## **Production Management (ME-419)**

## **Guest Speaker**

Week 12 – Session 1 – Nov 29th, 2024

## **Production Management (ME-419)**

## **Module 3 – Supply Management**

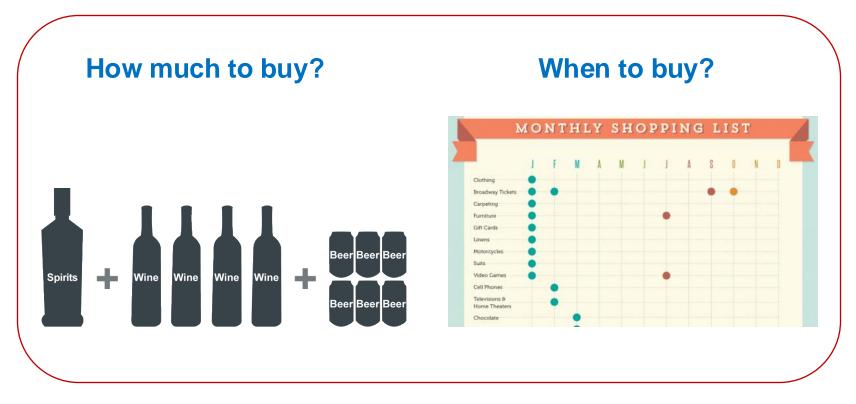
**Inventory Management (EPQ, Discount, SS)** 

Amin Kaboli

Week 12 - Session 2 - Nov 29th, 2024

#### **Course Framework**




Business plan Strategic plan Financial plan

#### **Production Management (ME-419)**

Module 2 Module 1 Module 3 Module 4 Introduction Demand Supply **Digital Final Transformation** to PM Management **Presentation** Management Sep-Oct Sep Nov Dec Dec 18th & 20th Digital technologies for Demand disruptions Supply disruptions Value Adding Network Final presentation & PM, Demand and **Production Planning Production Process** Forecasting Methods solid understanding of Supply Analytics, From Qualitative methods AP, MPS, MRP, Flows, Bill of materials, the course Products to Quantitative methods **Inventory Management** Production procedures, Supply Plan **Ecosystems** Value adding activities Demand plan



### **Inventory Management – Decision Variables**



**Order Quantity (Q)** 

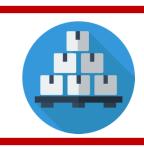
**Order Time (T)** 

Companies make replenishment decisions to manage inventory.



## **Inventory Management Models**




Economic Order Quantity (EOQ)



Safety Stock



Economic Production Quantity (EPQ)



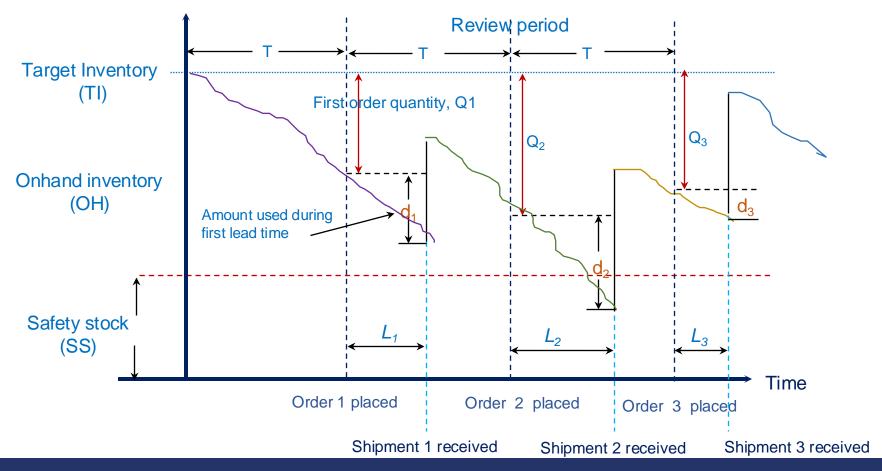
Periodic Review System



**Discount Model** 



Single Period Inventory Model (Chromas Tree)




