Exercise 1A

Stability of an equilibrium and modal analysis

Giancarlo Ferrari Trecate¹

¹Dependable Control and Decision Group École Polytechnique Fédérale de Lausanne (EPFL), Switzerland giancarlo.ferraritrecate@epfl.ch

LTI system: stability of equilibria

Let (\bar{x}, \bar{u}) be an equilibrium for $x^+ = Ax + Bu$, $x(0) = x_0$. How uncertainty $x_0 = \bar{x}$ propagates to x(k)?

• Perturbed experiment : $\tilde{x}(k) = \phi(k, 0, \tilde{x}_0, \bar{u})$

Definitions (Lyapunov stability)

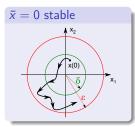
The equilibrium state \bar{x} is

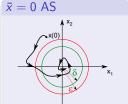
- stable if $\forall \epsilon > 0 \ \exists \delta > 0 : \|\tilde{x}_0 \bar{x}\| \le \delta \Rightarrow \|\tilde{x}(k) \bar{x}\| < \epsilon, \forall k \ge 0$
- (globally) asymptotically stable (AS) if it is stable and attractive, i.e.,

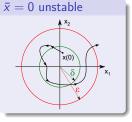
$$\lim_{k\to\infty} \|\tilde{x}(k) - \bar{x}\| = 0, \ \forall \tilde{x}_0 \in \mathbb{R}^n$$

unstable if not stable

LTI system: stability of equilibria







Definition

 \bar{x} is (globally) **exponentially stable** (ES) if there are $\alpha>0, \rho\in[0,1)$ such that

$$\|\tilde{\mathbf{x}}(k) - \bar{\mathbf{x}}\| \le \alpha \rho^k \|\tilde{\mathbf{x}}_0 - \bar{\mathbf{x}}\|, \quad \forall \tilde{\mathbf{x}}_0 \in \mathbb{R}^n$$

where the constant β such that $\rho = e^{\beta}$ is the **decay rate**.

Problem

Definitions are difficult to use. How to test stability?

 Before addressing stability analysis, we need a number of tools (equivalent systems and modes)

$$x^{+} = Ax + Bu$$
$$y = Cx + Du$$

• Change of coordinates $\hat{x}(k) = Tx(k)$, $T \in \mathbb{R}^{n \times n}$ invertible.

$$x^+ = Ax + Bu$$
$$y = Cx + Du$$

• Change of coordinates $\hat{x}(k) = Tx(k)$, $T \in \mathbb{R}^{n \times n}$ invertible.

$$\hat{x}(k+1) = Tx(k+1) = T(Ax(k) + Bu(k)) = T(AT^{-1}\hat{x}(k) + Bu(k))$$

$$= TAT^{-1}\hat{x}(k) + TBu(k) = \hat{A}\hat{x}(k) + \hat{B}u(k)$$

$$\hat{A} = TAT^{-1}, \quad \hat{B} = TB$$

$$x^+ = Ax + Bu$$
$$y = Cx + Du$$

• Change of coordinates $\hat{x}(k) = Tx(k)$, $T \in \mathbb{R}^{n \times n}$ invertible.

$$\hat{x}(k+1) = Tx(k+1) = T(Ax(k) + Bu(k)) = T(AT^{-1}\hat{x}(k) + Bu(k))
= TAT^{-1}\hat{x}(k) + TBu(k) = \hat{A}\hat{x}(k) + \hat{B}u(k)
\hat{A} = TAT^{-1}, \quad \hat{B} = TB
y(k) = Cx(k) + Du(k) = CT^{-1}\hat{x}(k) + Du(k) = \hat{C}\hat{x}(k) + \hat{D}u(k)
\hat{C} = CT^{-1}, \quad \hat{D} = D$$

$$x^+ = Ax + Bu$$
$$y = Cx + Du$$

$$\hat{x}^{+} = \hat{A}\hat{x} + \hat{B}u$$
$$y = \hat{C}\hat{x} + \hat{D}u$$

Definition

The system $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ is equivalent to the system (A, B, C, D) in the sense that for an input u(k), $k \ge 0$ and two initial states $x_0 \in \hat{x}_0$ verifying $\hat{x}_0 = Tx_0$, the state trajectories verify $\hat{x}(k) = Tx(k)$, $k \ge 0$, and outputs are identical

