ykl = E [ykra|Yi] = CReqrje =0
———

deterministic

@ Variance given by

Skr1=E [Vk+1 V;Z—H} =E [(Yk—f—l — CRis1pk) (Vkr1 — CRus1ik) T}
=V +CqwCT /u/_\wﬁox

\9»14,;: 4 Ymu.'(' Vetr ™ € Xresthe C iy ke FVew

=Cc1] Ieww‘l Y 51 Te ﬂ}:z;clu 5}[;7)

Ket
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e v o5 Wen/
o v, is NOT correlated with v}, j # k (proof omitted), i.e. vy is white
Gaussian noise

» This can be used for checking if the KF works well and for tuining KF
parameters (see later)

> Note that y, and y;, k # j, are correlated

@ vy is also uncorrelated with past measurements y;, j < k (proof
omitted)

» expected, if v, captures all and only the additional information brought
by vk

k.o Y= StV [, S ARt W0 1
X, coro][Z Cn
40 colw u',; TH R ° W D o d
5 |7 [CACOT (| o ey Ace 3 ° T o
! I O vovl o 1
[4 H - .
“‘”"& ﬁw%c lrz [29 CGE,O%OI[RZC-I' 4
o
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Example 1: estimation of position and velocity of a ground
vehicle!

Motivation: develop a navigation and tracking system for vehicle f

v

Problem: How can the vehicle know its position and velocity?

@ Solution 1: use encoders attached to the vehicle wheels
— imprecise — the estimated and real positions can be far away from
the real ones

@ Solution 2: use GPS measurements
— can give much better results, but measurements are noisy and
velocities are not measured

Idea: Use GPS with a KF!

1
mathworks.com/help/control/getstart/estimating-states-of-time-varying-systems-using-kalman-filters.html
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Example 1 (cont.)

The vehicle moves in 2-D space: position and velocity in the north and
east directions.

@ For simulation: non-linear
non-holonomic-model where the
input is steering angle of the vehicle
(uy)

o For the KF: discrete-time linear
model describing the evolution of
the position and velocity over time

Fast in response to model initial
conditions as well as position
measurements obtained from GPS

North __:',,L.(z )
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Example 1 (cont.)

Variables of interest:

@ X1(k): east position estimate fl(k)

@ %(k): north position estimate R(k) = )AQE/;;
Vi

@ V1(k): east velocity estimate 02 (k)

@ »(k): north velocity estimate

Linear model:
x(k +1) = Ax(k) + Gw(k)
y(k) = Cx(k) + v(k)
where x is the state vector, y € R? is the vector of measured positions,
w(k) = [EEZ” is the process noise and v(k) = [Vl(k)} is the

va(k)
measurement noise
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Example 1 (cont.)

x(k + 1) = Ax(k) + Gw(k)
y(k) = Cx(k) + v(k)

10°7, 0 L0
01,0 T. 0 L 1000
:————I—~-_s = 2 =
A 00,1 0 G 1 0 C[0100]
00 1 0 1

Considerations:
@ velocites are modelled as a random walk:
V,'(k + ]_) = V,'(k) + W,'(k), i € {1,2}
@ positions are represented by the following discretization of %x =v:

xi(k +1) — xi(k) _ vilk +1) + vi(k) .
T = 5 , ie{1,2}

o To=1s
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N

Example 1 (cont.) _/~
]

w ~ N(0, Wy) and v ~ N(0, V) y
25 625 ¢

.

@ variance of the measurement noise: V = diag {50,50}

@ variance of the process noise: it should describe how much the vehicle
velocity can change over one sampling interval — time-varying W

1+ —20 0
Wi = GR(K)GT  Q(k) = fsaé(vf(k)) 1 250
1 (#2(00)
where f;¢(z) = min(max(z,25),625) (values obtained
experimentally) and V1, V» are the estimated velocities

— Captures the intuition that typical values of w are smaller when
velocity is large.

— A diagonal Wy represents the naive assumption that the velocity
changes in the north and east directions are uncorrelated

o Initial state: xo ~ N(0,10/)
Giancarlo Ferrari Trecate



Example 1 (cont.)

Simulation scenario: the vehicle makes the following maneuvers:
@ At t = 0 the vehicle is at x.(0) = 0, x,(0) = 0 and is stationary

@ Heading east, it accelerates to 25m/s. It decelerates to 5m/s at
t=20s.

@ At t = 100s, it turns toward north and accelerates to 10m/s.
© At t = 180s, it accelerates to 20m/s with southwest direction.
© At t = 200s, it decelerates to 5m/s.

@ At t = 260s, it accelerates to 15m/s.

N~

-
e
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Example 1 (cont.)

