Production Management (ME-419)

Guest Speaker

Amin Kaboli

Week 6 – Session 1 – Oct 17th, 2024

Production Management (ME-419)

Module 2 – Demand Management

Optimizing Smoothing Coefficients & Demand Plan

Amin Kaboli

Week 6 – Session 2 – Oct 17th, 2024

Indicative Feedback

Course Framework

Business plan Strategic plan Financial plan

Production Management (ME-419)

Module 1 Introduction to PM

Sep

Value Adding Network

Flows, Bill of materials,

Production procedures,

Value adding activities

Production Process

Demand Management

Module 2

Sep-Oct

Demand disruptions Forecasting Methods Qualitative methods Quantitative methods Demand plan

Module 3

Supply Management

Oct-Nov

Supply disruptions **Production Planning** AP, MPS, MRP Capacity Planning **Inventory Management** Supply Plan

Module 4

Digital Transformation

Dec

Digital technologies for PM, Demand and Supply Analytics, From Products to **Ecosystems**

Final Presentation

Dec 18th & 20th

Final presentation & solid understanding of the course

Demand Management – Forecasting Steps

Demand forecast at the item and aggregate levels

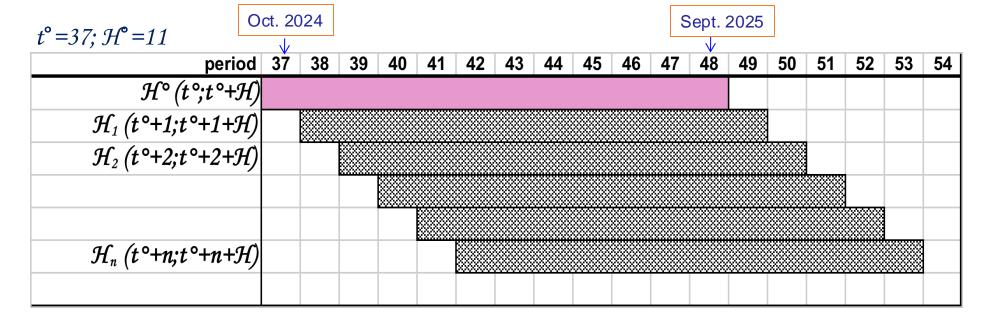
Goal: What is the purpose of the forecast (Type of products, Granularity, Horizon)

Data: Obtain, clean, and analyze appropriate data

Method: Select a forecasting method (Qualitative *vs* Quantitative)

Forecast: Make the forecast

Performance: Monitor the forecast errors

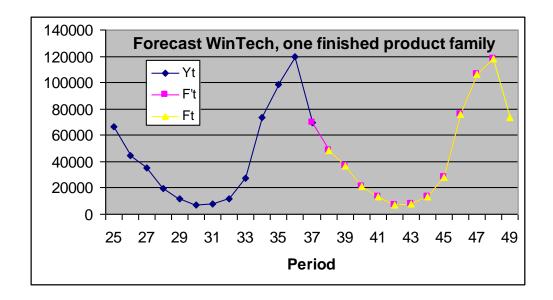

Model Initialization – Smoothing Coefficient Optimization

1. Initial forecast model $F'_{t+h} = (B' + hT') \times S'_{t+h}$ Horizon = $\mathcal{H}^{\circ}(t^{\circ}; t^{\circ} + \mathcal{H})$

Initial values = B', T', S'
$$h=1 \; ; \; F'_{36+1} = (44'492 + (1)*166)* \; S'_{24+1}$$