Remark

A and \hat{A} are similar \Rightarrow they have the same eigenvalues

Analysis of the free state

$$x(k+1) = Ax(k), x(0) = x_0 \implies x(k) = A^k x_0$$

Theorem

Each scalar entry of the matrix A^k is a linear combination of functions of time, called **modes**, associated to **distinct** eigenvalues of A as follows

eigenvalues	modes		
$\lambda_i \in \mathbb{R}$	$egin{cases} 0 & ext{for } k < p_i \ k^{p_i} \lambda_i^{k-p_i} & ext{for } k \geq p_i \end{cases}, p_i = 0, 1, \dots, \eta_i - 1$		
$\lambda_i = \rho_i e^{j\theta_i}$			
	$\int 0 \qquad \qquad \text{for } k < p_i$		
AND	$\begin{cases} k^{p_i} \rho_i^{k-p_i} \sin(\theta_i (k-p_i) + \varphi_i) & \text{for } k \geq p_i \end{cases}$		
	$p_i = 0, 1, \ldots, \eta_i - 1$		
$\lambda_h = \lambda_i^*$			

where

• η_i is a suitable integer verifying

$$1 \le \eta_i \le n_i$$

$$\eta_i = 1 \iff n_i = \nu_i$$

- n_i and ν_i are, respectively, the algebraic and geometric multiplicity of the eigenvalue λ_i
- $\varphi_i \in \mathbb{R}$ is a suitable parameter

Recall

- ullet n_i : how many times λ_i is a root of the characteristic polynomial of A
- $\nu_i = \dim(V_{\lambda_i})$, $V_{\lambda_i} = \{v_i \in \mathbb{R}^n | Av_i = \lambda_i v_i\} = \text{eigenspace associated to } \lambda_i$
- $\nu_i \leq n_i$, always!

Remarks on the theorem

- partial characterisation of modes, because (i) the value of η_i is not precisely given if $n_i \neq \nu_i$ and (ii) $\varphi_i \in \mathbb{R}$ is not given \implies one can show that η_i is the dimension of the largest Jordan block associated to λ_i
- If $\eta_i = 1$:
 - a single mode associated to a real λ_i
 - a single mode associated to a complex conjugate pair $\lambda_i = \lambda_h^*$ **Sanity check:** 2 degrees of freedom defining the pair of eigenvalues \implies 2 degrees of freedom θ_i and ρ_i defining the mode.

Important remark

Free states $x(k) = A^k x_0$ are linear combinations of the modes (through x_0)

eigenvalues	modes	
$\lambda_i \in \mathbb{R}$	$\int 0 \qquad \text{for } k < p_i \qquad \qquad p_i = 0, 1, \dots, p_i = 1$	
	$\begin{cases} k^{p_i} \lambda_i^{k-p_i} & \text{for } k \geq p_i \end{cases}, p_i = 0, 1, \dots, \eta_i - 1$	
$\lambda_i = \rho_i e^{j\theta_i}$		
	$\int 0 \qquad \qquad \text{for } k < p_i$	
AND	$\left\{k^{p_i} ho_i^{k-p_i}\sin(heta_i(k-p_i)+arphi_i) ight.$ for $k\geq p_i$	
	$p_i = 0, 1, \ldots, \eta_i - 1$	
$\lambda_h = \lambda_i^*$		

- λ_i simple $\implies n_i = \nu_i = 1 \implies \eta_i = 1$
- When λ_i is not simple, we are not interested in computing the precise value of η_i but only to know when $\eta_i=1$ (hence $p_i=0$) or $\eta_i>1$ (hence p_i takes the values 0 and 1, at least)

Example

Simple eigenvalue

Example

Compute all modes associated to A

•
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, $\lambda_1 = 2$. Diagonalisable! $\implies n_1 = \nu_1 = 2$
 \rightarrow one mode 2^k

$$\bullet \ A = \begin{bmatrix} 0.5 & 1 & 0 \\ 0 & 0.5 & 1 \\ 0 & 0 & 0.5 \end{bmatrix}, \lambda_1 = 0.5, n_1 = 3, \nu_1 = ?$$

$$V_{0.5} = \{ v : (A - 0.5I)v = 0 \} = \left\{ v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} : v_2 = v_3 = 0 \right\}$$

$$= \left\{ v = \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}, \alpha \in \mathbb{R} \right\} \implies \dim(V_{0.5}) = 1$$

