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Gaussian random variable (RV)
@ x € R is a Gaussian RV if its probability density is
1 _(a=n)?
f(q) = e 502

oV 2

o Notation: x ~ N(u,c?)
By construction

= E[x] = mean

0% = E [(x — )] > 0 = variance

o2 decreases Y
Y
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\ o2 decreases -> less uncertainty
\

About the mean
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Gaussian random vector

° x =[xg,... ,x,,]T is a Gaussian random vector if its probability density

is
1

—— D C oD S
(27)% /det(C)

f(q) =
where 1 € R" and C = CT € R™*" is positive-definite

@ xi,...,X, are also called jointly Gaussian

Remark

Possible to assume that C is positive-semidefinite by defining a Gaussian
random vector using probability distributions instead of densities

By construction :
= E[x] :/ qf(q)dqy ... dgn mean
Rn
C = Var[x] = E[(x — p)(x — p) 7] variance
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New quantity: Cj; = Cov[x;, xj] = E[(xi — pi)(xj — pj)] (for i # j)
— Cjj # 0 means that the knowledge of x; brings information on the
distribution of x; and vice-versa

“% X1,...,Xp are uncorrelated if Cjj = 0 Vi # j (diagonal variance)
— For jointly Gaussian RVs incorrelation is the same as statistical
independence
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Marginal and conditional density
Let X e R",Y € R™ and

(] [ & &y ])=soten

@ X is a Gaussian RV, i.e. the marginal density

fx(X) = /m fxy(X,y) dy

is the Gaussian N(px, Cxx)
@ The conditional density of X for a measured value of Y is

— quantifies how uncertainty on
X changes because Y is no longer
random

fXY(X,}/)

fX|Y(X|y): fy(y)

— Notation: X|Y for denoting the random vector X equipped with the
conditional density fx|y
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Marginal and conditional density?

Two-dimensional Gaussian density and
the marginal density for each component
(dashed blue lines along each axis)
Remark: the marginal density do not con-
tain all information about fxy(x,y), since
the covariance information is lacking in that
representation.

Conditional distribution of X (green line),
when Y is observed (orange dot)

The conditional distribution of x, apart
from a normalizing constant, is the green
‘slice’ of the joint distribution.

1F. Lindsten,T. Schon, A. Svensson and N. Wabhlstrém. Probabilistic modeling - linear regression and Gaussian processes
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Proposition

{ ); ] is Gaussian = fxy is Gaussian with
(a)
E[X|Y] = pux + nyC;,%(y — py) “a posteriori” mean

Var[X|Y] = Cxx — Cxy C;&CYX “a posteriori” variance

(b)

(a): Shift in the mean
(b): “reduction” of the original uncertainty Cxx

Definition
X and Y are uncorrelated if Cxy =0

<~ Then:
Var[X|Y] = Var[X]) Knowing Y does not

E[X|Y] = E[X] bring any information
fx|v (x]y) = fx(x) on X
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Example

_ _ X 170 1 05
X = height, Y = weight. Assume [ Y ] ~ N <[ o5 ] ) { 05 1 ])

c12 = 0.5 — makes sense: higher students weight more
Problem: which is the height density for a student weighting 110 Kg?

I

170

fx = prior height density ~ N(170,1)
fx|y = posterior height density when Y =110

E[X|Y] = 170 + 0.5(110 — 65) = 192.5
Var(X|Y) =1-052=0.75
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Affine transformation of a Gaussian random vector
Proposition
If x =[x, ... ,X,,]T ~ N(py, C) and

y=Ax+b

where b € R™ and A € R™*" then

(a) y € R™ is Gaussian with
Ely] = Aux + b (%)

Var[y] = AGAT ( %)

(b) z= [ ; ] is Gaussian with

Elzl = [ A,uf:—b]
G GAT ]

Varlz] = [ AC, AGAT

v
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Affine transformation of a Gaussian random vector

Proof of (b)

(4]

Apply (), (5 %) with the substitutions: A — , b—

o O
[

A
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Example?

Consider a
two-dimensional
Gaussian random
vector

x =[]~ N(jix, G)
where i, = [3] and
C.= 139

1072

p(z)

Do a linear transformation y = A;x where A; = [} 9]. The random vector y will
have a Gaussian density with y = [}2] ~ N(A1pux, A1CAT) = N([3],[59])

It can be seen that the
distribution is scaled in
the y;, direction.
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2F, Lindsten, T. Schén, A. Svensson and N. Wahlstrom. Probabilistic modeling - linear regression and Gaussian processes
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Example

Do another linear transformation z = Ay, this time a rotation of 45°

where A, = [C9545§ _Si“4§,o]. The random variable z will be distributed as
sin45° cos45

z ~ N(AxA1pie, AsAL AT AT) = N([8].[ 24 5']). Consequently, also
the density will be rotated.

Giancarlo Ferrari Trecate Multivariable Control EPFL



Example

Finally, consider a translation with u = z+ b where b = [:ﬂ The final
distribution will be

u~ N(A2A1px + b, AZALGAT Al) = N([Z1] . [ % &1]). i.e., the density
will be shifted accordingly.

1072

plu)
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Linear systems driven by Gaussian noise
X1 = Axp + wi
vk = Cxx + vk — observed output
Xo ~ N()_<0, Zo)
e wy € R™ process noise (random vector)
e v, € RP: measurement noise (random vector)

Standard statistical assumptions (from now on...)

1) xp, w1, wWn,..., V1, Vo,... are jointly Gaussian and independent

2) wy are iid (independent and identically distributed) with
E[wk] =0 and Var[wx] =W >0

3) vk areiid with E[vi] =0 and Var[v] =V >0

Definition
A stochastic process wy where wy, ws, ... are jointly Gaussian and verify

assumption 2 is called White Gaussian Noise (WGN) with variance W.
Notation w ~ WGN (0, W)
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X0 Yo
Define X, = | : |, Y= : etc...

Xk Yk
Remark

Xk and Y are linear combinations of xg, Wy, Vi. Hence, [ );k ] is
k

Gaussian

Statistical properties (under the standard assumptions)
@ v is independent of x;, Vj > 0
@ wy is independent of X and Y
@ Markov property:

Xpe| Xk—1 = Xu|Xk—1

— follows from the state equation: if one knows xx_1, the knowledge of
Xi_2 does not bring additional information on xx
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Mean and variance of x

The mean X, = E[xx] verifies
Xk+1 = AR
i.e. the system dynamics

Proof:
E[Xk+1] = E[AXk + Wk] = AE[Xk] + E[Wk]
=0

The variance Py = E[(xx — % )(xk — %) "] verifies

Piy1 = APAT + W

Proof:
Pri1 = E[(ACx — %) + wie) (Al — %) + wi) ']
= AE[(xk — %) (xx — %) TJAT
+2  E[wk(xx — )?k)T]AT + E[WkW,;r]
—

=0 as wy and x are uncorrelated w
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Lemma
If Ais Schur, Py converges, as k — 400, to the solution P of the
Lyapunov equation

P =APAT + W

Remark
P characterises the steady-state process.
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Example

Let consider the first order unstable system x* =1.2x +w
where xo ~ N(1,0.5) and w ~ N(0,1). In the plot:

e for each k, the Gaussian density of x(k) using color shades

o four samples of state trajectories in red dashed lines

40 T
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Example

Change for the stable system

xt =09x+w

where xo ~ N(9,0.5) and w ~ N(0,1)
@ the variance P, converges since A = 0.9 is Schur
@ solving the Lyapunov equation — P = 5.26
@ gray dashed lines: 95% confidence intervals associated with P
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