### **Periodic Review System**

Order quantity (Q) = Target Inventory(TI) – Onhand inventory (OH)

**Target Inventory (TI)** = Demand rate (d) \* (Review period time (RP) + Lead time (L)) + Safety Stock (SS)

**SS** = z \* Standard deviation of demand during interval T ( $\sigma_T$ ) \*  $\sqrt{RP + L}$ 



### **Exercise 2: Periodic Review System**



Polycare pharmacy uses a periodic review inventory system. Every Friday, the pharmacist reviews her inventory and determines the size of the replenishment order. For example, she knows that demand for 400-mg Aligifor tablets, a drug for cold, is normally distributed with a mean of 6000 tablets each week with a standard deviation of 500 tablets per week. Lead time is three weeks. The desired cycle-service level is 95 percent. There are currently no outstanding orders.

Step1: Calculate the required safety stock.

Step 2: Calculate the target inventory level.

Step 3: When she reviews her inventory of Algifor, the pharmacist finds that she currently has 19,000 tablets, calculate the appropriate replenishment order quantity.



## **Assignment 12: Inventory Management**



Task 1: Define what you need to calculate EOQ for your case study

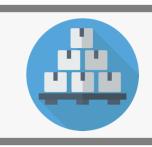
Task 2: Define what you need to calculate EPQ for your case study

Task 3: Negotiate with your supplier (coach) and build a discount model

Task 4: Define Safety Stock for your product (Finished Good)

Task 5: Implement Periodic Review model for your product (Finished Good)

## **Inventory Management Models**




Economic Order Quantity (EOQ)





Economic Production Quantity (EPQ)



Periodic Review System



**Discount Model** 



Single Period Inventory Model (Chromas Tree)



### **Christmas Tree**





#### **Characteristics of Products Like Christmas Tree**

- Short selling season(s).
- Regular price within selling season(s).
- Lower price after selling season (since it is perishable).
- Highly variable demand but follows a known probability distribution.
- Can you name other products like Christmas tree?



## Other short-selling-seasonal products



## The Single Period Inventory Model

- Restaurants
- Fashion
- Publishing companies (magazines, ...)
- High tech
- Online sales
- Entertainments
- •



















#### **Characteristics of Products Like Christmas Tree**

- Short selling season(s).
- Regular price within selling season(s).
- Lower price after selling season (since it is perishable).
- Highly variable demand but follows a known probability distribution.
- How to model it?



## The Single Period Inventory Model

#### Two costs are associated:

- 1) Shortage cost ( $C_s$ ): when Demand (D) > the quantity (Q); OR Too little product
- 2) Excess cost (C<sub>e</sub>): when Demand (D) < the quantity (Q); OR too much product

Service level = 
$$\frac{Cs}{Cs + Ce}$$

## **Procedure - The Single Period Inventory Model**

- 1) Define Shortage costs (C<sub>s</sub> which is Revenue (per unit) Cost (per unit))
- 2) Define Excess costs (C<sub>e</sub> which is Cost (per unit) Salvage value (per unit))
- 3) Determine Service level (which is =  $\frac{Cs}{Cs + Ce}$ ).
- 4) Determine the associated z value (for normal distribution: NORMSINV (Service level)).

**5)** Determine **Q**, which is **Q** = D +  $z\sigma$ 

# **Exercise 3: Determine Optimal Croissants Quantity for Arcadie at EPFL**

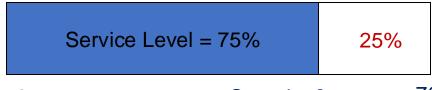


Croissants are delivered daily to Arcadie. Demand varies between 50 to 70 croissants per day. Arcadie pays 50 cents CHF per croissant and charges 2 CHF for each croissant. Unsold croissants have no salvage value and can not be sold the next day. What is the optimal order (stocking level) for Arcadie, Given that the distribution function is uniform, and normal (Mean:60, SD: 5)?