From the table

eigenvalues	modes		
\ TD	$\int 0 \qquad \text{for } k < p_i$		
$\lambda_i \in \mathbb{R}$	$\begin{cases} k^{p_i} \lambda_i^{k-p_i} & \text{for } k \geq p_i \end{cases}, p_i = 0, 1, \dots, \eta_i - 1$		
$\lambda_i = \rho_i e^{j\theta_i}$			
	$\int 0 \qquad \qquad \text{for } k < p_i$		
AND	$\int k^{p_i} ho_i^{k-p_i} \sin(heta_i(k-p_i)+arphi_i)$ for $k \geq p_i$		
	$ \rho_i = 0, 1, \ldots, \eta_i - 1 $		
$\lambda_h = \lambda_i^*$			

- 0.5^k and $\begin{cases} 0 & \text{for } k = 0 \\ k \, 0.5^{k-1} & \text{for } k > 0 \end{cases}$ are modes
- One could also have the mode $\begin{cases} 0 & \text{for } k=0,1\\ k^2\,0.5^{k-2} & \text{for } k>1 \end{cases}$ but we need a deeper analysis for assessing whether this is true

•
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $\varphi(\lambda) = \det(\lambda I - A) = \det\left(\begin{bmatrix} \lambda & -1 \\ 1 & \lambda \end{bmatrix}\right) = \lambda^2 + 1$, setting $\varphi(\lambda) = 0$ we get
$$\lambda^2 = -1 \implies \begin{cases} \lambda_1 = j = 1e^{j\frac{\pi}{2}} \implies n_1 = 1 \implies \nu_1 = 1 \\ \lambda_2 = -j = 1e^{-j\frac{\pi}{2}} \implies n_2 = 1 \implies \nu_2 = 1 \end{cases}$$

eigenvalues	modes		
\	$\int 0 \qquad \text{for } k < p_i$		
$\lambda_i \in \mathbb{R}$	$\begin{cases} k^{p_i} \lambda_i^{k-p_i} & \text{for } k \geq p_i \end{cases}, p_i = 0, 1, \dots, \eta_i - 1$		
$\lambda_i = \rho_i e^{j\theta_i}$			
	$\int 0 \qquad \qquad \text{for } k < p_i$		
AND	$\left\{k^{p_i} ho_i^{k-p_i}\sin(heta_i(k-p_i)+arphi_i) ext{for } k\geq p_i ight.$		
	$ ho_i=0,1,\ldots,\eta_i-1$		
$\lambda_h = \lambda_i^*$			

• Just one mode associated to the pair λ_1, λ_2 :

$$1^k \sin\left(\frac{\pi}{2}k + \varphi_i\right)$$

Macroscopic behaviour of modes

Lemma

- If $|\lambda_i| < 1$, all modes associated to λ_i are **bounded** and **go to zero** as $k \to +\infty$.
- If $|\lambda_i| > 1$, all modes associated to λ_i are **unbounded**.
- If $|\lambda_i| = 1$ and $\nu_i = n_i$, all modes associated to λ_i are **bounded**.
- If $|\lambda_i| = 1$ and $\nu_i < n_i$, there's an **unbounded** mode associated to λ_i

Proof

Follows from the table of the modes:

eigenvalues	modes		
$\lambda_i \in \mathbb{R}$	$\begin{cases} 0 & \text{for } k < p_i \\ k^{p_i} \lambda_i^{k-p_i} & \text{for } k \ge p_i \end{cases}, p_i = 0, 1, \dots, \eta_i - 1$		
$\lambda_i = \rho_i e^{j\theta_i}$			
	$\int 0 \qquad \qquad \text{for } k < p_i$		
AND	$\left\{k^{p_i} ho_i^{k-p_i}\sin(heta_i(k-p_i)+arphi_i) \mid \text{for } k\geq p_i \right\}$		
	$p_i = 0, 1, \ldots, \eta_i - 1$		
$\lambda_h = \lambda_i^*$			

