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Gaussian random variable (RV)
x ∈ R is a Gaussian RV if its probability density is

f (q) =
1

𝜎
√
2𝜋

e−
(q−𝜇)2

2𝜎2

Notation: x ∼ N(𝜇, 𝜎2)

By construction

𝜇 = E [x ] = mean

𝜎2 = E
[︀
(x − 𝜇)2

]︀
> 0 = variance
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Gaussian random vector

x = [x1, . . . , xn]
T is a Gaussian random vector if its probability density

is

f (q) =
1

(2𝜋)
n
2

√︀
det(C )

e−
1
2
(q−𝜇)TC−1(q−𝜇) , q ∈ Rn

where 𝜇 ∈ Rn and C = CT ∈ Rn×n is positive-definite

x1, . . . , xn are also called jointly Gaussian

Remark

Possible to assume that C is positive-semidefinite by defining a Gaussian
random vector using probability distributions instead of densities

By construction :

𝜇 = E [x ] =

∫︁
Rn

qf (q)dq1 . . . dqn mean

C = Var [x ] = E [(x − 𝜇)(x − 𝜇)T ] variance
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Example

C =

[︂
C11 C12

C21 C22

]︂

New quantity: Cij = Cov [xi , xj ] = E [(xi − 𝜇i )(xj − 𝜇j)] (for i ̸= j)

→˓ Cij ̸= 0 means that the knowledge of xi brings information on the
distribution of xj and vice-versa

→˓ x1, . . . , xn are uncorrelated if Cij = 0 ∀i ̸= j (diagonal variance)

→˓ For jointly Gaussian RVs incorrelation is the same as statistical
independence
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Marginal and conditional density

Let X ∈ Rn,Y ∈ Rm and[︂
X
Y

]︂
∼ N

(︂[︂
𝜇x

𝜇y

]︂
,

[︂
CXX CXY

CYX CYY

]︂)︂
= fXY (x , y)

X is a Gaussian RV, i.e. the marginal density

fX (x) =

∫︁
Rm

fXY (x , y) dy

is the Gaussian N(𝜇x ,CXX )

The conditional density of X for a measured value of Y is

fX |Y (x |y) =
fXY (x , y)

fY (y)

→ quantifies how uncertainty on
X changes because Y is no longer
random

→˓ Notation: X |Y for denoting the random vector X equipped with the
conditional density fX |Y
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Marginal and conditional density1

Two-dimensional Gaussian density and
the marginal density for each component
(dashed blue lines along each axis)
Remark: the marginal density do not con-
tain all information about fXY (x , y), since
the covariance information is lacking in that
representation.

Conditional distribution of X (green line),
when Y is observed (orange dot)
The conditional distribution of x , apart
from a normalizing constant, is the green
‘slice’ of the joint distribution.

1
F. Lindsten,T. Schön, A. Svensson and N. Wahlström. Probabilistic modeling - linear regression and Gaussian processes
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Proposition[︂
X
Y

]︂
is Gaussian ⇒ fX |Y is Gaussian with

E [X |Y ] =

(a)⏞  ⏟  
𝜇X + CXYC

−1
YY (y − 𝜇Y ) “a posteriori” mean

Var [X |Y ] = CXX − CXYC
−1
YYCYX⏟  ⏞  

(b)

“a posteriori” variance

(a): Shift in the mean

(b): “reduction” of the original uncertainty CXX

Definition

X and Y are uncorrelated if CXY = 0

→˓ Then:
Var [X |Y ] = Var [X ]

E [X |Y ] = E [X ]

fX |Y (x |y) = fX (x)

⎫⎪⎬⎪⎭
Knowing Y does not

bring any information

on X
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Example

X = height, Y = weight. Assume

[︂
X
Y

]︂
∼ N

(︂[︂
170
65

]︂
,

[︂
1 0.5
0.5 1

]︂)︂
c12 = 0.5 → makes sense: higher students weight more
Problem: which is the height density for a student weighting 110 Kg?

fX = prior height density ∼ N(170, 1)
fX |Y = posterior height density when Y = 110

E [X |Y ] = 170 + 0.5(110− 65) = 192.5

Var(X |Y ) = 1− 0.52 = 0.75
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Affine transformation of a Gaussian random vector

Proposition

If x = [x1, . . . , xn]
T ∼ N(𝜇x ,Cx) and

y = Ax + b

where b ∈ Rm and A ∈ Rm×n, then

(a) y ∈ Rm is Gaussian with
E [y ] = A𝜇x + b (*)

Var [y ] = ACxA
T (**)

(b) z =

[︂
x
y

]︂
is Gaussian with

E [z ] =

[︂
𝜇x

A𝜇x + b

]︂
Var [z ] =

[︂
Cx CxA

T

ACx ACxA
T

]︂
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Affine transformation of a Gaussian random vector

