
ME-413

Design for Additive Manufacturing, rules to follow

Tania Rosset, Lucie Mc Cormack, Joshua Levy-Baron, Jolan Fath

DfAM

Design for additive manufacturing

Table of contents

01

Design specificities

Lucie's part

02

Geometric constraints

Tania's part

03

Machines
Limitation

Josh's part

04

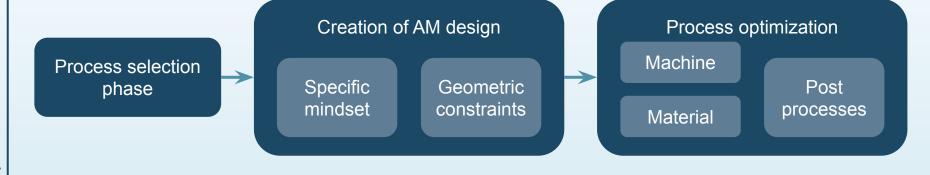
Material specification

Jolan's part

05

Post processing

Jolan's part


01

Design Specifications

Lucie's part

The DfAM process

Process selection

Between traditional manufacturing and AM

Linked directly to the AM process

Cost of AM

- Material
- Process
- Labor
- Design phase

Indirectly linked

- Post-processing
- Computation cost
- Risk cost

Adapted to application

Technical suitability

Adapted to material

Will it improve the final part?

- Customization ability
- Internal channels
- Consolidation
- Light-weighting designs

Other factors

- Sustainability
- Ease of access
- Rapidity

AM mindset

Its specificities

Traditional Mindset

AM Mindset

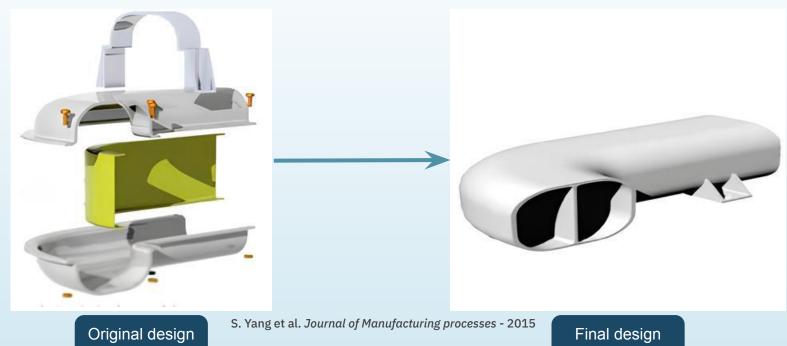
Subtractive

Replicative

"progressive material removal" "material addition/deformation in/on a shape tool"

- tooling dependency
- high setup costs for prototyping
- design constraints
- complexity penalties
- material waste

Additive


"Material addition without use of shape tool"

- Internal features
- Complex geometries
- Efficient material use
- Consolidation
- Customization
- On-demand production

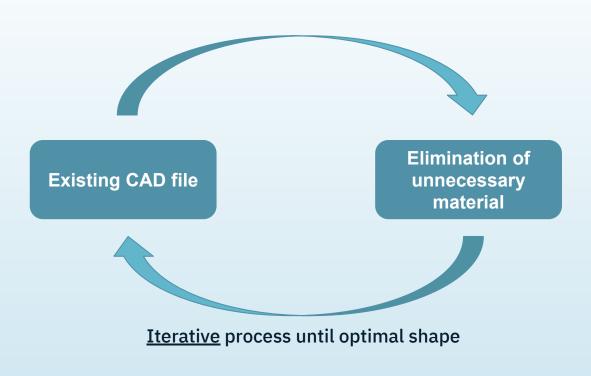
DOESN'T FOLLOW TRADITIONAL LIMITATIONS & RULES

AM mindset

Specific to part and functionality consolidation

(16 parts)

(1 part)


Light-Weight designs

AM => place material precisely where it is structurally and functionally essential

AM lightweighting strategies:

Topology	Generative	
Optimization	Design	
Lattice Structures	Part Infill	

Principle

Objectives

- Optimize material usage
- Maintain or Enhance structural properties
- Respect specific constraints
 - Volume
 - Force
 - Process

