

AKEDDAR Hamza
LUNDBY Signe
MAITROT Adrien
MITRIC Marko
STAWARZ Mathieu

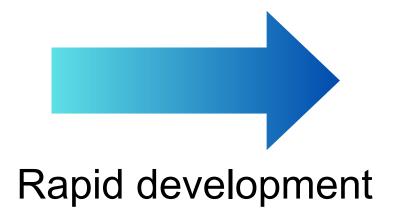
Summary

- 01 Industry 4.0 and AM overview
 - O2 Lighthouses Leading AM Adoption
- O3 Al's impact on AM
 - 04 Digital twins for AM
- O5 AM and Smart manufacturing
 - O6 AM for a sustainable future
- 07 Conclusion

Industry 4.0 and AM overview

Introduction to the new digital revolution

The New Revolution: Advanced Digital technologies in Industry 4.0



4th Industrial Revolution (4IR)

Cyber-physical technologies

Blur the line betweeen the physical, digital, and biological worlds

4IR technologies

Change

Manufacturing Industry

Industry 4.0 and Additive Manufacturing (AM)

Connectivity

Cloud technology, Internet of Things (IoT), Blockchain...

> 4IR Technologies

Data-Driven

Artificial Intelligence (AI), Machine Learning (ML), Digital Twin...

AM: Additive Manufacturing

Engineering

Additive Manufacturing,

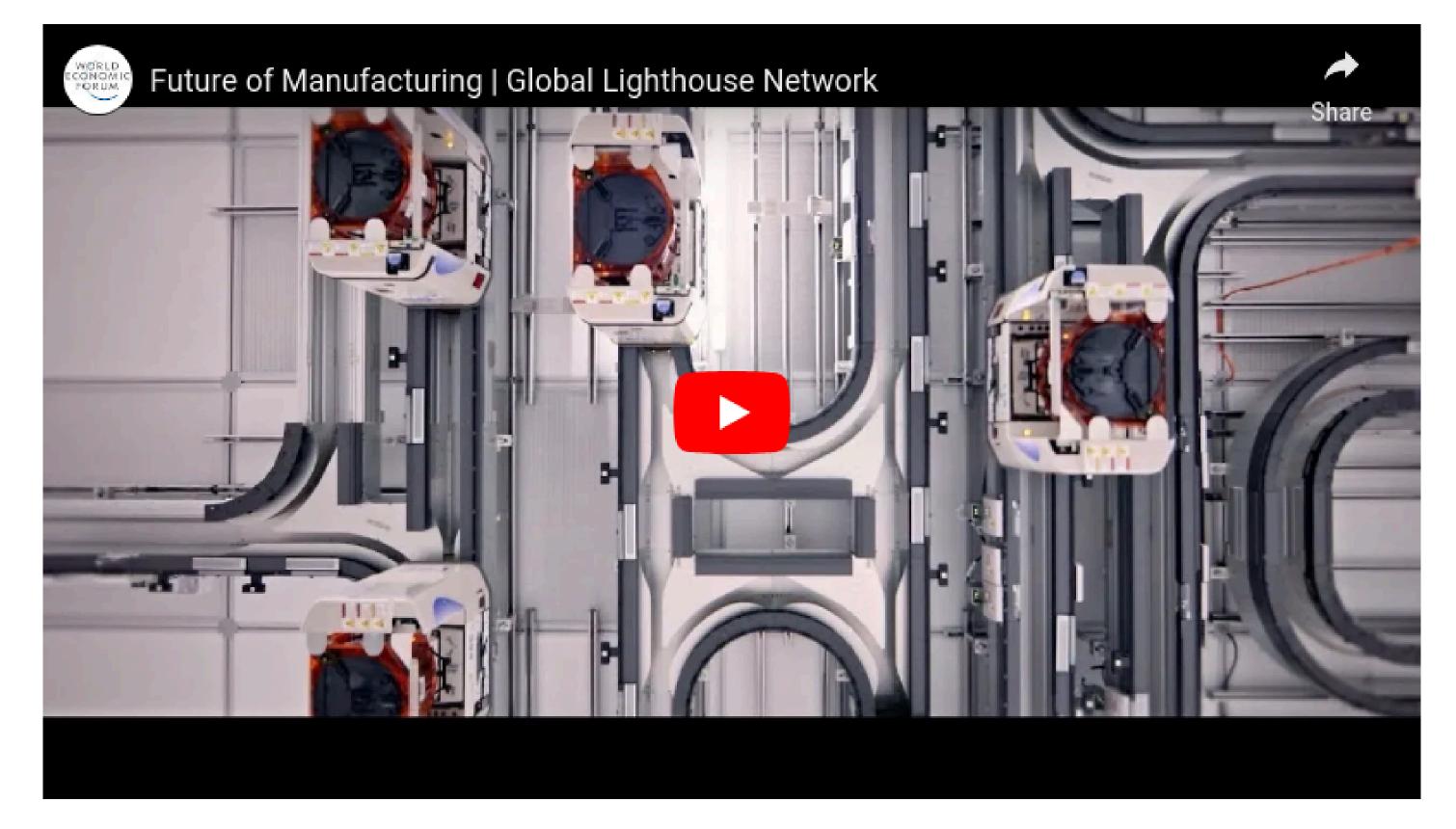
Renewables technology, Nanotechnology...

Human-Machine

Collaboration

Virtual reality (VR),
Augmented reality (AR),
Autonomous vehicles...