$$h=1 \; ; \; F'_{37} = (44'492 + (1)*166)* \; S'_{25}$$

$$h=1 \; ; \; F'_{37} = (44'492 + (1)*166)* \; 1.56 = 69'695$$

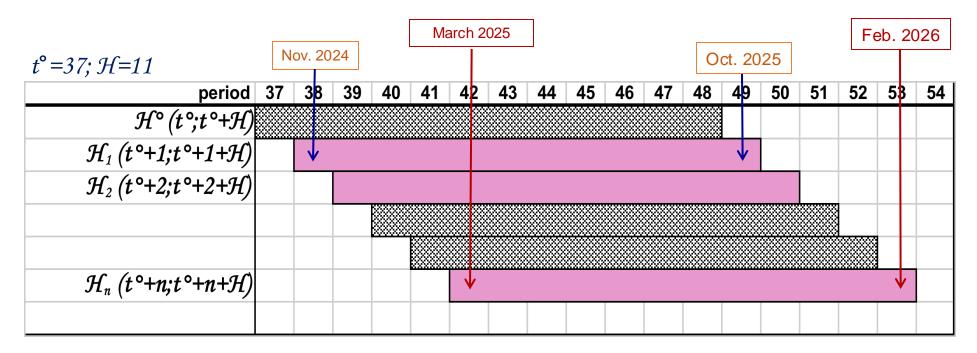


Final Forecast – Demand Plan

1. Initial forecast model

$$F'_{t+h} = (B' + hT') \times S'_{t+h}$$

- 2. Running forecast model (cycle 1) $F_{t+h} = (B_t + hT_t) \times S'_{t+h}$
- 3. Running forecast model (cycle 2) $F_{t+h} = (B_t + hT_t) \times S_{t+h-c}$



Running Model – Smoothing Coefficient Optimization

2. Following forecast model $F_{t+h} = (B_t + hT_t) \times S'_{t+h}$

$$\mathsf{Horizon} = \mathcal{H}_1\left(t^{\circ}+1;t^{\circ}+1+\mathcal{H}\right); \, \mathcal{H}_2\left(t^{\circ}+2;t^{\circ}+2+\mathcal{H}\right); \, \mathcal{H}_n\left(t^{\circ}+n;t^{\circ}+n+\mathcal{H}\right)$$

Adjusted values by exponential smoothing = B_t , T_t

Running Model – Smoothing Coefficient Optimization

2. Running forecast model

$$F_{t+h} = (B_t + hT_t) \times S'_{t+h}$$

$$B_t = \alpha \frac{Y_t}{S_{t-c}} + (1-\alpha)(B_{t-1} + T_{t-1})$$

$$T_t = \beta (B_t - B_{t-1}) + (1-\beta)T_{t-1}$$

$$S_t = \gamma \frac{Y_t}{B_t} + (1-\gamma)S_{t-c}$$

 $t^{\circ} = 37; \mathcal{H} = 11$

period	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathcal{H}^{\circ}\left(t^{\circ};t^{\circ}\mathcal{+}\mathcal{H} ight)$																		
$\mathcal{H}_{1}\left(t\degree+1;t\degree+1+\mathcal{H} ight) \ \mathcal{H}_{2}\left(t\degree+2;t\degree+2+\mathcal{H} ight)$																		
$\mathcal{H}_{2}\left(t\degree +2;t\degree +2+\mathcal{H} ight)$																		
\mathcal{H}_n (t °+ n ; t °+ n + \mathcal{H})																		

Running Model – Smoothing Coefficient Optimization

2. Following forecast model $F_{t+h} = (B_t + hT_t) \times S'_{t+h}$

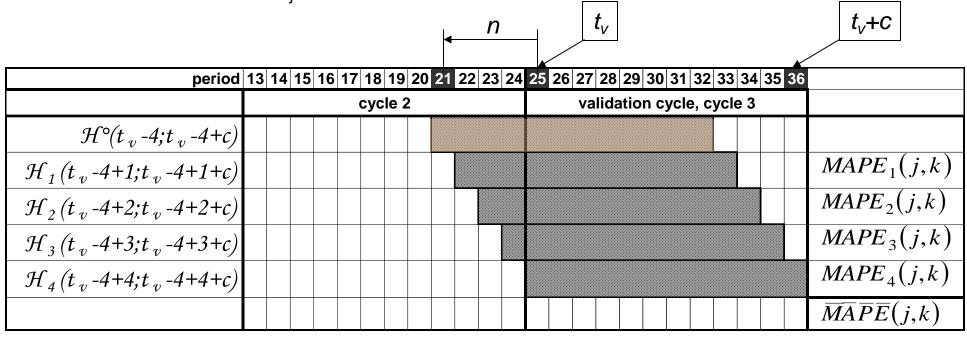
$$F_{t+h} = (B_t + hT_t) \times S'_{t+h}$$

