Lecture 10

Gaussian random vectors and stochastic linear systems

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

Gaussian random variable (RV)

• $x \in \mathbb{R}$ is a Gaussian RV if its probability density is

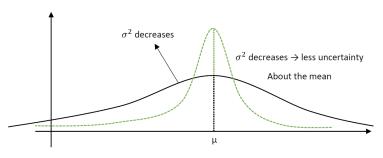
$$f(q) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(q-\mu)^2}{2\sigma^2}}$$

• Notation: $x \sim N(\mu, \sigma^2)$

By construction

$$\mu = E[x] = \text{mean}$$

$$\sigma^2 = E\left[(x - \mu)^2\right] > 0 = \text{variance}$$



Gaussian random vector

• $x = [x_1, \dots, x_n]^T$ is a Gaussian random vector if its probability density is

$$f(q) = rac{1}{(2\pi)^{rac{n}{2}}\sqrt{det(C)}}e^{-rac{1}{2}(q-\mu)^TC^{-1}(q-\mu)} \quad , \quad q \in \mathbb{R}^n$$

where $\mu \in \mathbb{R}^n$ and $C = C^T \in \mathbb{R}^{n \times n}$ is positive-definite

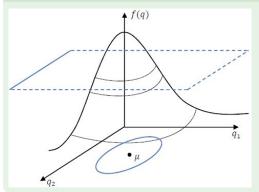
• x_1, \ldots, x_n are also called jointly Gaussian

Remark

Possible to assume that C is positive-semidefinite by defining a Gaussian random vector using probability distributions instead of densities

By construction:

$$\mu = E[x] = \int_{\mathbb{R}^n} qf(q)dq_1 \dots dq_n$$
 mean $C = Var[x] = E[(x - \mu)(x - \mu)^T]$ variance



$$C = \left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array} \right]$$

New quantity: $C_{ij} = Cov[x_i, x_j] = E[(x_i - \mu_i)(x_j - \mu_j)]$ (for $i \neq j$)

- \hookrightarrow $C_{ij} \neq 0$ means that the knowledge of x_i brings information on the distribution of x_i and vice-versa
- $\hookrightarrow x_1, \dots, x_n$ are uncorrelated if $C_{ij} = 0 \ \forall i \neq j$ (diagonal variance)
 - → For jointly Gaussian RVs incorrelation is the same as statistical independence

Marginal and conditional density

Let $X \in \mathbb{R}^n, Y \in \mathbb{R}^m$ and

$$\left[\begin{array}{c} X \\ Y \end{array}\right] \sim N\left(\left[\begin{array}{cc} \mu_X \\ \mu_Y \end{array}\right], \left[\begin{array}{cc} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{array}\right]\right) = f_{XY}(x,y)$$

• X is a Gaussian RV, i.e. the marginal density

$$f_X(x) = \int_{\mathbb{R}^m} f_{XY}(x, y) \, dy$$

is the Gaussian $N(\mu_x, C_{XX})$

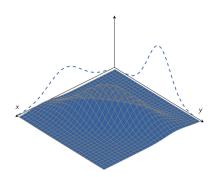
• The conditional density of X for a measured value of Y is

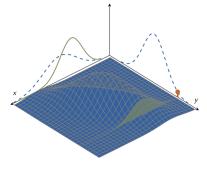
$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

→ quantifies how uncertainty on *X* changes because *Y* is no longer random

 \hookrightarrow Notation: X|Y for denoting the random vector X equipped with the conditional density $f_{X|Y}$

Marginal and conditional density¹





Two-dimensional Gaussian density and the marginal density for each component (dashed blue lines along each axis)

Remark: the marginal density do *not* contain all information about $f_{XY}(x, y)$, since the covariance information is lacking in that representation.

Conditional distribution of X (green line), when Y is observed (orange dot)

The conditional distribution of x, apart

from a normalizing constant, is the green 'slice' of the joint distribution.