Process steps

1. Set the objective

- Minimizing weight
- Maximizing stiffness
- Optimize strength-to-weight ratio

2. Define the constraints

- Physical properties
 - Max allowable stress
 - Max allowable displacement
- Design space
 - Max size of build (area & volume)

Boundary conditions

- Forces applied to structure
- Fixed parts of structure

Process steps

3. Run algorithm

Iterative process

4. Refine design

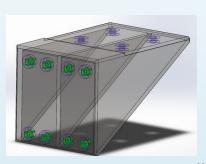
Iterative designs until optimal configuration -> complex shaped

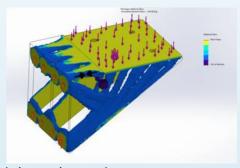
5. Post-analysis

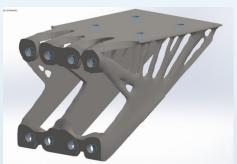
Check if design respects manufacturing considerations

- Use of support structures
- Influence of build direction
- Restrict to viable geometries

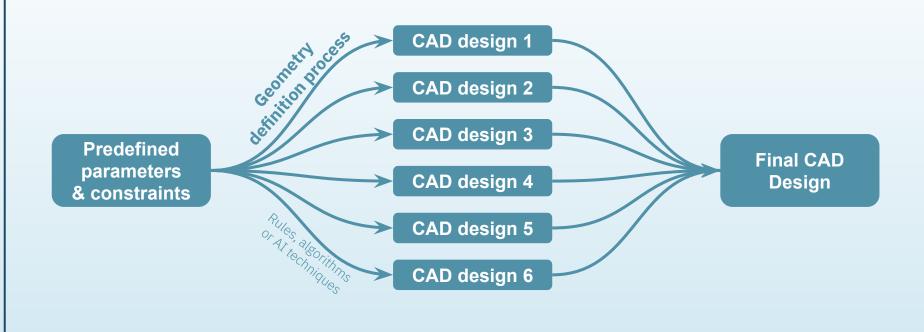

Process steps


1. Set objectives


2. Define constraints


3. Run algorithms 4. Refine design

5. Post analysis

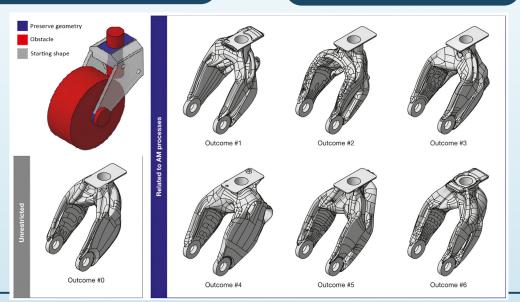


Website: engineersrule.com https://www.engineersrule.com/performing-topology-optimization-step-step-guide/

Process still under development and research Complexity of mathematical models makes it difficult to include more parameters

Generative Design

Principle


Generative Design

Process steps and example

- 1. Set
- constraints
- parameters
- performance criteria

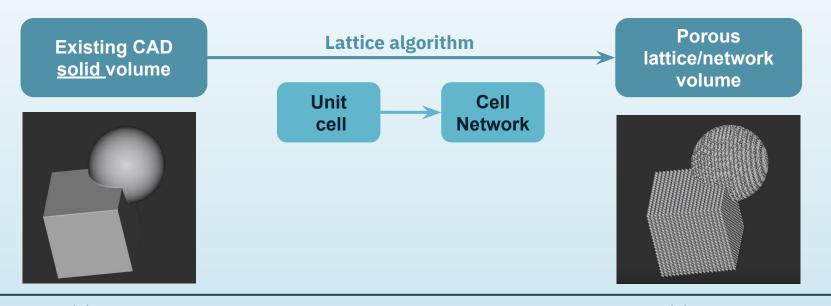
2. Generate Designs

3. **CHOICE of Design**

Generative Design

Example

3. **CHOICE of Design**


- 3.1 Sort the designs according to **weight**
- 3.2 Rank them for each relevant criteria
- 3.3 Choose based on this ranking and designer knowledge

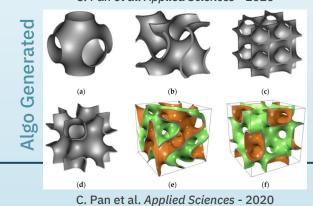
!!! Even most promising solution will need to be subject to redesign / refinement !!!