$$B_t = \alpha \frac{Y_t}{S_{t-c}} + (1-\alpha)(B_{t-1} + T_{t-1})$$

$$T_t = \beta (B_t - B_{t-1}) + (1-\beta)T_{t-1}$$

$$S_t = \gamma \frac{Y_t}{B_t} + (1-\gamma)S_{t-c}$$

The values of α , β influence forecast reliability

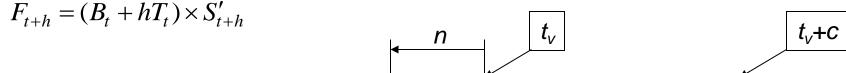

3. Choose set of values $(\alpha, \beta)_0$ that minimizes the forecasting error

Procedure – Smoothing Coefficient Optimization (I)

Step 1. Following Initiate forecast over horizon H at period t_v -n, with n [3;c/2] forecast model

Step 2. Compute initial forecast for the horizon H° (t_v -n; t_v -n+c-1) Initiate forecast over horizon H at period t_v -n, with n [3;c/2] forecast model $F'_{t+h} = (B' + hT') \times S'_{t+h}$ h \hat{l} [1;c]

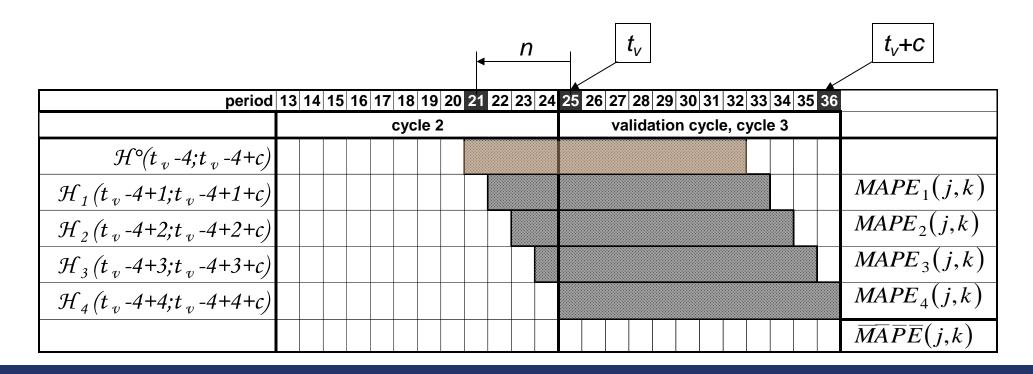
Step 3. Choose set of values α_i , β_k with α , β [0;1]



Procedure – Smoothing Coefficient Optimization (II)

Step 4. Compute new forecast over the horizon H1 (tv-n+1;tv-n+c) by adjusting model parameters:

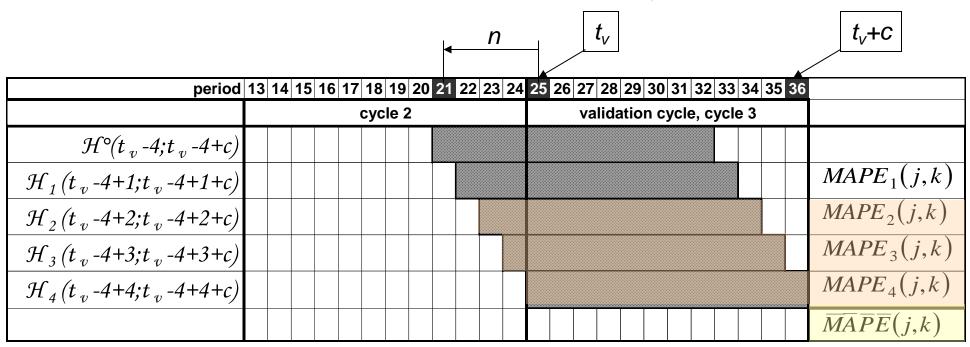
$$B_{t} = \alpha_{j} \frac{Y_{t}}{S_{t-c}} + (1 - \alpha_{j})(B_{t-1} + T_{t-1})$$