Giancarlo Ferrari Trecate Multivariable Control EPF

¹F. Lindsten,T. Schön, A. Svensson and N. Wahlström. *Probabilistic modeling - linear regression and Gaussian processes*

Proposition

$$\begin{bmatrix} X \\ Y \end{bmatrix}$$
 is Gaussian $\Rightarrow f_{X|Y}$ is Gaussian with
$$E[X|Y] = \overbrace{\mu_X + C_{XY}C_{YY}^{-1}(y - \mu_Y)}^{(a)} \quad \text{``a posteriori'' mean}$$

$$Var[X|Y] = \underbrace{C_{XX} - C_{XY}C_{YY}^{-1}C_{YX}}_{(b)} \quad \text{``a posteriori'' variance}$$

- (a): Shift in the mean
- (b): "reduction" of the original uncertainty C_{XX}

Definition

X and Y are uncorrelated if $C_{XY} = 0$

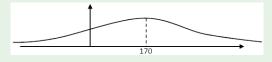
 \hookrightarrow Then:

$$\begin{aligned} & \mathit{Var}[X|Y] = \mathit{Var}[X] \\ & \mathit{E}[X|Y] = \mathit{E}[X] \\ & \mathit{f}_{X|Y}(x|y) = \mathit{f}_{X}(x) \end{aligned} \end{aligned} \text{ Knowing } Y \text{ does not bring any information on } X$$

$$X = \text{height}, Y = \text{weight}. \text{ Assume } \left[\begin{array}{c} X \\ Y \end{array} \right] \sim N \left(\left[\begin{array}{c} 170 \\ 65 \end{array} \right], \left[\begin{array}{c} 1 & 0.5 \\ 0.5 & 1 \end{array} \right] \right)$$

 $c_{12} = 0.5 \rightarrow$ makes sense: higher students weight more

Problem: which is the height density for a student weighting 110 Kg?



 $f_X=$ prior height density $\sim N(170,1)$ $f_{X|Y}=$ posterior height density when Y=110

$$E[X|Y] = 170 + 0.5(110 - 65) = 192.5$$

 $Var(X|Y) = 1 - 0.5^2 = 0.75$

Affine transformation of a Gaussian random vector

Proposition

If
$$x = [x_1, \dots, x_n]^T \sim N(\mu_x, C_x)$$
 and

$$y = Ax + b$$

where $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$, then

(a) $y \in \mathbb{R}^m$ is Gaussian with

$$E[y] = A\mu_x + b \tag{*}$$

$$Var[y] = AC_x A^T (**)$$

(b)
$$z = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is Gaussian with

$$E[z] = \begin{bmatrix} \mu_{x} \\ A\mu_{x} + b \end{bmatrix}$$

$$Var[z] = \begin{bmatrix} C_{x} & C_{x}A^{T} \\ AC_{x} & AC_{x}A^{T} \end{bmatrix}$$

Affine transformation of a Gaussian random vector

Proof of (b)

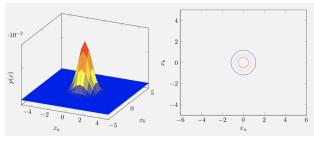
$$z = \left[\begin{array}{c} I \\ A \end{array} \right] x + \left[\begin{array}{c} 0 \\ b \end{array} \right]$$

Apply (*), (**) with the substitutions: $A \rightarrow \begin{bmatrix} I \\ A \end{bmatrix}$, $b \rightarrow \begin{bmatrix} 0 \\ b \end{bmatrix}$

Example²

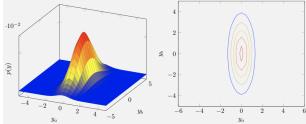
Consider a

two-dimensional Gaussian random vector $x = \begin{bmatrix} x_3 \\ x_b \end{bmatrix} \sim N(\mu_x, C_x)$ where $\mu_x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $C_x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$



Do a linear transformation $y = A_1 x$ where $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$. The random vector y will have a Gaussian density with $y = \begin{bmatrix} y_2 \\ y_2 \end{bmatrix} \sim \mathcal{N}(A_1 \mu_x, A_1 C_x A_1^T) = \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix})$

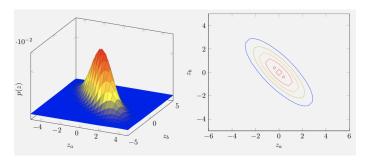
It can be seen that the distribution is scaled in the y_b direction.



F. Lindsten, T. Schön, A. Svensson and N. Wahlström. Probabilistic modeling - linear regression and Gaussian processes

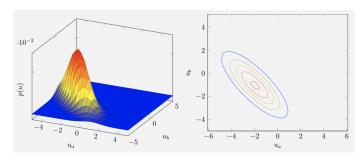
Giancarlo Ferrari Trecate Multivariable Control EPF

Do another linear transformation $z=A_2y$, this time a rotation of 45° where $A_2=\left[\begin{smallmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{smallmatrix} \right]$. The random variable z will be distributed as $z\sim N(A_2A_1\mu_X,A_2A_1C_XA_1^TA_2^T)=N(\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right],\left[\begin{smallmatrix} 5 & -4 \\ -4 & 5 \end{smallmatrix} \right])$. Consequently, also the density will be rotated.