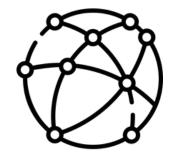
WEF - Future of Manufacturing



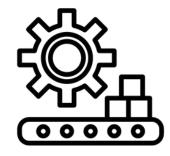
02 Lighthouses Leading **AM Adoption**

Mathieu Stawarz - 312865

The Global Lighthouse Network (GLN)



The Network



Lighthouses sites

(factories)

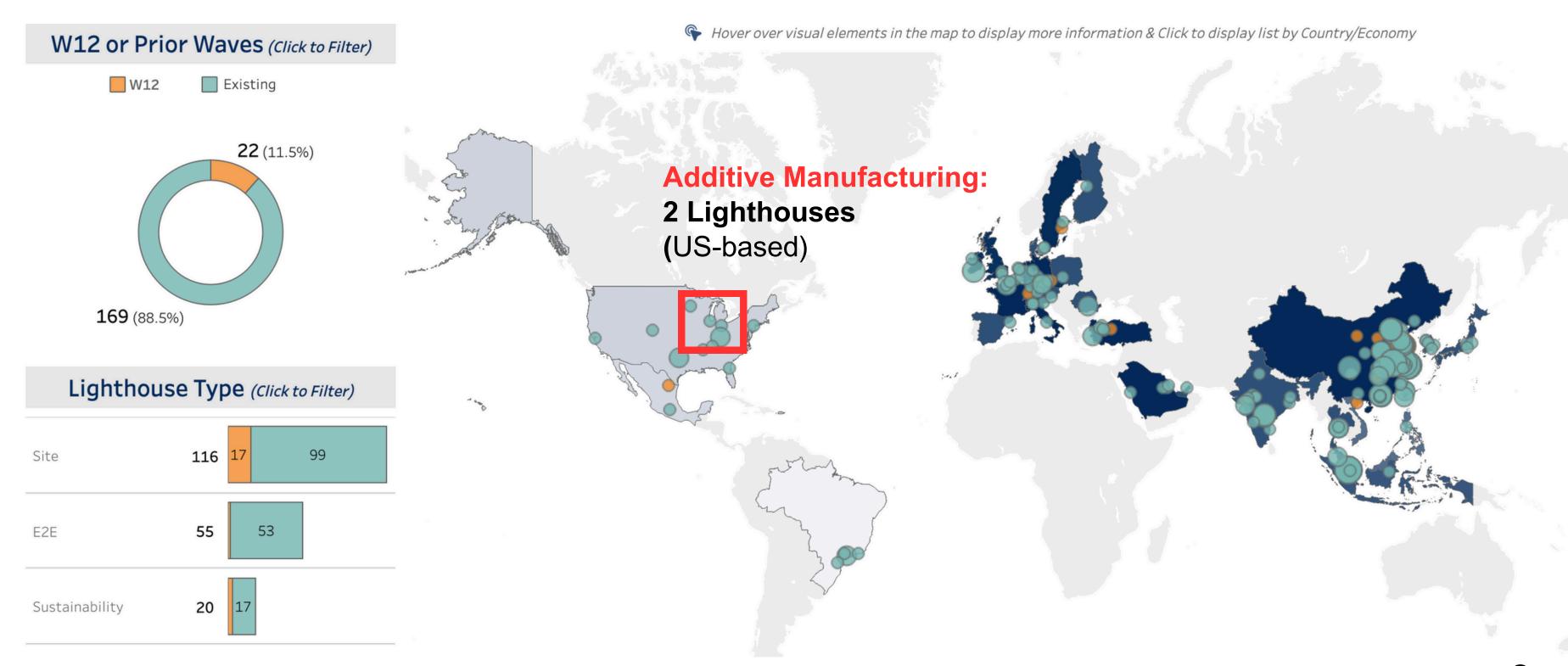
- **Hub** of 172 Lighthouses
- 12th wave of Lighthouses
- Boost 4IR adoption
- Strengthen manufacturers
- Mitigate supply chain disruptions

- Recognition: selected & identified
- Success stories: best 4IR tech adopters
- Benchmarks: inspire others as leaders

• 2 Distinctions: (additional) End to end (E2E)

Sustainability

The Global Lighthouse Network (GLN)



Fast Radius AM Lighthouse:

- FAST RADIUS
 A SYBRIDGE BRAND
- HQ: US, near Chicago

- Founded in 2014: Pioneered additive manufacturing as a supply chain solution.
- Partnered with UPS: Established microfactories for 3D printing & logistics.

Image Source: https://www.wsj.com/articles/fast-radius-files-for-bankruptcy-nine-months-after-spac-deal-11667940262

- Named Lighthouse Factory: AM lighthouse for the 1st wave (2018).
- Bankruptcy in 2022: Lack of profitability, acquisition by Sybridge Tech
- Largest Carbon DLS Install Base: Leader in DLP 3D printing systems.
- Served 2000+ customers: Delivered 3D-printed parts to key industries.

ProtoLabs AM Lighthouse:

HQ: Maple Plain, Minnesota, U.S

• Founded in 1999:

Specialized in rapid custom plastic injection molding.

• Entered 3D Printing (2014):

Acquired FineLine Prototyping to enhance 3D printing capabilities.

• Lighthouse Leader (2021):

Recognized in WEF's GLN in the 7th wave

Protolabs Network Launch (2021):

Acquired and rebranded Hubs, creating a global manufacturing platform.

Online 3D Printing Service:

Offers six advanced technologies for producing plastic, metal, and elastomeric parts.

Global Presence:

+2000 employees that operates facilities in the U.S., England, Germany, and Japan.

Image Source: https://www.protolabs.com/services/3d-printing/direct-metal-laser-sintering/production-capabilities/

Protolabs Network: 4IR Technology

From prototype parts to production runs

Prototyping

Production

- Instant quoting with free design analysis
- 100+ combinations of materials & surface finishes
- Quality prototypes and end-use parts in as fast as 1 day

Get an instant quote

All uploads are secure and confidential

Global Partner Network:

Matches orders to the best supplier among 250+ partners.

Instant Quotes with ML:

Upload CAD files for real-time costs, lead times, and specs.

Design Optimization:

Refine designs using DFM tools and get tips to reduce costs and lead times.

Accessible to All:

Open to both businesses and individuals, team collaboration tools.