$$T_{t} = \beta_{k}(B_{t} - B_{t-1}) + (1 - \beta_{k})T_{t-1}$$

period	13 14 15 16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31 32 33 34 35 36	
	cycle 2	validation cycle, cycle 3	
$\mathcal{H}^{\circ}(t_{v}$ -4; t_{v} -4+ $c)$			
$\mathcal{H}_{1}(t_{v}-4+1;t_{v}-4+1+c)$			$MAPE_1(j,k)$
$\mathcal{H}_{2}(t_{v}-4+2;t_{v}-4+2+c)$			$MAPE_2(j,k)$
$\mathcal{H}_{3}(t_{v}-4+3;t_{v}-4+3+c)$			$MAPE_3(j,k)$
$\mathcal{H}_{4}(t_{v}$ -4+4; t_{v} -4+4+ $c)$			$MAPE_4(j,k)$
			$\overline{\mathit{MAPE}}(j,k)$

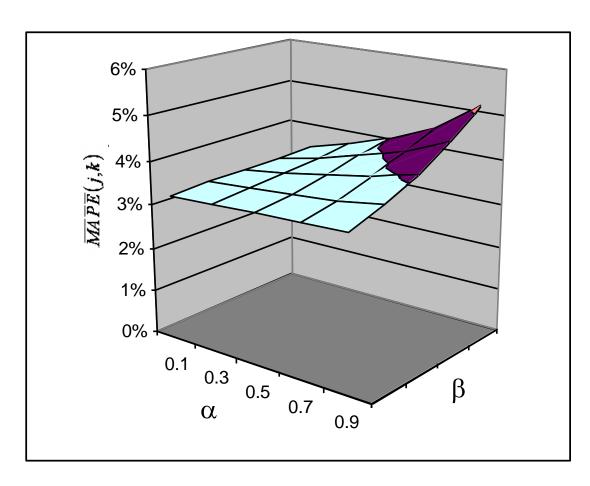
Procedure – Smoothing Coefficient Optimization (III)

Step 5. Compute the forecast error: $MAPE_1(j,k)$



Procedure – Smoothing Coefficient Optimization (IV)

Step 6. Repeat steps 4 to 5 with n other horizons H_q (tv-n+q;tv-n+q+c-1) with q=[2;n]


Step 7. Compute average $\overline{MA}\overline{P}\overline{E}(j,k)$ of the n forecast horizons

Step 8. Repeat steps 3 to 7 with several other sets of values $a_j, b_k \hat{1}$ [0;1]

Procedure – Smoothing Coefficient Optimization (V)

Step 9. Plot function $\overline{MAPE}(j,k) = f(a_j,b_k)$

Step 10. Select set $(\alpha, \beta)_0$ that minimizes $\overline{MAPE}(j,k)$

Assignment 6 – Tasks

- 1) Optimize smoothing coefficients (alpha, beta, Gamma) for running your forecasting model
- 2) Forecast and update the demand plan of your product families for the next 18 months
- 3) Measure performance of your forecasting model
- 4) Implement comments and feedback of your coach

Assignment 6 – Tasks

- 1) Identify the demand typology for each product family (constant, cyclic, seasonal, with trend).
- 2) Test whether there is seasonality in your dataset or not (use auto-correlation)
- 3) Select a preliminary forecast model (align with task 1 and 2)
- 4) Compute possible initial trend components
- 5) Compute possible initial seasonal components
- 6) Validate the proposed initial model
- 7) Comment the results of the validation process
- 8) Set a logic for smoothing coefficients (alpha, beta, Gamma) for running your forecasting model.
- 9) Forecast the demand of your product (product family level) for the next 18 months.
- 10) Measure performance of your forecasting model (Use MAPE).