Lattice Structures

Principle

"Geometric arrangement composed of connective links between vertices (points) creating a functional structure" ISO/ASTM 52900:2021

Website - nTop.com


Website - nTop.com

Lattice Structures

Types of lattices - examples

Unit cells

C. Pan et al. Applied Sciences - 2020

End volumes

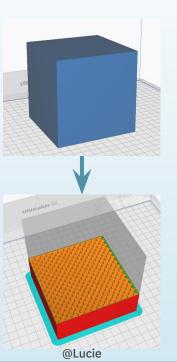
Lattice Structures

Objectives - Purpose

- Lighter design
- Improved
 - Compression
 - Energy absorption
 - Impact protection
 - Adhesion
 - Integration (eg. bone prosthesis)
 - Thermal conduction
- + Possibility of creating Auxetics parts (v<0)

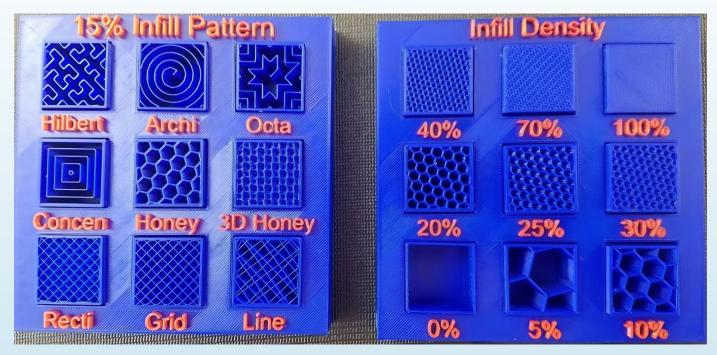
!!! Intense computational demand and rendering !!!

©Constellium exposition part


Part infills

Principle

Internal Structure of 3D-printed objects


- Reduced
 - Material consumption
 - Print time
 - Weight
- Action
 - Provide Basic internal support
 - Prevent warping

!!! not usually optimized for the design !!!

Part infills

Types of infill patterns

MQ. Tanveer et al. Materials Today: Proceedings - 2022

02

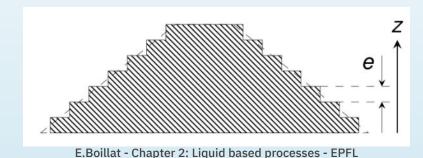
Geometric Constraints

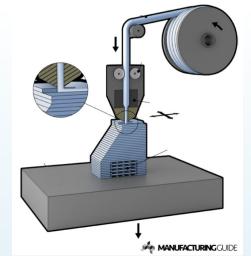
Tania's part

Subdivision of the geometric constraints content

Walls and layers

Holes design

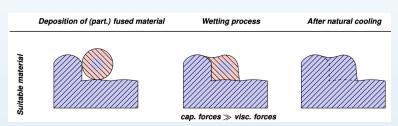

Support


Global sizes

Sizing walls

- Wall thickness should be an integer multiple of extrusion width: Nozzle extrusion width of 0.4 mm, thickness of 0.8 or 1.2 mm recommended!
- Impossible to create a wall thickness smaller than the nozzle size.

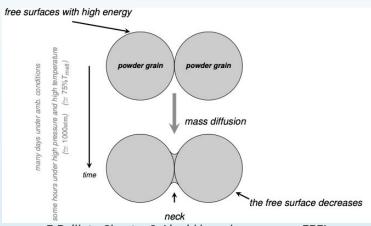
- Inclined wall or finition: Resolution is limited by a stair effect


Fused Deposition Modeling - manufacturingguide.com

Thin walls	Thick walls
More fragile	More material
More flexible	Longer printing time

