Multivariable Control (ME-422) - Exercise session 2

Prof. G. Ferrari Trecate

1. Exercise on modal analysis

Consider the system $x^+ = Ax$ where

$$A = \begin{bmatrix} -0.5 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -0.5 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Tell if

- (a) all modes go to zero as $k \to \infty$
- (b) all modes are bounded
- (c) there is at least an unbounded mode.

Hint: Note that A is block diagonal and its eigenvalues are those of each individual block.

2. Complex conjugate eigenvalues generate real modes

At first sight, it might seem strange that complex conjugate eigenvalues give rise to modes taking values in \mathbb{R} instead of \mathbb{C} . This exercise provides some intuition on why this happens.

Consider the system

$$\begin{cases} x^+ = Ax \\ y = Cx \end{cases}$$
$$x(0) = x_0$$

- (a) Let $A \in \mathbb{R}^{n \times n}$ and $T \in \mathbb{C}^{n \times n}$ be nonsingular matrices. Define $\hat{x}(k) = Tx(k) \in \mathbb{C}^n$. Show that $\hat{x}(k)$ follows the dynamics $\hat{x}^+ = \hat{A}\hat{x}$ with $\hat{A} = TAT^{-1}$.
- (b) Consider the case

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix},$$

where the eigenvalues of A are $1 \pm j = \sqrt{2}e^{\pm j\frac{\pi}{4}}$ and

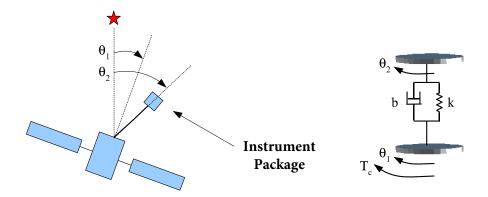
$$\hat{A} = TAT^{-1} = \begin{bmatrix} 1+j & 0\\ 0 & 1-j \end{bmatrix}$$
 for $T^{-1} = \begin{bmatrix} 1 & 1\\ j & -j \end{bmatrix}$.

Compute explicitly x(k) and y(k) as a function of x_0 .

3. Satellite simulation

Consider the satellite in the figure. The satellite mission requires accurate pointing of a scientific sensor package with respect to a fixed star.

• θ_2 is the angle deviation of the instrument package from the reference star. It can be measured through devices called "star trackers."



• θ_1 is the angle deviation of the satellite body

By using cold-gas jets, one can produce a torque T_c acting on the satellite body.

The figure also shows an equivalent mechanical model of the satellite. This system is composed by two rotating masses connected by a spring with torque constant κ and viscous-damping constant b.

A discrete-time model of the system with state $x = \begin{bmatrix} \theta_2 & \dot{\theta}_2 & \theta_1 & \dot{\theta}_1 \end{bmatrix}$, output $y = \theta_2$, and input $u = T_c$ can be written as

$$\begin{cases} x^{+} = \begin{bmatrix} 1 & T & 0 & 0 \\ -T\frac{\kappa}{J_{2}} & 1 - T\frac{b}{J_{2}} & T\frac{\kappa}{J_{2}} & T\frac{b}{J_{2}} \\ 0 & 0 & 1 & T \\ T\frac{\kappa}{J_{1}} & T\frac{b}{J_{1}} & -T\frac{\kappa}{J_{1}} & 1 - T\frac{b}{J_{1}} \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ T\frac{1}{J_{1}} \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x, \end{cases}$$

where T>0 is the sampling time and J_1 and J_2 are the inertias of the masses. Set $\kappa=0.091,$ b=0.0036, $J_1=1,$ $J_2=0.1,$ and T=0.01.

- (a) Check if the system has unbounded modes. Use MATLAB for computations.
- (b) Draw the free output between 0 and 200s., starting from the initial condition $x = \begin{bmatrix} 0 & 0 & 0.1 & 0 \end{bmatrix}^T$. Give a physical interpretation to the result.
- (c) Draw the impulse response (that is, the output generated by the input u(0) = 1, u(k) = 0, k > 0) and give an interpretation of the results in terms of the satellite motion.
- (d) Now consider the output as $y = x_2$. Draw the impulse response and, through the physical interpretation of the results, explain why its asymptotic value is consistent with the graph obtained in the previous point.

Useful MATLAB commands: eig, null, ss(A,B,C,D,T), lsim, impulse.