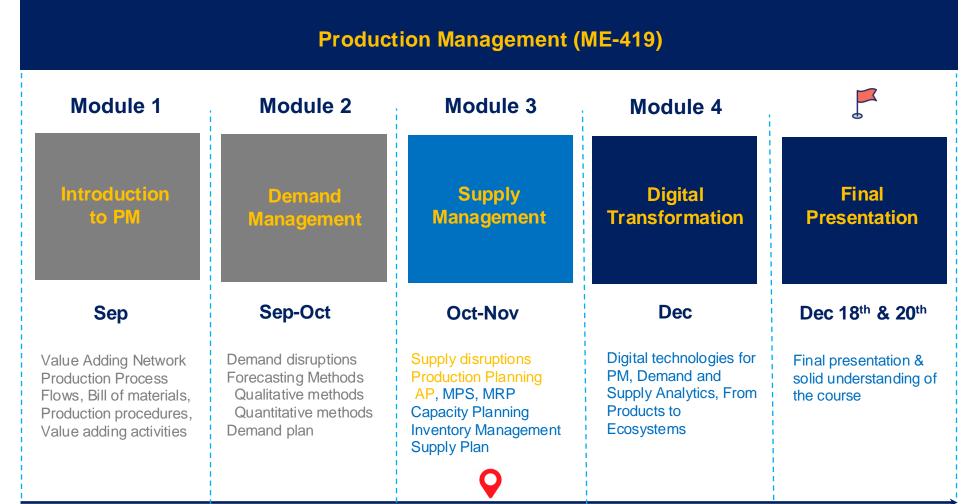
Learning Points of Module 2 – Summary

- How to forecast and predict demand for a company
- What are the main components of demand management
- What are the main challenges of demand management
- Approaches to deal with demand management: Qualitative and Quantitative
- Qualitative: How to turn vision of decision makers into numbers (and remove biases)
- Qualitative: How to use historical data to better plan production for future
- How to create a demand plan
- How to measure the performance of a demand plan

Production Management (ME-419)

Module 2 – Supply Management

Supply Disruptions Aggregate Planning


Amin Kaboli

Week 6 – Session 2 – Oct 17th, 2024

Course Framework

Business plan Strategic plan Financial plan

Module 3 – Supply Management

Objectives

- Understanding the basic principals of supply management
- Mastering the following concepts and tools
 - Production Planning (AP, MPS, MRP)
 - Capacity Planning (RCCP, CPOPF)
 - Inventory Management
- Developing a feasible supply plan

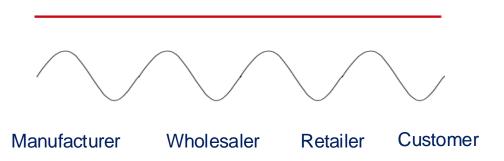
Question?

How to manage demand variation (change) in your manufacturing company?

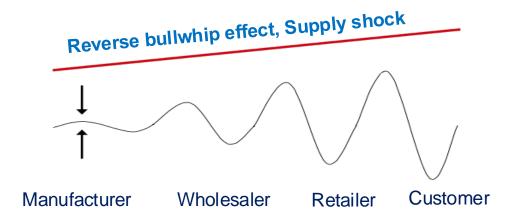
How to Manage Demand Variation in Your Company?

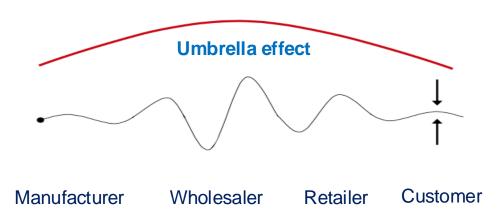
Varying the production rate by introducing overtime and/idle time or outside subcontracting

Changing the size of workforce by hiring and firing!

