Multivariable Control (ME-422) - Exercise session 12

Prof. G. Ferrari Trecate

1. Consider the system

$$x_{k+1} = 0.5x_k + w_k$$
 $w_k \sim N(0, 1)$
 $y_k = x_k + v_k$ $v_k \sim N(0, 1)$
 $x_0 \sim N(0, 1)$

and let the usual statistical assumptions for KF hold.

Derive a nonrecursive expression of $E[x_1|y_0,y_1]$.

2. Consider the first-order system

$$x_{k+1} = \alpha x_k + w_k$$

$$y_k = \gamma x_k + v_k$$

$$x_0 \sim N\left(\bar{x}_0, \bar{\Sigma}_0\right)$$
(1)

where α and γ are parameters, $w_k \sim N(0, \beta^2)$, $v_k \sim N(0, 1)$, and the usual statistical assumptions for Kalman Filtering hold (see the lectures).

We will study the Difference Riccati Equation (DRE) associated to the Kalman Predictor.

- (a) Assume the system is unstable, that is $\alpha > 1$, and that $\beta \neq 0$, $\gamma \neq 0$. We want to check if the Kalman Predictor can "track" the state even when it diverges.
 - i. Show that, using Σ_k for $\Sigma_{k|k-1}$, the DRE is

$$\Sigma_{k+1} = \beta^2 + \frac{\alpha^2 \Sigma_k}{1 + \gamma^2 \Sigma_k}.$$
 (2)

- ii. The values of Σ_k can be computed from (2) using the following graphical procedure (valid also for a generic nonlinear system $x_{k+1} = f(x_k)$).
 - A. Plot $f(\Sigma_k) = \beta^2 + \frac{\alpha^2 \Sigma_k}{1 + \gamma^2 \Sigma_k}$ and the line $l(\Sigma_k) = \Sigma_k$. The intersections of f and l gives the solutions to the ARE

$$\bar{\Sigma} = \beta^2 + \frac{\alpha^2 \bar{\Sigma}}{1 + \gamma^2 \bar{\Sigma}}.$$
 (3)

This plot is given in Figure 1. Consider only the positive solution.

- B. Set k=0 and fix $\Sigma_0>0$ on the horizontal axis. One has $\Sigma_{k+1}=f(\Sigma_k)$ and
 - If $\Sigma_k < \bar{\Sigma}$, then $\Sigma_{k+1} > \Sigma_k$ (because $f(\Sigma_k) > l(\Sigma_k)$) and Σ_k increases monotonically towards $\bar{\Sigma}$
 - If $\Sigma_k > \bar{\Sigma}$, then $\Sigma_{k+1} < \Sigma_k$ (because $f(\Sigma_k) < l(\Sigma_k)$) and Σ_k decreases monotonically towards $\bar{\Sigma}$

Plot on the figure, the (qualitative) sequences Σ_0 , Σ_1 , Σ_2 , ... when starting from $\Sigma_0 > \bar{\Sigma}$ and $\Sigma_0 < \bar{\Sigma}$.

- (b) Assume now that $|\alpha| > 1$, $\beta \neq 0$ but $\gamma = 0$.
 - i. Derive the DRE.
 - ii. Adapt the graphical method in point (2.a.ii.) for assessing if the DRE is converging or not.

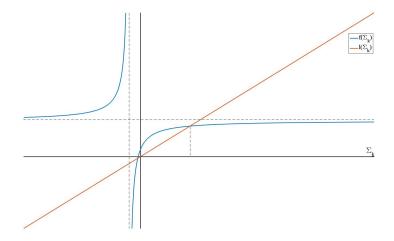


Figure 1: $f(\Sigma_k)$ and $l(\Sigma_k)$

- (c) Assume that $|\alpha| > 1$, $\beta^2 = 0$, $\gamma \neq 0$. Use MATLAB for plotting the new functions $f(\Sigma_k)$ and $l(\Sigma_k)$ and repeat the analysis about the convergence of the DRE.
- (d) The previous analysis shows that Σ_k diverges when $\gamma = 0$. Can you provide an interpretation of this result (**Hint:** Look at (1))?