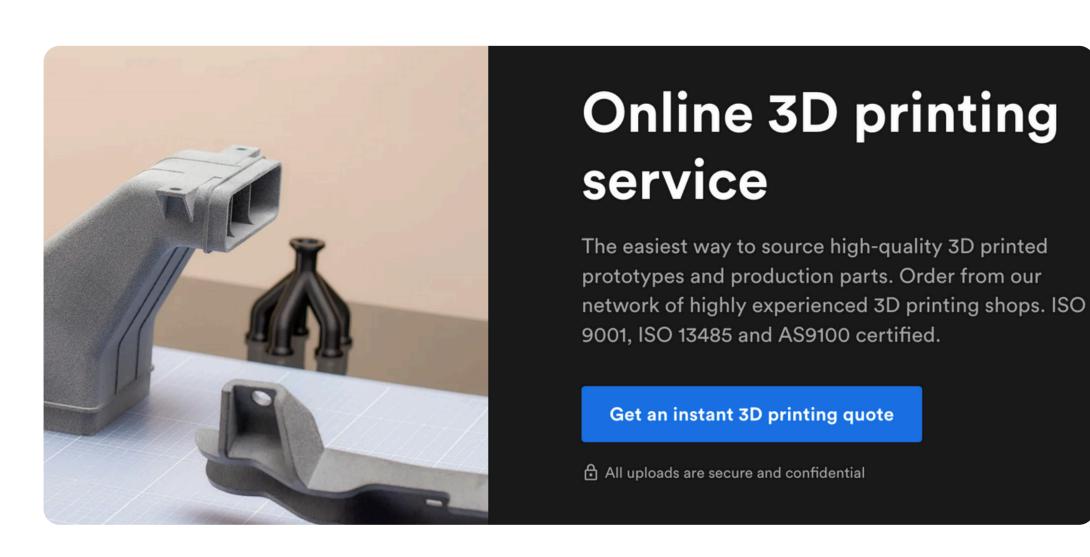
Protolabs Network: 4IR technology For Additive Manufacturing

Global AM Network:

+90 factories to meet the demand for 3D printed parts.

Skilled AM Network:

Specialized 3D printing shops using FDM, SLA, SLS, and MJF technologies.



• On-Demand Production:

Fast, customized parts without waiting for quotes.

Industrial Scale Printing:

High-volume production and tooling, reducing costs.

Protolabs Network: 4IR technology For Additive Manufacturing

FDM

Fast & affordable prototyping

- Dimensional accuracy of ±
 0.5% with a lower limit: ± 0.5
 mm
- Lead times from 1 business day

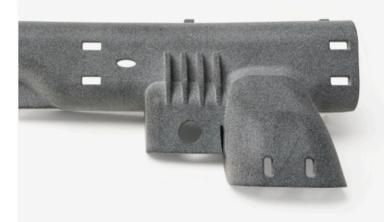
See our FDM services

SLS

Functional prototyping & low-run production

- Dimensional accuracy of ± 0.3% with a lower limit of ± 0.3 mm (± 0.012")
- Lead times from 3 business days

See our SLS printing services



MJF

Functional prototyping & low-run production

- Dimensional accuracy of ± 0.3% with a lower limit of ± 0.3 mm (± 0.012")
- Lead times from 3 business days

See our MJF services

SLA

Visual prototyping

- Dimensional accuracy of ± 0.3% with a lower limit of ± 0.3 mm (± 0.012")
- Lead times from 2 business days

X-Y Accuracy: 3-6 times less!

See our SLA services

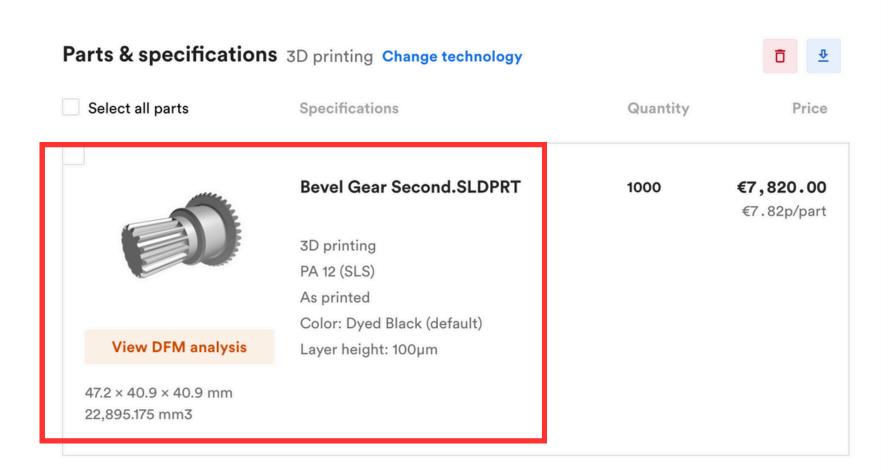
Protolabs Network: Testing

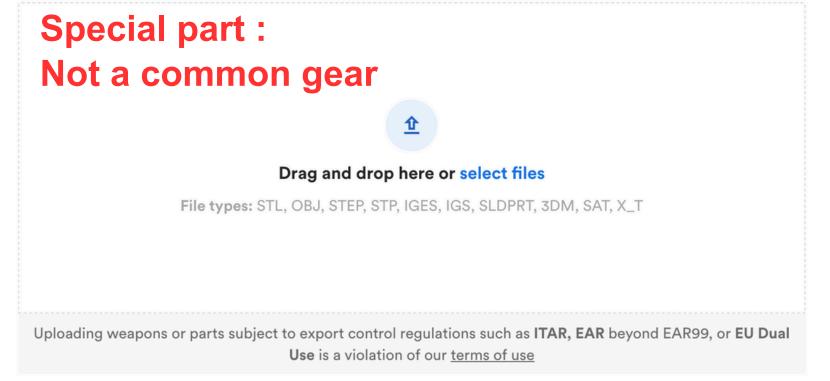
Untitled quote 39W76M91C-V1

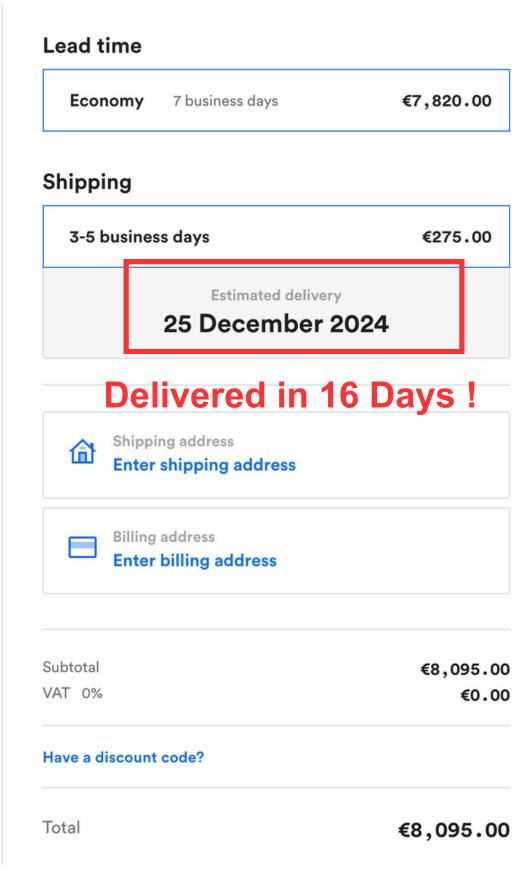
+ New version

Total: **€8,095.00**

Go to checkout







• Fictitious quote

- 1000 Special Bevel Gear
- SLS 3D printing
- PA 12 (Nylon)
- Layer thickness ~100µm
- Size: 47x41x41mm

• Cost: **7.82 €/part**

• Total: **8095** €

Additive Manufacturing Lighthouses:

Benchmark for 4IR future

AM's Overlooked Potential in GLN:

iAM's transformative potential is significant for manufacturing.