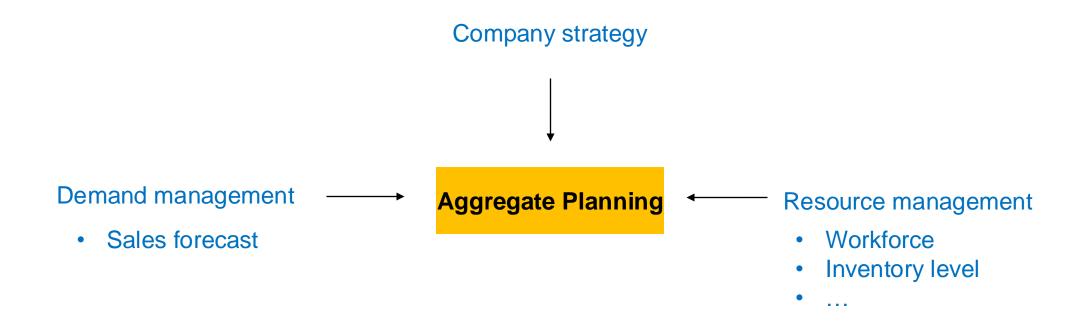


Building up stock

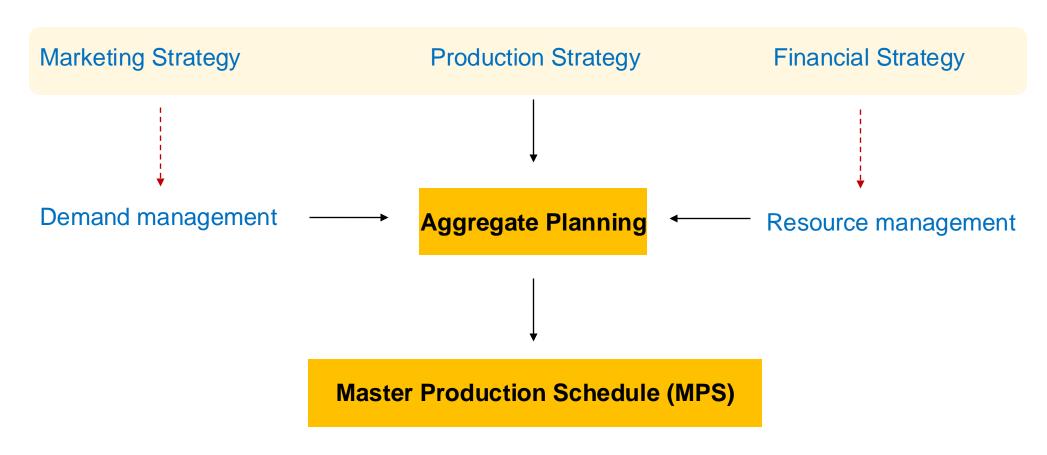



Planning backorders

Reminder: Demand & Supply Variations



Aggregate Planning (AP)


What is aggregate planning?

It translates business plans into rough labor schedules and production plans.

Aggregate Planning – Extended

Company strategy

Aggregate Planning – Steps

Estimation of market demand

Resource availability analytics

Developing alternative plans

Aggregate Planning

- Product families
- Time period
- Workforce level
- Actual production rate
- Stock availability
- Costs (production, changing workforce, stock)

- Horizon: 12 to 18 months
- Revision: monthly

Aggregate Planning – Strategies

Level plan (Stable)

Chase plan (Demand following)

Hybrid plan (Mixed)

- Constant workforce
- Similar production quantities each time period
- Inventories and backorders to absorb demand
- Variable workforce (hiring & firing)
- Variable production quantities
- Minimizing finished good inventories
- Variable workforce (hiring & firing)
- Stock build up and backorders to level extreme peaks

Aggregate Planning – Costs to be Considered

Production costs

Changing workforce costs

Stock related costs

Fixed & variable costs

- Material costs
- Direct labor costs
- Overhead costs
- ...
- Hiring workforce
- Training workforce
- Firing (laying off) workforce
- Overtime compensations
- Holding costs
- Backorder costs
- Loss on goods destroyed

Question: What Does Aggregated Plan do?

Given an aggregate sales forecast (product family level), determine production levels, inventory levels, and workforce levels, in order to minimize total relevant costs over the planning horizon.