Position
T

800 F T T T

—— Actual
% Measured
—&— Kalman filter estimate

700

600

500

North [m]
8
o

300

200

100

East [m]
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Position Error - East [m]

Position Error - North [m]

Time [s]

1 Ns 1 N,
Meas: — i(k) — yi(k Kal fi— (k) — Xi(k i ={1,2
eas NS;M( ) — yi(k)| alman NS;M( ) — %i(k)| i={1,2}
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Velocity - East [m/s]

ctual
Kalman filter

0 50 100 150 200 250
Time [s]
T
E
k7l
8 s5¢ ]
=
e or
i
2
G -5 4
o
2
-10 | | L L I |
0 50 100 150 200 250
Time [s]
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Kal filter:— k) — n(k

alman filter nglM( ) — (k)|
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Velocity - North [m/s]

Velocity Error - North [m/s]
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—-—- Actual
Kalman filter

. 4
0 50 100 150 200 250
Time [s]
T T
i [ K e 002 |
il \M\NVMMWWW WM ks
1 1 1 1 1
0 50 100 150 200 250
Time [s]

N

1 S
Kal filter:— k) — (k
alman filter NSEIM( ) — (k)|
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Comments:

@ The Kalman filters gives better position estimates than the raw
measurements

» error reduction: ~25% on the east position and ~30% on the north
position
@ The peaks in the velocity match with the sharp turn and sudden

acceleration of the car, e.g.:

» at t = 20s and t = 200s in the east velocity

» at t = 1800s and t = 200s in the north velocity
— After a few time steps, the filter estimates catch up with the
actual velocity.

2hl1a i
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Additional example
(check at home!)




Example 2: Channel estimation in communication systems

2

Wireless communications systems — signals from the transmitter may not
reach the receiver directly due to scattering — DELAYS!

transmitter

reflection

direct path

reflection

— | receiver

2N. Kowvali, M. Banavar, A. Spanias. An Introduction to Kalman Filtering with MATLAB Examples.
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Example 2 (cont.)
@ The received signal at time k is a superposition of:
> scaled version of emitted signal at time k

» scaled and shifted versions of emitted signals at Multipath
time k—1,k—2,... propagation
> noise

@ The propagation channel changes over time due to:
» movements of the transmitter/receiver
» changes of the environment

A time-varying Finite Impulse Response (FIR) filter let us model the
multipath channel:
— Consider the sequence {c(k)} as the sent signal and

3
y(k) = xa(k) c(k — d + 1)+ v(k)
d=1

where y(k) is the received signal, x;(k) for i = 1,2,3,... are the time
varying FIR coefficients and v(k) represents additive noise
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Example 2 (cont.)
FIR coefficients can be estimated by transmitting and receiving a (known)
test signal through the channel.

We can use KF to estimate the FIR coefficients of the channell

@ One possible model: “random walk”
xi(k +1) = xi(k) + wi(k) w(k) ~ N(0, W)
@ Other option:

— Take into account the correlation («;) between two sequent values
xi(k +1) = aixi(k) + wi(k)  w(k) ~ N(0O, W)

» Model the channel as a time-varying FIR filter of order D =3

x1 (k)
> Let x(k) = [xz(k)] be the channel (FIR) coefficients at time step k
x3(k)
» Consider ay, ap and a3 as given constants (they depend on the
sampling time and the frequency of the received signal)

(k)
> Consider iid noise w(k) = [wl(k)] ~ N(0, W)
ws(k)
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Example 2 (cont.)

State-space model of the FIR coefficients:

(5] 0 0
x(tk+1)=10 a2 0] x(k)+ w(k) (%)
0 0 a3

Measurements: obtained as the filtered output for a test signal {c(k)}
propagated through the channel (modelled as a FIR)

3
y(k)=> xa(k) c(k — d + 1)+ v(k)
d=1
where v(k) ~ N(0, V)
In matrix notation,
y(k) = [c(k) c(k=1) c(k=2)] x(k)+ v(k) (%)

Remark: (x) and (xx) provide a LTV system
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Example 2 (cont.)

Simulations:
Set

@ a1 =0.85, ap =1 and a3 = —0.95
e W = diag {0.1,0.1,0.1}
e V=01

and generate a test signal sequence c(k) (for example a random but
known signal).
Also consider:

e initial channel coefficients x(0) ~ N(0, /)

o KF initial variance 2q_; =/
— After performing N = 500 time steps of Kalman filtering, the actual
and estimated channel coefficients are shown in the plots.
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Example 2 (cont.)

08 Channel Estimation in Communication Systems using Kalman Filter
T T T T T T T T

06

04

coefficient 1
—

0 50 100 150 200 250 300 350 400 450 500
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Example 2 (cont.)

Ch | Estimation in C
2 T T T T
151
1F
05
ol

coefficient 2
=)
[
T

Ak ol
, I
i I
¥ 4
S50 V1 —
i s ; !/‘
" E LT i
2F L5, T WY ol 4
;‘1%\- v W f\ 1y
‘ M, 4T
25| W'Y E
AAITRL A
.';“‘.J) !
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Example 2 (cont.)

s Channel Estimation in Communicati
T T

jon Systems using Kalman Filter
T T T

coefficient 3
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Example 2 (cont.)

Remarks:
@ The vertical scale of coefficient 2 is larger that the others

@ The sign of the values of coefficient 3 usually changes since a3 < 0

The Kalman filter is able to estimate the time-varying channel coefficients
with good accuracy.
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