AM lighthouses importance :

Protolabs and Fast Radius set a benchmark for the future of AM & 4IR adoption.

- 1. Workforce upskilling
- 2. Resistance to change
- 3. Constrained budgets

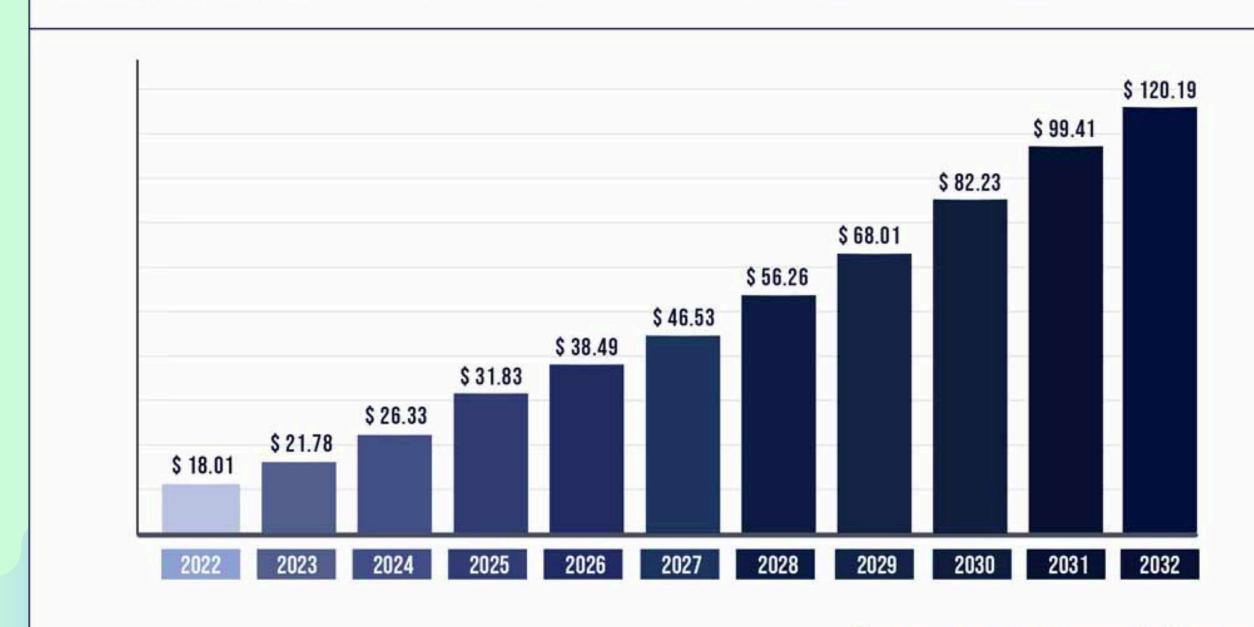
Expand AM Lighthouses:

More AM lighthouses in Europe could boost AM adoption and 4IR.

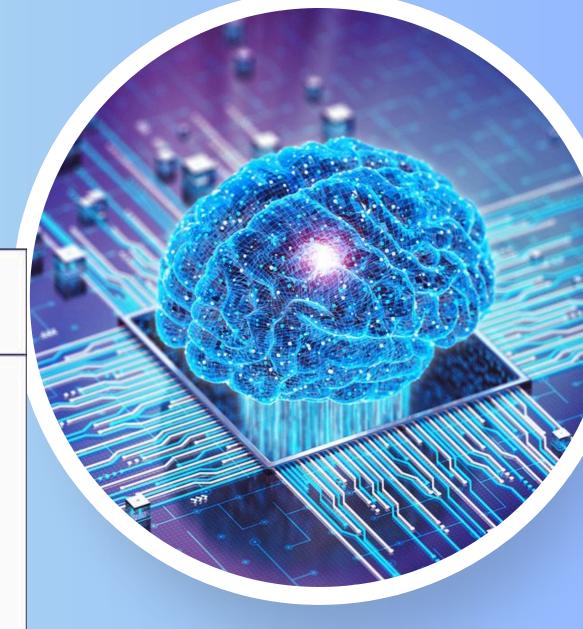
03

Al's impact on AM:

ADDITIVE MANUFACTURING MARKET SIZE, 2023 TO 2032 (USD BILLION)