Proof of (b)

z =

[︂
I
A

]︂
x +

[︂
0
b

]︂
Apply (*), (**) with the substitutions: A →

[︂
I
A

]︂
, b →

[︂
0
b

]︂
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Example2

Consider a
two-dimensional
Gaussian random
vector
x = [ xaxb ] ∼ N(𝜇x ,Cx)
where 𝜇x = [ 00 ] and
Cx = [ 1 0

0 1 ]

Do a linear transformation y = A1x where A1 = [ 1 0
0 3 ]. The random vector y will

have a Gaussian density with y = [ yayb ] ∼ N(A1𝜇x ,A1CxA
T
1 ) = N([ 00 ] , [

1 0
0 9 ])

It can be seen that the
distribution is scaled in
the yb direction.

2
F. Lindsten,T. Schön, A. Svensson and N. Wahlström. Probabilistic modeling - linear regression and Gaussian processes
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Example

Do another linear transformation z = A2y , this time a rotation of 45∘

where A2 =
[︀
cos 45∘ − sin 45∘

sin 45∘ cos 45∘
]︀
. The random variable z will be distributed as

z ∼ N(A2A1𝜇x ,A2A1CxA
T
1 A

T
2 ) = N([ 00 ] ,

[︀
5 −4
−4 5

]︀
). Consequently, also

the density will be rotated.
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Example

Finally, consider a translation with u = z + b where b =
[︀−2
−1

]︀
. The final

distribution will be
u ∼ N(A2A1𝜇x + b,A2A1CxA

T
1 A

T
2 ) = N(

[︀−2
−1

]︀
,
[︀

5 −4
−4 5

]︀
), i.e., the density

will be shifted accordingly.
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Linear systems driven by Gaussian noise
xk+1 = Axk + wk

yk = Cxk + vk → observed output

x0 ∼ N(x̄0,Σ0)

• wk ∈ Rn: process noise (random vector)
• vk ∈ Rp: measurement noise (random vector)

Standard statistical assumptions (from now on. . . )

1) x0,w1,w2, . . . , v1, v2, . . . are jointly Gaussian and independent

2) wk are iid (independent and identically distributed) with

E [wk ] = 0 and Var [wk ] = W ≥ 0

3) vk are iid with E [vk ] = 0 and Var [vk ] = V > 0

Definition

A stochastic process wk where w1,w2, . . . are jointly Gaussian and verify
assumption 2 is called White Gaussian Noise (WGN) with variance W .
Notation w ∼ WGN (0,W )
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Define Xk =

⎡⎢⎣ x0
...
xk

⎤⎥⎦, Yk =

⎡⎢⎣ y0
...
yk

⎤⎥⎦ etc...

Remark

Xk and Yk are linear combinations of x0,Wk ,Vk . Hence,

[︂
Xk

Yk

]︂
is

Gaussian

Statistical properties (under the standard assumptions)

vk is independent of xj , ∀j ≥ 0

wk is independent of Xk and Yk

Markov property:

xk |Xk−1 = xk |xk−1

→˓ follows from the state equation: if one knows xk−1, the knowledge of
Xk−2 does not bring additional information on xk
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Mean and variance of xk

The mean x̄k = E [xk ] verifies
x̄k+1 = Ax̄k

i.e. the system dynamics

Proof:
E [xk+1] = E [Axk + wk ] = AE [xk ] + E [wk ]⏟  ⏞  

=0

The variance Pk = E [(xk − x̄k)(xk − x̄k)
T ] verifies

Pk+1 = APkA
T +W

Proof:

Pk+1 = E [(A(xk − x̄k) + wk)(A(xk − x̄k) + wk)
T ]

= AE [(xk − x̄k)(xk − x̄k)
T ]AT

+ 2 E [wk(xk − x̄k)
T ]AT⏟  ⏞  

=0 as wk and xk are uncorrelated

+ E [wkw
T
k ]⏟  ⏞  

W
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Lemma

If A is Schur, Pk converges, as k → +∞, to the solution P of the
Lyapunov equation

P = APAT +W

Remark

P characterises the steady-state process.
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Example
Let consider the first order unstable system x+ = 1.2x + w
where x0 ∼ N(1, 0.5) and w ∼ N(0, 1). In the plot:

for each k , the Gaussian density of x(k) using color shades

four samples of state trajectories in red dashed lines
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Example
Change for the stable system x+ = 0.9x + w
where x0 ∼ N(9, 0.5) and w ∼ N(0, 1)

the variance Pk converges since A = 0.9 is Schur
solving the Lyapunov equation → P = 5.26
gray dashed lines: 95% confidence intervals associated with P
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