Reminder:  $Q = D + z\sigma$ 



## Solution1: Determine Optimal Croissants Quantity for Arcadie at EPFL


Croissants are delivered daily to Arcadie. Demand varies between 50 to 70 croissants per day. Arcadie pays 50 cents CHF per croissant and charges 2 CHF for each croissant. Unsold croissants have no salvage value and can not be sold the next day. What is the optimal order (stocking level) for Arcadie, Given that the distribution function is uniform, and normal (Mean:60, SD: 5)?

1) 
$$C_s = 2 - 0.5 = 1.5 \text{ CHF}$$

**2)** 
$$C_e = 0.5 - 0 = 0.5 \text{ CHF}$$

- 3) Service level = 1.5 / (1.5 + 0.5) = 75%
- 4) Uniform distribution: Stock out = 1 - Service level = 25% Q = Min + Service level \* (Max - Min) Q = 50 + 75% \* 20 = 65





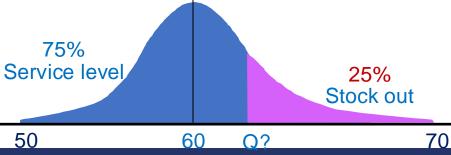
50 Quantity ? 70



## Solution 2: Determine Optimal Croissants Quantity for Arcadie at EPFL

Croissants are delivered daily to Arcadie. Demand varies between 50 to 70 croissants per day. Arcadie pays 50 cents CHF per croissant and charges 2 CHF for each croissant. Unsold croissants have no salvage value and can not be sold the next day. What is the optimal order (stocking level) for Arcadie, Given that the distribution function is uniform, and normal (Mean:60, SD: 5)?

1) 
$$C_s = 2 - 0.5 = 1.5 \text{ CHF}$$


**2)** 
$$C_e = 0.5 - 0 = 0.5 \text{ CHF}$$

3) Service level = 
$$1.5 / (1.5 + 0.5) = 75\%$$

4) Normal distribution:

Q = D + z 
$$\sigma$$
  
Q = 60 + 0.6744 \* 5 = 60 + 3.372 = 64





## **Assignment 12: Inventory Management**



Task 1: Define what you need to calculate EOQ for your case study

Task 2: Define what you need to calculate EPQ for your case study

Task 3: Negotiate with your supplier (coach) and build a discount model

Task 4: Define Safety Stock for your product (Finished Good)

Task 5: Implement Periodic Review model for your product (Finished Good)

Task 6: Propose a promotion plan for your product, implement the single inventory model and justify your proposal. If promotion does not make sense for your product, justify why?

## **Production Management (ME-419)**

## **Guest Speaker**

Week 12 – Session 3 – Nov 29th, 2024

## **Production Management (ME-419)**

## **Coaching Rooms**

Amin Kaboli

Week 12 – Session 4 – Nov 29th, 2024

## Please Follow Your coaches to Your Designated Rooms

#### Coaches





Joao

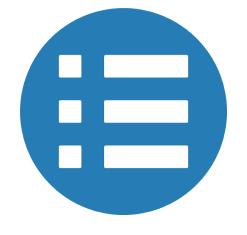
Xavier

GCA 331 GRA 332

## The Art of Giving and Receiving Effective Feedback



Feedback is a gift




Feedback/comments are always welcome



## **Giving Effective Feedback**











Respectful
Ask for permission
May I share my observation

Fact-based
Share facts/ your feelings
What I observed/felt is that ...

Constructive
Stay focused on growth
What I suggest is that ...

Concise
Be to-the-point and short
Max three key points

Open
Be open to any reaction
I respect your feeling ...

### **Receiving Effective Feedback**











Receive the gift
Be open and receptive
I appreciate your feedback

Listen
Listen to listen!
The goal is to listen not to answer, no interruption (zip it)

Understand
Focus on THE message
The goal is to understand,
ask questions, clarify,
repeat key points, ...

You always have a choice
Thank you, I have never
seen it this way
OR
Thank you, let me reflect
and get back to you?

Decide

Follow up
Reach a common
understanding
There are many ways to
follow up: revise the work,
set up a meeting, ...

