Multivariable Control (ME-422) - Exercise session 14B

Prof. G. Ferrari Trecate

In the previous exercise sessions, we introduced the Gripen system...

In this set of exercises, you will learn to design different control strategies for controlling the lateral
dynamics of a JAS 39 Gripen aircraft flying at an altitude of 500 m with a speed of 730 kl‘—l“
A folder containing all the necessary files for simulating the system is provided in Moodle.
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Figure 1: Top and back view of the Gripen aircraft

Linearized system model The continuous-time linearized dynamics of the aircraft are described by
the state-space equations:
Tz = Ax + Bu 1)
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where € R7, u € R? and y € R2. Table 1 summarizes the physical meaning of the different state
coordinates, whereas Table 2 defines the control variables. The measured signals (outputs) are y; = x4 =
@ and yo = x5 = 1. The values of the matrices A, B and C are defined in the gripen_data.mat file.
Assume that the system is initialized with:
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H ‘ Physical variable Description (see Figure 2) Units H

1 Uy vy & Bv where v is the velocity o
To P roll angular rate “;d
T3 r turning angular rate %
Ty %) roll angle rad
Ty P course angle rad
T Oq aileron angle rad
Ty Or rudder angle rad

Table 1: States of the Gripen system

H ‘ Physical variable  Description (see Figure 2)  Units H

cmd
dg

Uy aileron command angle rad

cmd
o7

U rudder command angle rad

Table 2: Control variables

... and you were asked to:

1. Load gripen_data.mat in Matlab to define the matrices of the linearized model of the Gripen.

2. Discretize the continuous time model with sampling time T € {0.5,0.05,0.005} using both the
exact and the forward Euler discretization methods.

(a) TIs stability always preserved? Verify your answer by simulating both the continuous-time and
the discrete-time models using Simulink. To do this, assume that u; = uy = 0.
Hint: use the Simulink blocks (discrete) state space and zero-order hold.

3. Choose a suitable value for Ty by analyzing the poles of the continuous-time system.

From now on, consider the discrete time system obtained in point 2 using the exact discretization
method and T, = 0.005s.

4. Assume that the states are measured.

(a) Is the system reachable using both inputs? Design a state-feedback controller assigning the

closed-loop eigenvalues in e 70175 e=01Ts o=1Ts  o=2Ts  o=3Ts =5Ts apd =575,

(b) Design a new controller that makes the dynamics converge faster. Assign the eigenvalues in
e 1T e72Ts 73T =4Ts 75T =207 and 73075, Compare the input signals computed

by the current controller with the ones in point 4a.

(c) Is the system reachable using a single input? If possible, design a controller for assigning the
closed-loop eigenvalues as in the point 4b using only the second input.

5. Assume that only the partial information given by y(t) is available.

(a) Design, if possible, a Luenberger observer in order to remove the assumption of fully measur-
able state of point 4. Plot the estimation error responses to validate the design.

i. Assume now, that the system measurements are corrupted by constant disturbances of
magnitude [aq, ag]T. How is the asymptotic estimation error affected? Derive an expres-
sion of the steady state estimation error as a function of «ay,as. Then, simulate it for
different numerical values of the constant disturbances.



(b) Since the roll and course angles (¢, 1) are states that are always measurable, design, if possible,
a reduced order observer for the remaining states.

6. Assume an unknown but constant disturbance acts on the plant states. Design a controller with
integral action to achieve asymptotic perfect tracking of a constant output reference. Implement
and validate the designed controller architecture in Simulink. For the controller design, solve an
eigenvalue assignment problem using pole placement.

Hint: consider augmenting the system with a chain of integrators and then design a compensator
to stabilize the augmented closed-loop system. You can use the same observer you designed in the
previous exercise session lo estimate the system states from the measurements of the output.

7. Design a state-feedback controller by solving an infinite-horizon linear quadratic optimal control
problem. Use the normalization approach to set the values of the weight matrices @Q and R. To do
so, assume that:
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Verify that the optimal feedback gain stabilizes the closed-loop system.

8. Assume now that the evolution of the system states and the measurement of the system outputs
are corrupted by independent and identically distributed Gaussian disturbances.

(a) Design a steady-state Kalman predictor to reconstruct the state with minimum error vari-
ance. Compare the state estimates produced by the Kalman filter with those provided by the
Luenberger observer designed in item 5. For simplicity, assume that V' and W are diagonal
with Vi 1 = Vo2 = 0.0001 and W; ; = 0.0001z; for i =1,...,7, where Z; are given in (2).

(b) Compute the mean of the innovation sequence vy, = yp — CZy;—1, and verify that it is close
to zero as there is no mismatch between the real and assumed models.

(¢) Simulate the closed-loop system obtained by combining the Kalman predictor with the linear
quadratic controller designed in the previous points.

Exercise session 14: optimal distributed control

9. The ground speed v for the Gripen is obtained by firing a radar beam towards the ground and
measuring the Doppler shift of the returning beam. This ground speed measurement is essential in
correctly controlling the lateral velocity v,,.

However, the sensor has become unavailable due to a cyber-attack, and you have to make do with
the other available state measurements. Your controller must now comply with a sparsity pattern
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In order to cope with the fact that v, cannot be measured anymore, it is worth increasing the cost
weight Q(1,1) by 10 times.

a) What is the new LQR controller K7gr? Does it comply with the desired sparsity pattern?

The first idea is to just set the entries corresponding to the measurement of v, equal to 0, that is
we define
Ko=Kigr©® S,

and try to use Ky as our distributed controller.



b) Check that K is stabilizing. What is the cost attained by K7 Verify that the cost is higher
than the LQR cost, as expected.

10. Apply Projected Gradient Descent, using K as an initial controller.

a) What cost can you achieve upon convergence to a stationary point K*?

b) Plot the evolution of x1(f) = v,(t) for the controlled system using Krgr, Ko and K*, for
a chosen initial condition. Verify by inspection of the plots that the performance of K* is
superior to that of Ky (see for instance Figure 2).
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Figure 2: Controlled system using Kror, Ko and K*