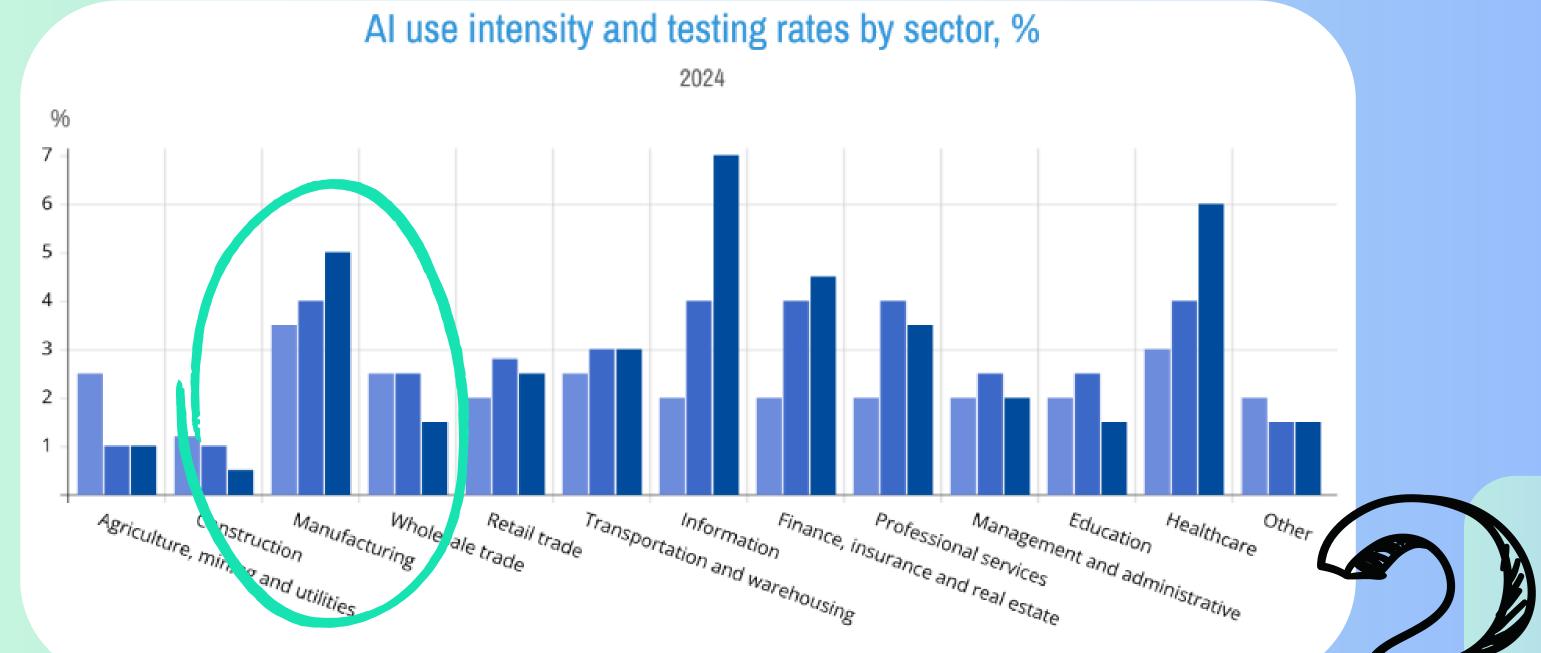
Source: www.novaoneadvisor.com



Al in AM, Overview:

ttps://raquel-mayer-kwd9.squarespace.com/blog/2018/6/25/how-many-kinds-of-3d-printin

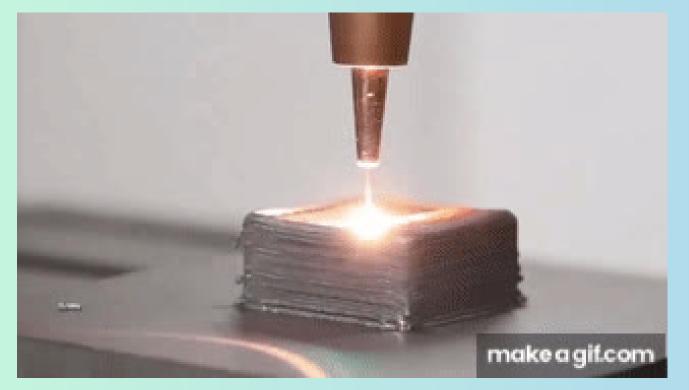
https://giphy.com/gifs/ge-3d-printing-aviation-avgeek-MHyn2EeiU57

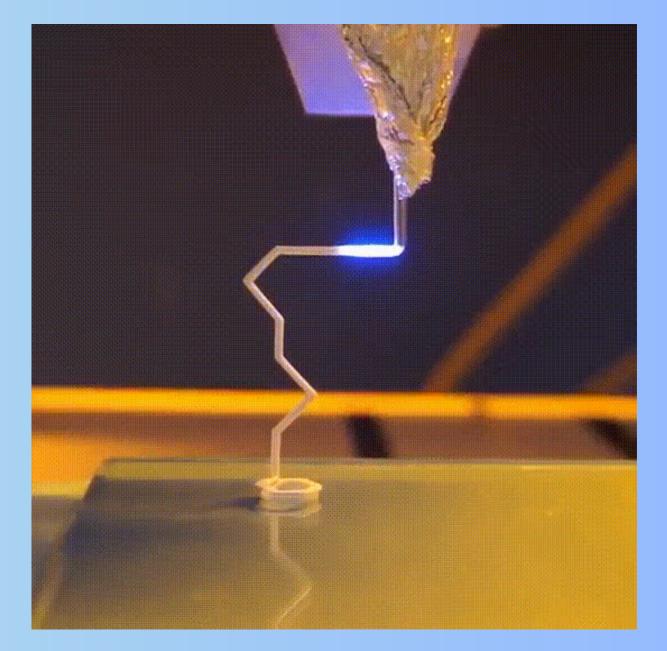


How is Al used in AM

Al in extrustion-based processes: Refresher: Extrusion-based process:

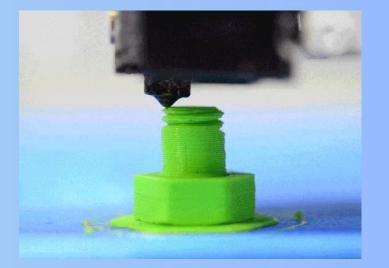
- Involves depositing material through a nozzle or extrusion head to create 3D objects layer by layer.
- Materials used: Thermoplastic filaments (e.g., PLA, ABS), composite pellets or pastes, metals (LMWD).
- Techniques : FDM, BPM, LMWD





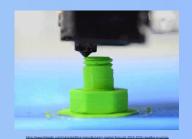
https://3dprinting.com/news/researchers-print-ceramics-in-mid-air/

Al in extrustion-based processes: Optimization using Machine Learning:



https://www.linkedin.com/pulse/additive-manufacturing-market-forecast-2024-2030-ravalika-m-umrac