Exercise 1: Aggregate Plan Strategies

- Level plan (Stable)
- Chase plan (Demand following)
- Hybrid plan (Mixed)

Task 1: Create an Aggregate plan (all three strategies)

Task 2: Compare the strategies

Level Plan

Beginning Inventory	2'500
Beginning Workforce	18
Labor Standard (units/worker)	250

- Similar production quantities each time period
- Inventories and backorders to absorb demand
- Constant workforce

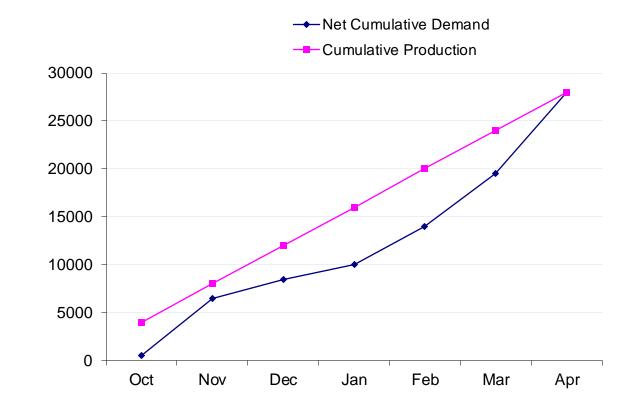
Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Sales forecast	3/000	6'000	2'000	1'500	4'000	5'500	8'500
Cumulative Sales forecas	3/000	9'000	11'000	12'500	16'500	22'000	30'500
Net Cumulative Sales forecast	500	6'500	8'500	10'000	14'000	19'500	28'000

Production Planning

Production	4000	4000	4000	4000	4000	4000	4000
Cumulative Production	4000	8000	12000	16000	20000	24000	28000
Inventory (Excess Units)	3500	1500	3500	6000	6000	4500	0
Backorders (Units Short)	0	0	0	0	0	0	0

Capacity Planning

Workers Hired	0	0	0	0	0	0	0
Workers Layed Off	2	0	0	0	0	0	0
Workforce Available	16	16	16	16	16	16	16


Level Plan

Constant workforce

Chase Plan

Variable production quantities
Minimizing finished good inven

Beginning Inventory	2'500
Beginning Workforce	18
Labor Standard (units/worker)	250

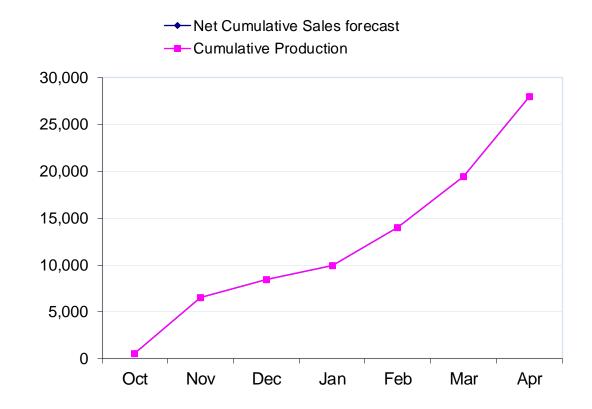
- Minimizing finished good inventories
- Variable workforce (hiring & firing)

Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Sales forecast	3/000	6'000	2'000	1'500	4'000	5'500	8'500
Cumulative Sales forecas	3'000 500	9'000	11'000	12'500	16'500	22'000	30'500
Net Cumulative Sales forecast	500	6'500	8'500	10'000	14'000	19'500	28'000

Production Planning

							
Production	500	6/000	2'000	1'500	4'000	5'500	8'500
Cumulative Production	500	6'500	8'500	10'000	14'000	19'500	28'000
Inventory (Excess Units)	0	0	0	0	0	0	0
Backorders (Units Short)	0	0	0	0	0	0	0

Capacity Planning


Workers Hired	0	22	0	0	10	6	12
Workers laid Off	16	0	16	2	0	0	0
Workforce Available	2	24	8	6	16	22	34

Chase Plan

- Variable production quantities
- Minimizing finished good inventories
- Variable workforce (hiring & firing)

Hybrid Plan

Variable workforce (hiring & firing)

Beginning Inventory	2'500
Beginning Workforce	18
Labor Standard (units/worker)	250