Part quality

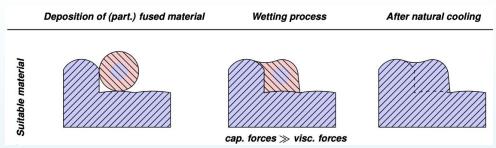
Wall thickness depends on the **machine's resolution** (laser and nozzle)


Laser Powder Bed Fusion

E.Boillat - Chapter 3: Extrusion processes - EPFL

- Fully melts the powder
- **Metal powder** or high perf polymer
 - -> LPBF : high-strength and more details
 - -> SLS: lower part density but more **flexibility**

Selective Laser Sintering



E.Boillat - Chapter 2: Liquid based processes - EPFL

- Heat the powder particles just enough to fuse them at their surfaces (sintering)
- Mostly used with polymer powder

Layer thickness

- Layer thickness is influenced by the particle size of the powder or resin being used.
- The layer height must always be thicker than the largest particle size to avoid defects (lumping, poor fusion).
- Material's properties set practical limitations on how thin the layers can be.
- The case for many methods: SLS, SLM, binder jetting, SLA, DLP

E.Boillat - Chapter 3: Extrusion processes - EPFL

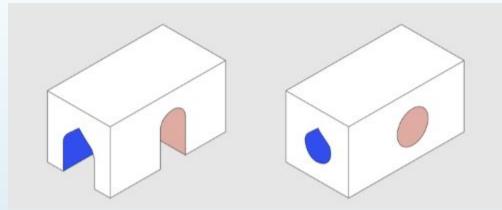
The ideal layer thickness depends on the specific AM technology and material being used.

Layer thickness

Positivity of thin layers (for SLS or FDM)

- Stronger parts, improves micro-hardness and tensile strength.
- Better load bearing capabilities
- **Less risk** of defects (warping, cracking)

BUT longer print times


=> SLS typically use layer thicknesses between 50 µm and 150 µm to find a balance between detail and print speed.

For most processes, the above formula only **underestimates** the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

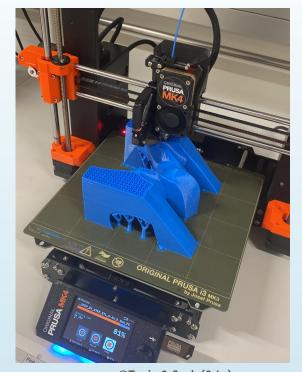
fab. time
$$\simeq \frac{\text{volume}}{\text{MCR}} + \frac{\text{height}}{\text{P}} \times \frac{\tau_{\text{layer}}}{N}$$
. (1)

where e is the layer thickness and τ_{laver} the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can E.Boillat - Chapter 2: Liquid 27 be mutualized between the N parts built in the same batch.

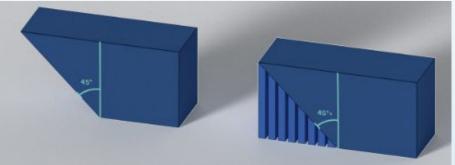
Sizing holes

Design for additive manufacturing - aon3d.com

Horizontal holes:

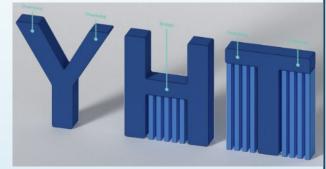

- Additional supports (next slides)
- Tear-drop shape (requires design modifications)

- <u>Orientation</u>: Vertical better than horizontal (no supports and tighter tolerances)
- Size: depends on printer resolution (ex: 1.5 mm is too small, won't materialize)
- Proximity with other features: to maintain part strength and avoid interference
- → impact not only the visual of the part but also the structural strength
- → need to be thought about to avoid print failure


Definition and use:

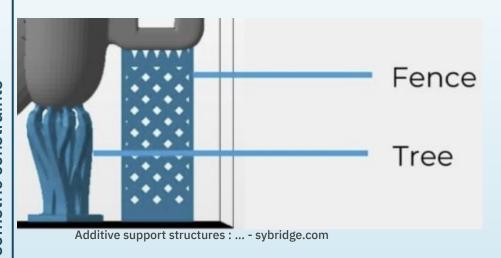
- An added component -> provides support to overhanging sections of a part when printing.
- Necessary when dealing with overhangs, bridge structures, or hollow sections in relatively simple designs -> preventing collapse!
- In more complex or irregular structures, -> used to maintain stability.
- After the printing, these supports are typically removed.