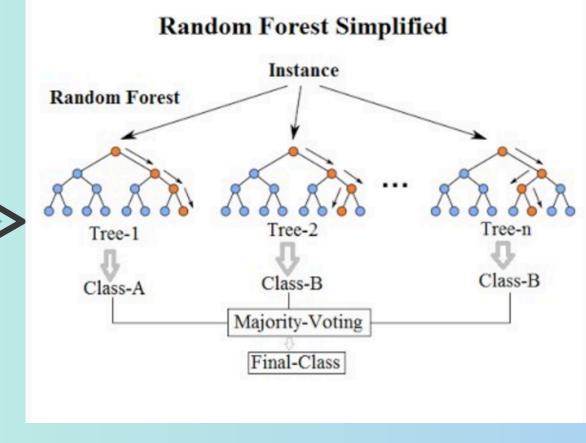
Table 1 Recent optimization and ML models for process enhancement in the FDM process								
AM process	Materials	Models	Input features	ML/optimization method used	Output measured	Reference		
FDM	ABS	Benchmark model	Process settings	Taguchi munod	Dimensional accuracy	Ma mood et al.		
FDM	PLA	ISO 527-2 tensile specimen	Process factors	Taguchi L9 method	Dimensional accuracy, part quality	Sharn et al. (202)		
FDM	PLA	Slender cuboid	Process variables	Tagu i method	Length, width, and breadth	Teng et a (2022)		
FDM	PLA	(ASTM)-D638-V	Process parameters	GA_ NN, GA_RSM	Tensile strength	Deshwal cal. (2020)		
FDM	PETG	slabs	Process settings	Cl. V., and GA	Surface roughness	Ulkir and cgun (2023)		
FFF	ABS	ASTM D638, ASTM D790 and ASTM D256	Process settings	NI	Mechanical properties	Chohan et, (2020a, 2020b)		
FFF	PLA	Benchmark model	Extruder path	GA	Print time and dimensional precision	Aguilar-Γ que et al. (2 21)		
FDM	PBS	cylinder	Step time, temperature	ANN, SVI PCE, and RSM	Rheological characteristics	Taylar et al. (25 3)		
FFF	ABS	Infill structure	Input image	CNN	Real-time defect detection	F nan Khan et al. (2020)		



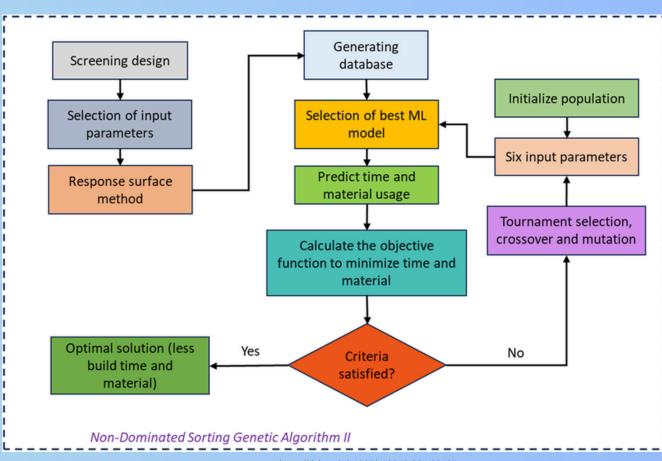
Al in extrustion-based processes: Optimization using Machine Learning:

Trade-off between build time and material consumption:

S.no	Variable
1	Layer thickness
2	Build orientation
3	Infill pattern
4	STL file deviation
5	STL angle
6	Infill density
7	Raster Angle
8	Road Width
9	Contour width
10	Number of contours
11	Extrusion temperature
12	Extruder nozzle diameter
13	Printing speed
14	Travel speed

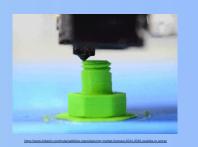


https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d

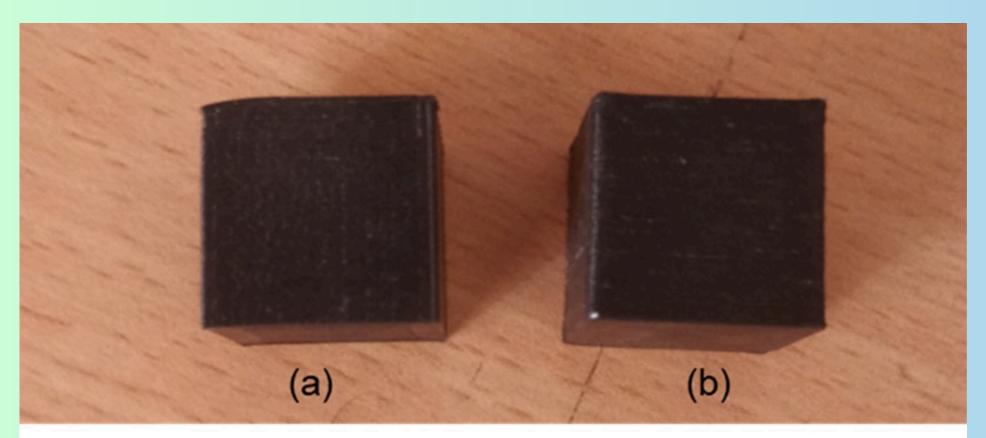


https://doi.org/10.1007/s10845-024-02495-z

Al in extrustion-based processes: **Optimization using Machine Learning:**



Results:



Cube printed using standard printing parameter

Cube printed using Optimal printing parameter

Build time:

-37%

Material consumption:

-40%

Accuracy: (R2)

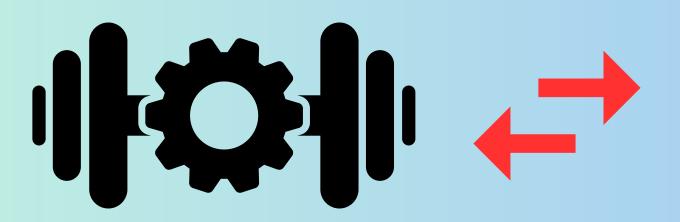
Mat. consump.

An R² of 1 indicates that the regression predictions perfectly fit the data.

Al in extrustion-based processes:

Optimization using Machine Learning:

Trade-off between build time and strength:





Build time:

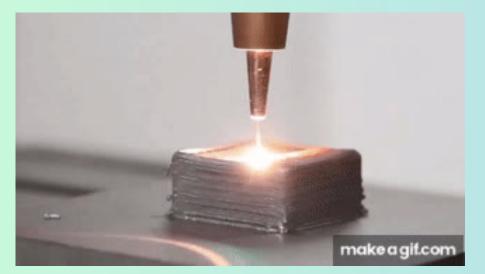
Strength:

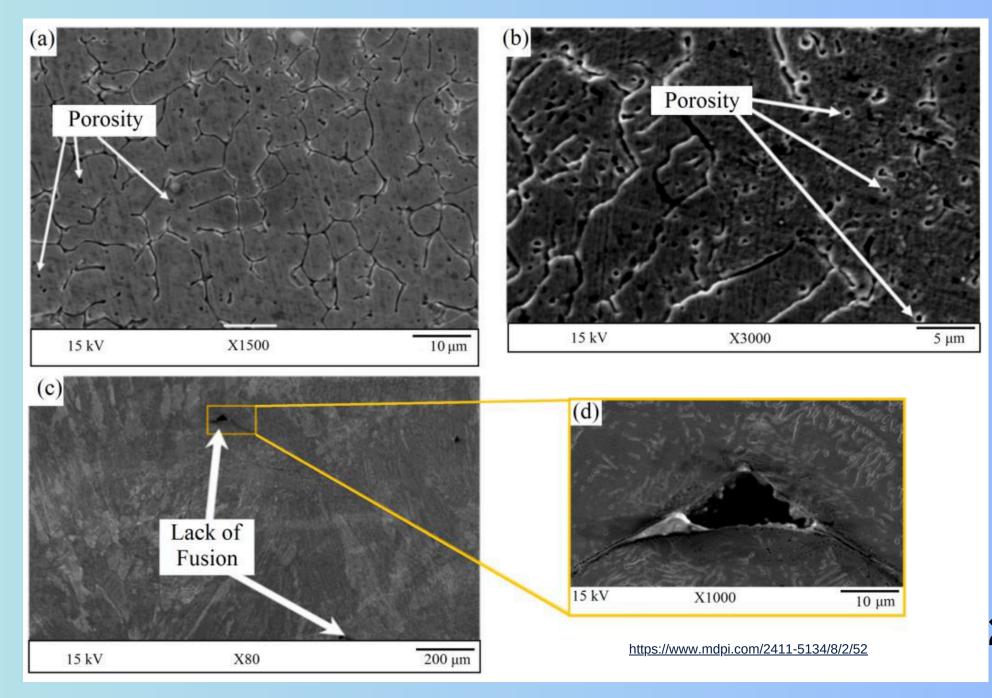
Al in extrustion-based processes: Optimization using data-driven Al techniques:

LMWD Optimizing porosity detection: Problem statement

"However, due to the manufacturing process, the materials often have tiny pores inside them, which can grow when a load is applied, resulting in poor quality defective parts."

https://www.sciencedirect.com/science/article/nii/S13506307230041812via%3Dihub





Al in extrustion-based processes: Optimization using data-driven Al techniques:

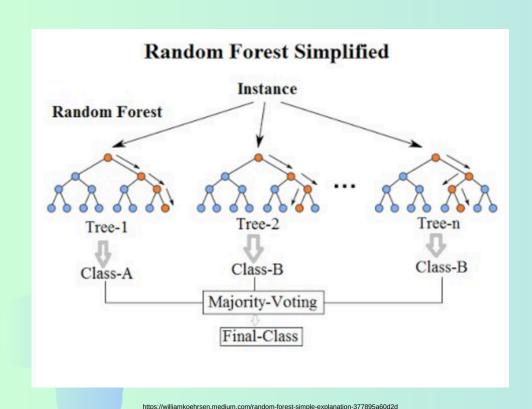
Optimizing porosity detection:

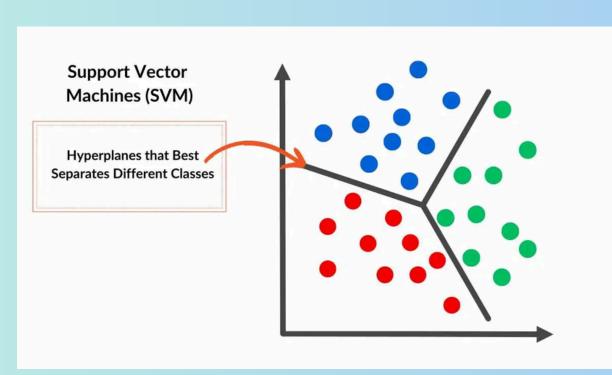
Laser power

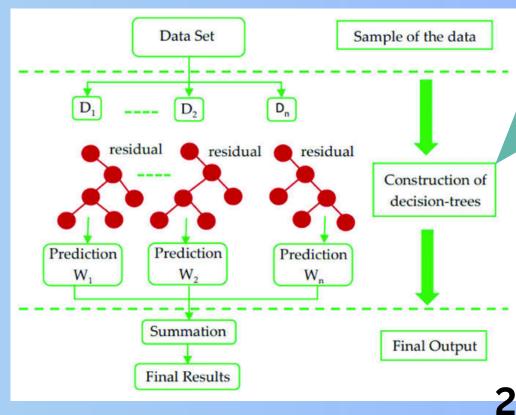
Input (optimized) parameters:

Movement velocity

Wire feed rate







Al in extrustion-based processes: Optimization using data-driven Al techniques:

Optimizing porosity detection:

Validation Partition	Algorithm	Local Gras	
		Accuracy	Recall
	KNN	0.954	0.855
2/3 part to train and	SVM	0.959	0.855
1/3 part to test	RF	0.937	0.818
	XGBoost	0.964	0.804
	KNN	0.971	0.742
2/3 total to train and	SVM	0.956	0.762
1/3 total to test	RF	0.914	0.728
	XGBoost	0.972	0.694
	KNN	0.969	0.393
2 parts to train and	SVM	0.966	0.034
1 part to test	RF	0.903	0.267
	XGBoost	0.975	0.021

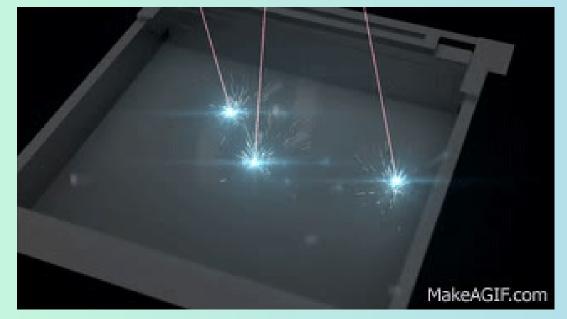
Porosity detection & prevention

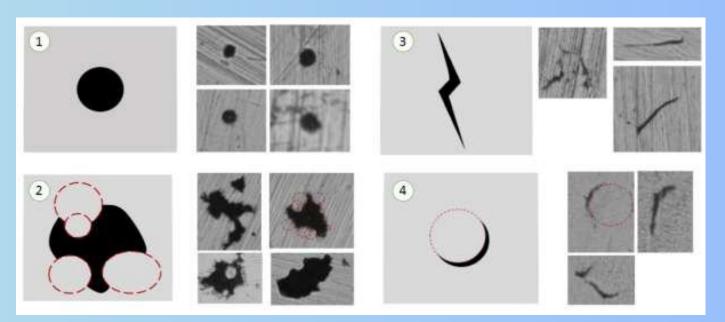
in real time, with high accuracy and recall