System with simple eigenvalues and modulus > 1

(simple
$$\rightarrow p_i = 0$$
)



eigenvalues	modes	
$\lambda_i \in \mathbb{R}$	$\begin{cases} 0 & \text{for } k < p_i \\ k^{p_i} \lambda_i^{k-p_i} & \text{for } k \ge p_i \end{cases}, p_i = 0$	$1, \ldots, \eta_i - 1$
$\lambda_i = \rho_i e^{j\theta_i}$	(0	for $k < p_i$
AND	$\begin{cases} k^{p_i} \rho_i^{k-p_i} \sin(\theta_i(k-p_i) + \varphi_i) \end{cases}$	
	$p_i = 0, 1, \dots, \eta_i - 1$	·-· ·· = F1
$\lambda_h = \lambda_i^*$		

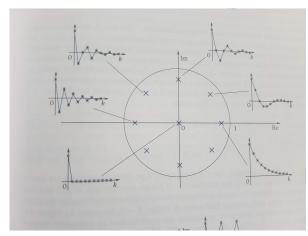
EPFL

15 / 19

Figure: [P. Bolzern, R. Scattolini, N. Schiavoni, Fondamenti di controlli automatici, 4th edition, McGraw Hill Education, 2015]

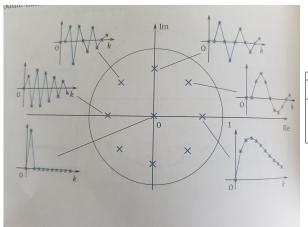
System with simple eigenvalues and modulus < 1

(simple
$$\rightarrow p_i = 0$$
)



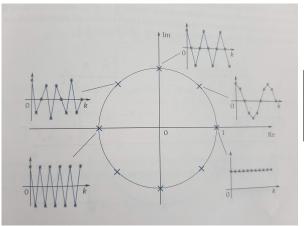
eigenvalues	modes		
$\lambda_i \in \mathbb{R}$	$\begin{cases} 0 & \text{for } k < p_i \\ k^{p_i} \lambda_i^{k-p_i} & \text{for } k \ge p_i \end{cases}, p_i = 0$	$1,\ldots,\eta_i-1$	
$\lambda_i = \rho_i e^{j\theta_i}$	(0	for $k < p_i$	
	10 k-m + (0//		
AND	$k^{p_i} \rho_i^{k-p_i} \sin(\theta_i(k-p_i) + \varphi_i)$	for $k \ge p_i$	
	$\rho_i = 0, 1, \dots, \eta_i - 1$		
$\lambda_h = \lambda_i^*$			

System with double eigenvalues of modulus < 1, positioned as in the previous figure, and with $\eta_i = 2$ Additional modes corresponding to $p_i = 1$



eigenvalues	modes	
$\lambda_i \in \mathbb{R}$	$\begin{cases} 0 & \text{for } k < p_i \\ k^{p_i} \lambda_i^{k-p_i} & \text{for } k \ge p_i \end{cases}, p_i = 0.$	$,1,\ldots,\eta_i-1$
$\lambda_i = \rho_i e^{j\theta_i}$	[0	for $k < p_i$
AND	$\begin{cases} k^{p_i} \rho_i^{k-p_i} \sin(\theta_i(k-p_i) + \varphi_i) \\ p_i = 0, 1, \dots, \eta_i - 1 \end{cases}$	for $k \ge p_i$
$\lambda_{L} = \lambda^{*}$	$p_1 = 0, 1, \dots, \eta_1 - 1$	

System with simple eigenvalues and modulus = 1



eigenvalues	modes	
$\lambda_i \in \mathbb{R}$	$\begin{cases} 0 & \text{for } k < p_i \\ k^{p_i} \lambda_i^{k-p_i} & \text{for } k \ge p_i \end{cases}, p_i = 0.$	$1,\ldots,\eta_i-1$
$\lambda_i = \rho_i e^{j\theta_i}$		
	ſo	for $k < p_i$
AND	$\left\{k^{p_i}\rho_i^{k-p_i}\sin(\theta_i(k-p_i)+\varphi_i)\right\}$	for $k \ge p_i$
	$\rho_i = 0, 1, \dots, \eta_i - 1$	
$\lambda_h = \lambda_i^*$		

Take-home messages

- Stability of an equilibrium: key property but challenging to verify by using definitions
- modes = key functions for analysing LTI systems
 - associated to eigenvalues
 - finitely many

Next: how to use modes to characterise stability of LTI systems

19 / 19