
Multivariable Control (ME-422) - Exercise session 11B12B

Prof. G. Ferrari Trecate

In the previous exercise sessions, we introduced the Gripen system...

In this set of exercises, you will learn to design different control strategies for controlling the lateral
dynamics of a JAS 39 Gripen aircraft flying at an altitude of 500m with a speed of 730 km

h .
A folder containing all the necessary files for simulating the system is provided in Moodle.

Figure 1: Top and back view of the Gripen aircraft

Linearized system model The continuous-time linearized dynamics of the aircraft are described by
the state-space equations: {

ẋ = Ax+Bu

y = Cx
(1)

where x ∈ R7, u ∈ R2 and y ∈ R2. Table 1 summarizes the physical meaning of the different state
coordinates, whereas Table 2 defines the control variables. The measured signals (outputs) are y1 = x4 =
φ and y2 = x5 = ψ. The values of the matrices A, B and C are defined in the gripen data.mat file.

Assume that the system is initialized with:

v̄y = 10
m

s
, p̄ = r̄ =

π

180

rad

s
, φ̄ =

π

36
rad , ψ̄ =

π

18
rad and δ̄a = δ̄r = 0 rad .
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Physical variable Description (see Figure 1) Units

x1 vy vy ≈ βv where v is the velocity m
s

x2 p roll angular rate rad
s

x3 r turning angular rate rad
s

x4 φ roll angle rad

x5 ψ course angle rad

x6 δa aileron angle rad

x7 δr rudder angle rad

Table 1: States of the Gripen system

Physical variable Description (see Figure 1) Units

u1 δcmd
a aileron command angle rad

u2 δcmd
r rudder command angle rad

Table 2: Control variables

... and you were asked to:

1. Load gripen data.mat in Matlab to define the matrices of the linearized model of the Gripen.

2. Discretize the continuous time model with sampling time Ts ∈ {0.5, 0.05, 0.005} using both the
exact and the forward Euler discretization methods.

(a) Is stability always preserved? Verify your answer by simulating both the continuous-time and
the discrete-time models using Simulink. To do this, assume that u1 = u2 = 0.
Hint: use the Simulink blocks (discrete) state space and zero-order hold.

3. Choose a suitable value for Ts by analyzing the poles of the continuous-time system.

From now on, consider the discrete time system obtained in point 2 using the exact discretization
method and Ts = 0.005 s.

4. Assume that the states are measured.

(a) Is the system reachable using both inputs? Design a state-feedback controller assigning the
closed-loop eigenvalues in e−0.1Ts , e−0.1Ts , e−1Ts , e−2Ts , e−3Ts , e−5Ts and e−5Ts .

(b) Design a new controller that makes the dynamics converge faster. Assign the eigenvalues in
e−1Ts , e−2Ts , e−3Ts , e−4Ts , e−5Ts , e−20Ts and e−30Ts . Compare the input signals computed
by the current controller with the ones in point 4a.

(c) Is the system reachable using a single input? If possible, design a controller for assigning the
closed-loop eigenvalues as in the point 4b using only the second input.

5. Assume that only the partial information given by y(t) is available.

(a) Design, if possible, a Luenberger observer in order to remove the assumption of fully measur-
able state of point 4. Plot the estimation error responses to validate the design.

i. Assume now, that the system measurements are corrupted by constant disturbances of
magnitude [α1, α2]

⊤. How is the asymptotic estimation error affected? Derive an expres-
sion of the steady state estimation error as a function of α1, α2. Then, simulate it for
different numerical values of the constant disturbances.
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(b) Since the roll and course angles (φ,ψ) are states that are always measurable, design, if possible,
a reduced order observer for the remaining states.

6. Assume an unknown but constant disturbance acts on the plant states. Design a controller with
integral action to achieve asymptotic perfect tracking of a constant output reference. Implement
and validate the designed controller architecture in Simulink. For the controller design, solve an
eigenvalue assignment problem using pole placement.
Hint: consider augmenting the system with a chain of integrators and then design a compensator
to stabilize the augmented closed-loop system. You can use the same observer you designed in the
previous exercise session to estimate the system states from the measurements of the output.

In this exercise session, you are asked to:

7. Design a state-feedback controller by solving an infinite-horizon linear quadratic optimal control
problem. Use the normalization approach to set the values of the weight matrices Q and R. To do
so, assume that:

|x1| ≤ x̄1 = 12
m

s
, |x2| ≤ x̄2 =

5π

36

rad

s
, |x3| ≤ x̄3 =

5π

36

rad

s
, |x4| ≤ x̄4 =

π

3

rad

s
,

|x5| ≤ x̄5 =
π

3

rad

s
, |x6| ≤ x̄6 =

13π

36

rad

s
, |x7| ≤ x̄7 =

13π

36

rad

s
,

|u1| ≤
π

6

rad

s
and |u2| ≤

π

6

rad

s
.

(2)

Verify that the optimal feedback gain stabilizes the closed-loop system.

8. Assume now that the evolution of the system states and the measurement of the system outputs
are corrupted by independent and identically distributed Gaussian disturbances.

(a) Design a steady-state Kalman predictor to reconstruct the state with minimum error vari-
ance. Compare the state estimates produced by the Kalman filter with those provided by the
Luenberger observer designed in item 5. For simplicity, assume that V and W are diagonal
with V1,1 = V2,2 = 0.0001 and Wi,i = 0.0001x̄i for i = 1, . . . , 7, where x̄i are given in (2).

(b) Compute the mean of the innovation sequence νk = yk − Cx̂k|k−1, and verify that it is close
to zero as there is no mismatch between the real and assumed models.

(c) Simulate the closed-loop system obtained by combining the Kalman predictor with the linear
quadratic controller designed in the previous points.
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