@Tania & Josh (& Ly)


45° rule

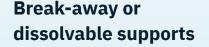
Additive Support structures: Why they matter and ... - sybridge.com

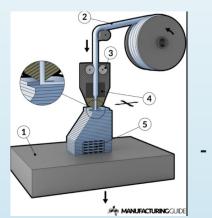
- Overhangs greater than 45° typically require supports.
- The complexity of the design and the material properties will dictate the necessity of supports.


'YHT' principle

Additive support structures : ... - sybridge.com

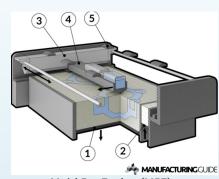
- <u>Y</u>: arms that may require support at their **junction**.
- <u>H:</u> the crossbar can cause a need for supports **beneath** it.
- <u>T</u>: the need for support at the intersection of its components.


Fence VS Tree


- **Different shapes and designs** depending on geometries and process.
- Broadly categorized into two main types: trees and fences.
- <u>Tree supports</u>: resemble branches
 - Ideal for angled or **complex** surfaces.
 - More difficult to remove
- <u>Fence supports</u>: resemble walls
 - Often featuring a lattice structure
 - Printed perpendicular to the surface
 - Easier to remove

Examples

Fused Deposition Modeling (FDM)



- High-ImpactPolystyrene(HIPS)
- Polyvinyl Alcohol (PVA)
- Really easily be removed after printing without damaging the part.

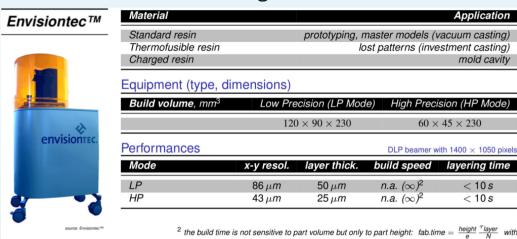
Fused Deposition Modelling (FDM) - manufacturingguide.com

Multi Jet Fusion (MJF)

Multi Jet Fusion (MJF) manufacturingguide.com

- No supports! Use a powder bed to print parts
- The powder itself provides support during the build process.
- Allows for greater design flexibility.

Global sizes


Metal Big Area Additive Manufacturing

- Larger build volumes = lower resolution
- Larger deposition rates
- Post-processing for finer details

Example of machine technical data:Direct Light Processing

Fused Deposition Modelling

- **Smaller** build volumes = constraints parts dimensions
- Could need to **separate** the part in segments
- Other **challenges** : layer adhesion, anisotropy for big builds

e: layer thickness, N: batch size.

Walls and layers

- Machine resolution (laser, nozzle)
- Printing time
- Materials property

Holes

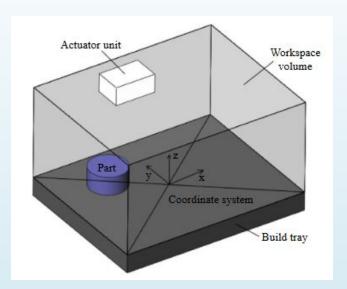
- Size
- Proximity
- Orientation -> Need of support

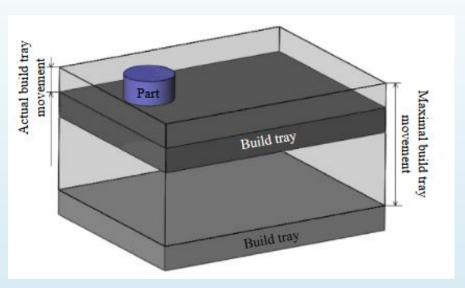
Summary

Supports

- Needed or not? (rules)
- Shapes of supports

Global sizes


- Part volume vs build volume
- Machine limitations


03

Machine limitations

Josh's part

General AM machine schematics

T.Brajlih et al., Rapid Prototyping Journal, 2009

2 build volume architectures

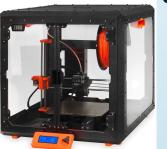
Open build volume

Enclosed build volume

Form 3+ - formlabs.com

Formup 350 - addupsolutions.com

Open Build Volume Machines


Most widely adopted architecture for consumer grade machines

Advantages

- Cheaper
- More easily built and maintained
- Facilitated monitoring
- Improved cooling