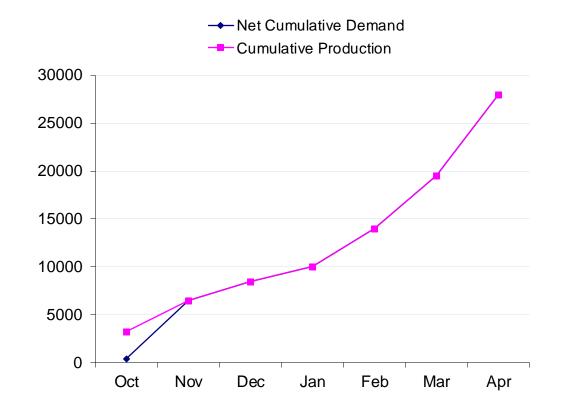
Period	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Sales forecast	3'000	6'000	2'000	1'500	4'000	5'500	8'500
Cumulative Sales forecas	3/000	9'000	11'000	12'500	16'500	22'000	30'500
Net Cumulative Sales forecast	3000 500	6'500	8'500	10'000	14'000	19'500	28'000

Production Planning

Production	3250	3250	2000	1500	4000	5500	8500
Cumulative Production	3250	6500	8500	10000	14000	19500	28000
Inventory (Excess Units)	2750	0	0	0	0	0	0
Backorders (Units Short)	0	0	0	0	0	0	0

Capacity Planning

Workers Hired	0	0	0	0	10	6	12
Workers Layed Off	5	0	5	2	0	0	0
Workforce Available	13	13	8	6	16	22	34



Hybrid Plan

Variable workforce (hiring & firing)

Plan Comparison

Level plan (Stable); CHF 1'330'500

• Chase plan (Demand following) CHF 1'254'500

• Hybrid plan (Demand following) CHF 1'240'750

	Cost	Total	Total
Costs (CHF)	Per Unit	Units	Cost
Regular Time Labor Cost	43.00	28000	1'204'000
Overtime/Subcontracting	14.40	0	0
Inventory Holding Cost	5.00	25000	125'000
Backorders	7.50	0	0
Hiring	500.00	0	0
Layoff	750.00	2	1'500
	Total Cost	1'330'500	

Costs (CHF)	Cost Per Unit	Total Units	Total Cost
Regular Time Labor Cost	43.00	28000	1'204'000
Overtime/Subcontracting	14.40	0	0
Inventory Holding Cost	5.00	0	0
Backorders	7.50	0	0
Hiring	500.00	50	25'000
Layoff	750.00	34	25'500
	Total Costs		1'254'500

	Cost	Total	Total
Costs (CHF)	Per Unit	Units	Cost
Regular Time Labor Cost	43.00	28000	1'204'000
Overtime/Subcontracting	14.40	0	0
Inventory Holding Cost	5.00	2750	13'750
Backorders	7.50	0	0
Hiring	500.00	28	14'000
Layoff	750.00	12	9'000
	Total Costs	S	1'240'750

Production Management (ME-419)

Coaching Rooms

Amin Kaboli

Week 4 – Session 4 – Oct 04th, 2024

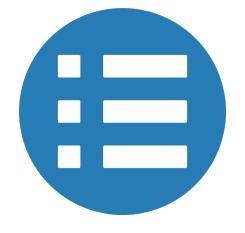
Please Follow Your coaches to Your Designated Rooms

Coaches

Joao **GCA 331**

Xavier GRA 332

The Art of Giving and Receiving Effective Feedback


Feedback is a gift

Feedback/comments are always welcome

Giving Effective Feedback

Respectful
Ask for permission
May I share my observation

Fact-based
Share facts/ your feelings
What I observed/felt is that ...

Constructive
Stay focused on growth
What I suggest is that ...

Concise
Be to-the-point and short
Max three key points

Open
Be open to any reaction
I respect your feeling ...

Receiving Effective Feedback

Receive the gift
Be open and receptive
I appreciate your feedback

Listen
Listen to listen!
The goal is to listen not to answer, no interruption (zip it)

Understand
Focus on THE message
The goal is to understand,
ask questions, clarify,
repeat key points, ...

Decide
You always have a choice
Thank you, I have never
seen it this way
OR
Thank you, let me reflect

thank you, let me reflect set up a meeting, ... and get back to you?

Follow up
Reach a common
understanding
There are many ways to
follow up: revise the work,