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LTI system: stability of equilibria

Let (X, &) be an equilibrium for x* = Ax + Bu , x(0) = xp. How
uncertainty xp = X propagates to x(k)?

@ Perturbed experiment : X(k) = ¢(k,0, X, 0)

Definitions (Lyapunov stability)
The equilibrium state X is
@ stable if Ve > 035 > 0: ||X — x|| <0 = || X(k) — X|| < ¢e,Vk >0
o (globally) asymptotically stable (AS) if it is stable and attractive, i.e.,
kIme\\i(k) —X||=0, VX € R"

@ unstable if not stable
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LTI system: stability of equilibria

X = 0 stable x=0AS X = 0 unstable

Definition
X is (globally) exponentially stable (ES) if there are a > 0, p € [0, 1) such
that

(k) — %I < aplfo — %I, V5o € R”

where the constant 3 such that p = e¢” is the decay rate.

Problem
Definitions are difficult to use. How to test stability?

o Before addressing stability analysis, we need a number of tools
(equivalent systems and modes)
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Review: equivalent LTI systems

xT = Ax + Bu
y = Cx+ Du

e Change of coordinates X (k) = Tx (k), T € R™" invertible.
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Review: equivalent LTI systems

xT = Ax+ Bu
y=Cx+ Du

e Change of coordinates X (k) = Tx (k), T € R™" invertible.

R(k+1) = Tx(k+1)= T(Ax(k)+ Bu(k)) = T(AT % (k) + Bu(k))
= TAT1R(k)+ TBu (k) = A% (k) + Bu (k)
A=TAT!, B=TB
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Review: equivalent LTI systems

xT = Ax+ Bu
y=Cx+ Du

e Change of coordinates X (k) = Tx (k), T € R™" invertible.

R(k+1) = Tx(k+1)= T(Ax(k)+ Bu(k)) = T(AT % (k) + Bu(k))
= TAT1R(k)+ TBu (k) = A% (k) + Bu (k)
A=TAT!, B=TB
y(k) = Cx(k)+ Du(k)= CT 1% (k) + Du(k) = C% (k) + Du (k)
C=CcTtY, D=>D
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Review: equivalent LTI systems

xT = Ax + Bu £t = AR+ Bu
y = Cx+ Du y=Cx+Du

Definition

The system (A, B, C, ﬁ) is equivalent to the system (A, B, C, D) in the
sense that for an input u(k), kK > 0 and two initial states xg e Xp verifying
X0 = Txo, the state trajectories verify X (k) = Tx(k), k > 0, and outputs
are identical )

Remark

A and A are similar = they have the same eigenvalues
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Analysis of the free state

x(k +1) = Ax(k), x(0)=xo = x(k) = Akxo

Theorem

Each scalar entry of the matrix A¥ is a linear combination of functions of
time, called modes, associated to distinct eigenvalues of A as follows

eigenvalues modes
- 0 for k < p; 0.1 1
i € > i =YLy T —
’ KNP fork>p "
Xi = pielli
0 for k < p;
AND KPipK =P sin(0;(k — pi) + i) for k> p;
pizoula"'uni_l
Ah = A}

v
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where

@ 7 Is a suitable integer verifying
1<ni<n;
ni=1<+= n=v

@ n; and v; are, respectively, the algebraic and geometric multiplicity of
the eigenvalue \;

@ ¢; € R is a suitable parameter

Recall
@ n;: how many times J); is a root of the characteristic polynomial of A
o vi =dim(Vy,), V), = {vi € R"| Av; = \jv;} = eigenspace associated
to \;

o v; < nj, always!
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Remarks on the theorem

@ partial characterisation of modes, because (i) the value of 7; is not
precisely given if n; # v; and (ii) ¢; € R is not given
= one can show that 7; is the dimension of the largest Jordan
block associated to \;
o Ifpi=1:
a single mode associated to a real \;
a single mode associated to a complex conjugate pair A\; = A}
Sanity check: 2 degrees of freedom defining the pair of eigenvalues
—> 2 degrees of freedom 6; and p; defining the mode.