Original Prusa Enclosure - a-printer.ch

Disadvantages

- Temperature fluctuations
- Limited materials
- Noise level
- Safety
- Dust and Contaminants
- Fume emissions

Architecture incompatible with processes that require precise environmental control like SLA, PBF, High-temp FDM, or Titanium DED (inert env.)

Enclosed Build Volume Machines

Advantages

- Temperature stability
- Material compatibility
- Fume containment
- Protection from external environment
- Noise reduction

Disadvantages

- Higher cost
- Reduced accessibility
- Bulkiness
- Increased cooling complexity
- Ventilation requirements
- More intricate assembly

Incompatible with processes that require large spaces (like large-scale DED), airflow and/or external equipment

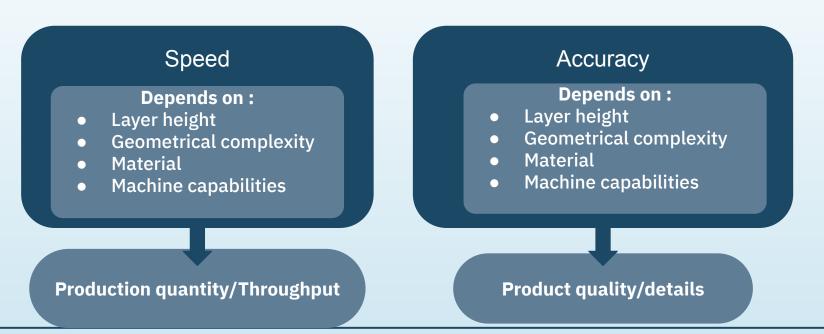
Splitting a Part for printing

Ideally, the part should be split before the design knowing the available workspace area

If design is already over, here are some steps for efficiently splitting a part:

- Use CAD or slicer software (the more comfortable the user the better)
- Determine split location, prioritize splitting along flat surfaces, or in hidden areas

!! Make sure to avoid compromising structural integrity of the part !!


Add alignment features

!! Pre Existing part features may be used to ensure alignment !!

- Add adhesion/fastening features for assembly
- After manufacture, pre-process for assembly (cleaning, sanding)
- Post-process the part to achieve the desired finish

Speed & Accuracy

Speed and accuracy are two sides of the same coin, there is a trade-off between one and the other

Differences between the design and the final printed part

Layer-by-layer

- Dimensional distortion
- Surface roughness
- Anisotropy

=> STL files, approximate the model's geometry (small triangles) -> loss of details affecting precision

Powder melting (metal)

- Distortions
- Warping
- Build failures

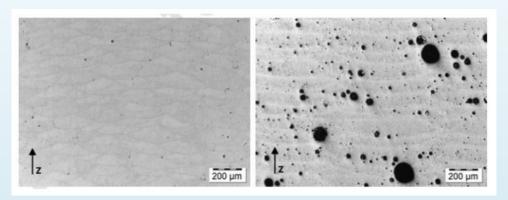
=> heating and cooling cycles introduce thermal stresses

Other mistakes like bad holes sizing or dimensional failures can also happen.

Defects in AM

AM remains plagued with various types of defects

- Layer Shifting
- Warping
- Elephant foot
- Bed adherence
- Layer misalignment


- Inconsistent material flow
- Porosity
- Layer adhesion
- Internal blockage
- Ghosting

Porosity

Inconsistent material density in the product

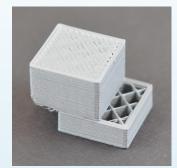
Can lead to structural and surface defects, and an overall change in the properties of the product

Affects mainly powder based methods, other Defects can have similar symptoms for other processes

Reducing hydrogen pores formation in AlSi10Mg... - insidemetaladditivemanufacturing.com

Caused by uneven material quality, uneven flow of material through the nozzle, non-optimal energy delivery