Finally, consider a translation with u=z+b where $b=\begin{bmatrix} -2\\-1 \end{bmatrix}$. The final distribution will be

 $u \sim N(A_2A_1\mu_x + b, A_2A_1C_xA_1^TA_2^T) = N(\begin{bmatrix} -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix})$, i.e., the density will be shifted accordingly.



Linear systems driven by Gaussian noise

$$egin{aligned} x_{k+1} &= Ax_k + w_k \ y_k &= Cx_k + v_k &
ightarrow & ext{observed output} \ x_0 &\sim \mathcal{N}(ar{x}_0, \Sigma_0) \end{aligned}$$

- $w_k \in \mathbb{R}^n$: process noise (random vector)
- $v_k \in \mathbb{R}^p$: measurement noise (random vector)

Standard statistical assumptions (from now on...)

- 1) $x_0, w_1, w_2, \ldots, v_1, v_2, \ldots$ are jointly Gaussian and independent
- 2) w_k are iid (independent and identically distributed) with

$$E[w_k] = 0$$
 and $Var[w_k] = W \ge 0$

3) v_k are iid with $E[v_k] = 0$ and $Var[v_k] = V > 0$

Definition

A stochastic process w_k where w_1, w_2, \ldots are jointly Gaussian and verify assumption 2 is called White Gaussian Noise (WGN) with variance W. Notation $w \sim \text{WGN }(0, W)$

Define
$$X_k = \begin{bmatrix} x_0 \\ \vdots \\ x_k \end{bmatrix}$$
, $Y_k = \begin{bmatrix} y_0 \\ \vdots \\ y_k \end{bmatrix}$ etc...

Remark

 X_k and Y_k are linear combinations of x_0, W_k, V_k . Hence, $\begin{bmatrix} X_k \\ Y_k \end{bmatrix}$ is Gaussian

Statistical properties (under the standard assumptions)

- v_k is independent of x_i , $\forall j \geq 0$
 - w_k is independent of X_k and Y_k
 - Markov property:

$$x_k|X_{k-1}=x_k|x_{k-1}$$

 \hookrightarrow follows from the state equation: if one knows x_{k-1} , the knowledge of X_{k-2} does not bring additional information on x_k

Mean and variance of x_k

The mean $\bar{x}_k = E[x_k]$ verifies

$$\bar{x}_{k+1} = A\bar{x}_k$$

i.e. the system dynamics

Proof:

$$E[x_{k+1}] = E[Ax_k + w_k] = AE[x_k] + \underbrace{E[w_k]}_{=0}$$

The variance $P_k = E[(x_k - \bar{x}_k)(x_k - \bar{x}_k)^T]$ verifies

$$P_{k+1} = AP_kA^T + W$$

Proof:

$$P_{k+1} = E[(A(x_k - \bar{x}_k) + w_k)(A(x_k - \bar{x}_k) + w_k)^T]$$

$$= AE[(x_k - \bar{x}_k)(x_k - \bar{x}_k)^T]A^T$$

$$+ 2\underbrace{E[w_k(x_k - \bar{x}_k)^T]A^T}_{=0 \text{ as } w_k \text{ and } x_k \text{ are uncorrelated}} + \underbrace{E[w_k w_k^T]}_{W}$$

Lemma

If A is Schur, P_k converges, as $k \to +\infty$, to the solution P of the Lyapunov equation

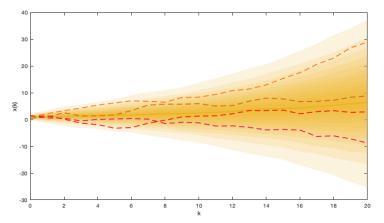
$$P = APA^T + W$$

Remark

P characterises the steady-state process.

Let consider the first order unstable system $x^+ = 1.2x + w$ where $x_0 \sim N(1, 0.5)$ and $w \sim N(0, 1)$. In the plot:

- for each k, the Gaussian density of x(k) using color shades
- four samples of state trajectories in red dashed lines



Change for the stable system $x^+ = 0.9x + w$ where $x_0 \sim \textit{N}(9, 0.5)$ and $w \sim \textit{N}(0, 1)$

- the variance P_k converges since A = 0.9 is Schur
- solving the Lyapunov equation $\rightarrow P = 5.26$
- gray dashed lines: 95% confidence intervals associated with P