Important remark

Free states x(k) = A¥xg are linear combinations of the modes (through x)

v
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eigenvalues modes
\eR 0 for k < p; 0.1 1
i € ’ i — Yy )i —
’ KNP for k> p "
Xi = piel?
0 for k < p;
AND kPipkPisin(@;(k — pi) + i) for k> p;
PiZOala-‘-ﬂ?i—l
Ah = AT

@ \isimple = nj=vi=1 = n;=1

@ When J; is not simple, we are not interested in computing the precise

value of n; but only to know when n; =1 (hence pj =0) or n; > 1

(hence p; takes the values 0 and 1, at least)
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Example

Simple eigenvalue
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Example

Compute all modes associated to A

0 2
— one mode 2k
05 1 0
e A= 0 0.5 1 ,)\1:0.5,n1:3,V1 =7
0 0 05

o A= [2 0] ;A1 = 2. Diagonalisable! = n; =v; =2

Vos ={v:(A=05)v=0}=<qv=|wn| : va=wn=0

,a €R P = dim(Vps5) =1

Il

<

Il
oo
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From the table

eigenvalues modes
PR 0 for k < p; A q
i € ) i =YLy 7] —
’ KNP for k> p i
A = piel”
0 for k < p;
AND KPP sin(Bi(k — pi) + i) for k > p;
pi:0717"'77]i_1
Ap = AF
P 0 for k=0
e 0.5 and —1 are modes
k0.5 for k>0
0 for k=10,1
@ One could also have the mode if n; =3,

k?0.5572 for k > 1
but we need a deeper analysis for assessing whether this is true
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-1 0
setting p(A) = 0 we get '
M=j=1d7 = m=1 = =1

°o A= [0 1} ,(p(A):det(A/—A)zdet(ﬁ _;D =X +1,

AM—1— ) e
)\2:—_/:16]2:}”2:1:}]/2:1
eigenvalues modes
et 0 for k < p; . "
i € ) i =Y L0 —
! k”")\f.(fp" for k > p; P i
Ai = piel?
0 for k < p;
AND kP k=P sin(8i(k — pr) + i) for k > p;
pi=0,1,....,m =1
Ap =X}

@ Just one mode associated to the pair A1, Ao:

1 sin (gk + go,-)
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Macroscopic behaviour of modes

Lemma

@ If |\;] <1, all modes associated to A; are bounded and go to zero as

k — +o0.

@ If |Aj| > 1, all modes associated to \; are unbounded.

@ If |\;] =1 and v; = n;, all modes associated to \; are bounded.

@ If |\j| =1 and v; < n;, there's an unbounded mode associated to A;

Proof
Follows from the table of the modes:
eigenvalues modes
P 0 for k < p; ol 1
i € - s =0, L...,m =
KA fork>pt P !
Xi = piel”
0 for k < p;
AND kP k=Pl sin(0;(k — pi) + @i)  for k> p;
pi=0,1,...,m —1
A= A
v
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System with simple eigenvalues and modulus > 1
(simple — p; = 0)

eigenvalues modes
0 for k < p;
A €R {k"',\f"” for k> pr pi=01....m—1
i = piel®
0 for k < p;
AND {k"’p;‘”’ sin(0i(k — pi) + i) for k > p;
pi=01,. .. ,p—1
A=A\

Flgl.l re. [P. Bolzern, R. Scattolini, N. Schiavoni, Fondamenti
di controlli automatici, 4th edition, McGraw Hill Education,
2015]
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System with simple eigenvalues and modulus < 1
(simple — p; = 0)

| modes

ner |{° fork<n o1 1

i NP for k> py pi=01,....7
Ai = piel”
0 for k < p;
AND KPipf Psin(0:(k — pi) + i) for k> pi
pi=01..7n-1
A=A
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System with double eigenvalues of modulus < 1,
positioned as in the previous figure, and with n; = 2

Additional modes corresponding to p; =1

modes

A €R 0 for k < p; o1 1

i N for k> gy pi=0,1,....m
A = piel”
0 for k < p;
AND KPp P sin(03(k — pi) + i) for k> p;
pi=01,...,m—1
A=A
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System with simple eigenvalues and modulus =1

i I modes
MER 0 for k < p; o1 1
i€ s Pi=01 . mi—
! KPAEP for k> py pi K
Xi = piel”
0 for k < p;
AND K sin(Ok — i) + 1) for k 2 py
pi=01...n-1
M=
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Take-home messages

@ Stability of an equilibrium: key property but challenging to verify by
using definitions
@ modes = key functions for analysing LTI systems
» associated to eigenvalues
> finitely many

Next: how to use modes to characterise stability of LTI systems
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