Warping


Thermal stresses cause the part to bend Results in a modified part geometry and wasted material

Jakk - Additive-X.com

Caused by an uneven cooling of the part, causing the part to deform under the inner thermal stresses. Can be remediated through a heating element in the build platform, or an enclosure for temperature control

Surface defects

Layer Shifting - simplify3d.com

Layer shifting

<u>Causes</u>: Excessive speed, obstruction on nozzle path, issues with mechanical drive

Inconsistent Extrusion:

<u>Causes</u> : Clogged nozzle, Incorrect parameters (Temperature, Material type)

Inconsistent extrusion - realvisiononline.com

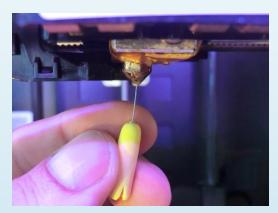
Elephant's Foot

<u>Causes</u>: Unlevel Printing surface Machine parameters incorrect (extrusion rate, layer height)

Smashed First Layer - matterhackers.com

Layer Separation

<u>Causes</u>: Incorrect parameters (Temperature, Overcooling), Excessive Speed



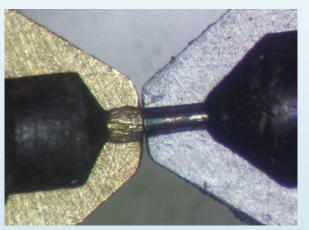
Layer Separation - matterhackers.com

The importance of maintenance

Regular light maintenance

Cleaning and visual inspection of machine, calibration as often as required, comes at little to no material cost

Matthew - additive-x.com



Viola - realvisiononline.com

The importance of maintenance

Heavy periodical maintenance

Periodically, more often for violent processes (DED), replacement of critical components, inspection of mechanical components (adjusting, tightening, greasing), may include extensive disassembly

e3d-online.com

04

Material specifications

Jolan's part

Most used materials in AMD

Metals

Stainless Steel (SS)
Aluminum (AI)
Titanium (Ti)
Inconel (Ni-Cr alloy)
Cobalt-Chromium
Copper (Cu)
Magnesium (Mg)
Nickel (Ni)

Ceramics


Zirconia (ZrO_2)
Alumina (Al_2O_3)
Silicon Carbide (SiC)
Silicon Nitride (Si_3N_4)
Boron Carbide (B_4C)
Hydroxyapatite
Glass-Ceramics
Mullite

Polymers

Polylactic Acid (PLA)
Nylon (Polyamide, PA)
Polyethylene (PE)
Polypropylene (PP)
TPU
PETG
PEEK
ABS

Mechanical properties

Metals

High strength to weight ratio (Titanium)

High tensile strength

Good corrosion resistance

(Stainless Steel)

Good fracture toughness

Ceramics

High hardness

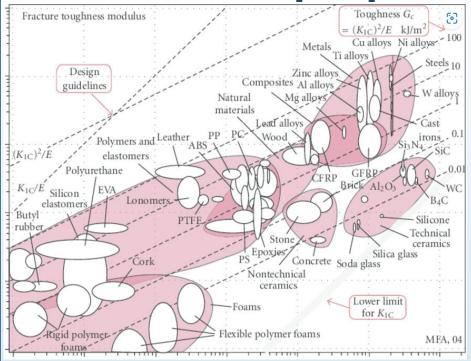
High compressive strength

High corrosion resistance

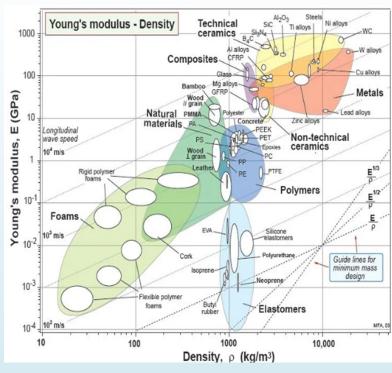
Their brittleness limits mechanical flexibility

Polymers

Lightweight


Good impact resistance (ABS)

Biodegradable (PLA)


Good tensile strength and flexibility (Nylon)

Good toughness (Polycarbonate) compared to glass

Mechanical properties

Fehim Findik et al. J ISRN Mechanical Engineering - 2011

Rémi Merindol et al. Hal Theses - 2014

Thermal and Electrical Properties

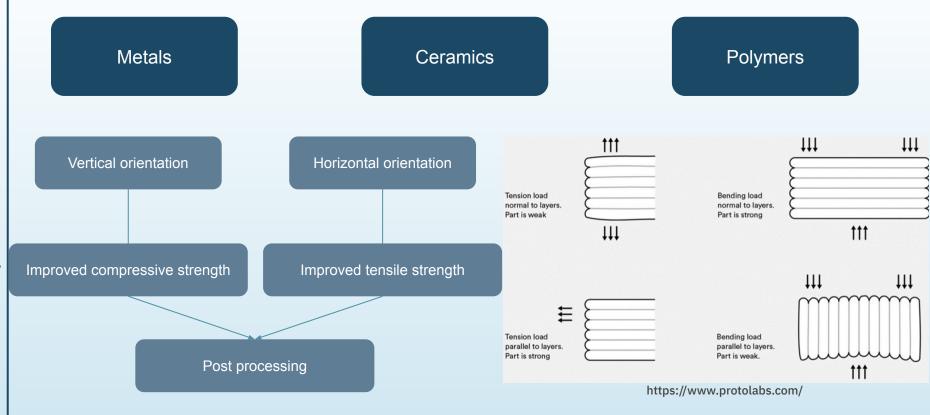
Metals

High thermal conductivity
High electrical
conductivity

Ceramics

Low to moderate thermal conductivity

Very low electrical conductivity


Certain ceramic materials can be modified to exhibit semiconducting properties (SiC) Polymers

Low thermal conductivity

Mostly isolating for electrical conductivity

Modifications to improve the electrical conductivity of polymers (metallic fiber or powder added).

Print orientation on mechanical properties

05

Post processing

Jolan's part

Post Processing for Metals

CNC Machining and Grinding

Support Removal

Heat Treatments

Surface Treatments

Removes imperfections, allowing tighter tolerances

CNC or EDM to preserve structural integrity

Relieve stresses and modify hardness.

Improve surface hardness and fatigue resistance

Hot Isostatic Pressing (HIP)

To eliminate porosity, enhancing density and strength

Deburring and Polishing

Removing sharp edges or residual burrs from machining.

Laser and Plasma
Treatments

Improve surface hardness without affecting the core, offering durability for wear-prone parts.

Post Processing for Ceramics

Sintering

Support Removal

Chemical Treatments

Surface Finishing

Densifying ceramics, reducing porosity, and enhancing mechanical properties.

Manual tools or innovative soluble supports

To improve surface smoothness

Grinding, polishing, and advanced laser polishing

Hot Isostatic Pressing (HIP)

To reduce porosity and enhance toughness (post sintering)

Ultrasonic Machining

To shape ceramics delicately, reducing risk of fractures

Polymer and Metal Infiltration

Reinforces ceramics by filling microstructures, improving strength, and resistance

Post Processing for Polymers

Support Removal

Careful manual support removal

Annealing

Improves strength and dimensional stability (semi crystalline)

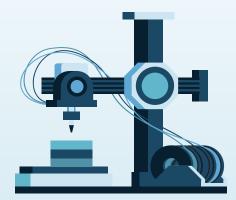
Painting and Coating

Adds aesthetic appeal, UV resistance, and durability

UV Curing

To solidify the surface and enhance durability (resin based)

Welding and Bonding


Plastic welding and UV bonding create strong assemblies

Surface Finishing

To enhance surface quality (very used for ABS)

Conclusion

- Keep costs and technical suitability in mind when choosing AM
- Shift your mindset from traditional to additive
- Follow every steps of the process
- Rely on your previous knowledge
- Be careful of the computation demands
- If you use powder, take in consideration the particle size
- See what kind of supports you need and what is available
- Search what are the resolution limitation of your AM method
- Think about your printing time and if that is a problem for you
- Look at materials
- Be careful of the post processing needed

Our theme is rules to follow but we realized that it was recommendations more than rules, it is things to think about