Al in powder-based processes: Refresher: Powder-based process:

- Powder based processes involve bonding
 powdered materials to form solid parts. This
 bonding can be achieved either by applying heat
 to partially or fully melt and fuse the powder
 particles or by using a binding agent to adhere
 the particles together.
- Techniques: BJ (binder), PBF (LB (SLS, SLM), EB, IR)

https://makeagif.com/gif/new-method-of-manufacturing-using-powder-bed-additive-manufacturing-with-selective-laser-melting-ehBvzO



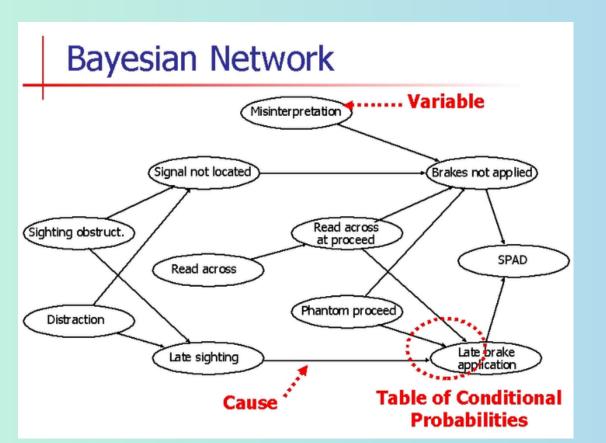


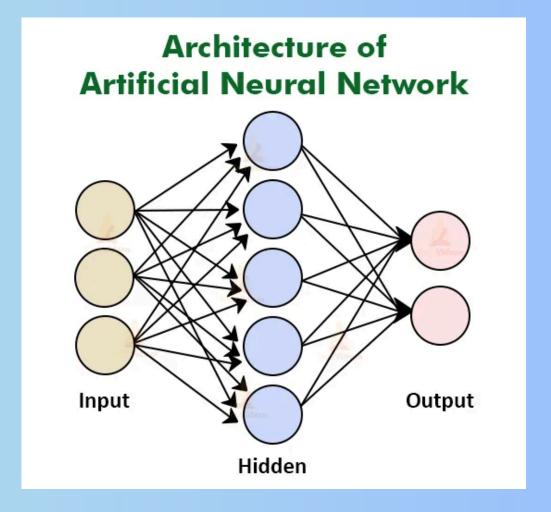
Al in powder-based processes: Optimization using data-driven Al techniques:

Input (optimized) parameters:

Laser power | Scan speed | Layer speed | Hatch spacing*

*:It is the spacing between the centers of two adjacent beams

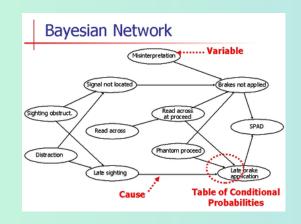




Al in powder-based processes:

Results:

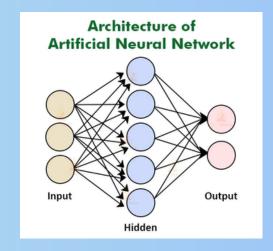
BN



Prediction part density

99%

ANN



Prediction errors

surface roughness

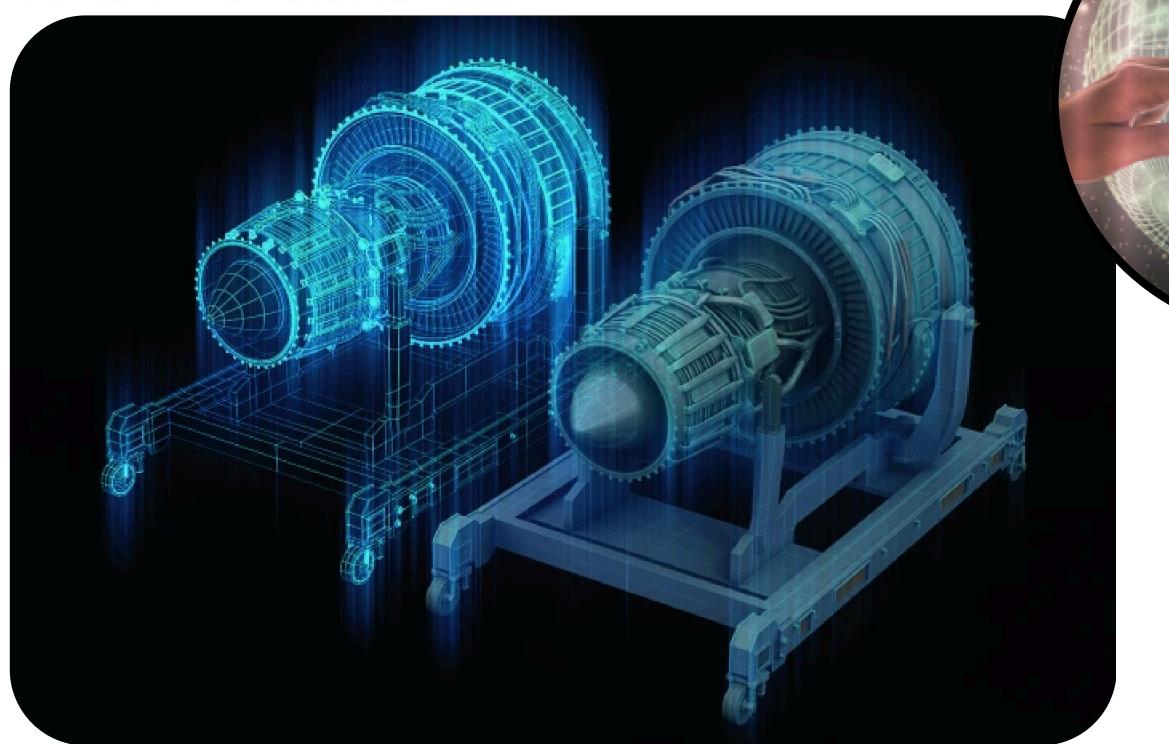
density

<4.4%

<0.98%

30

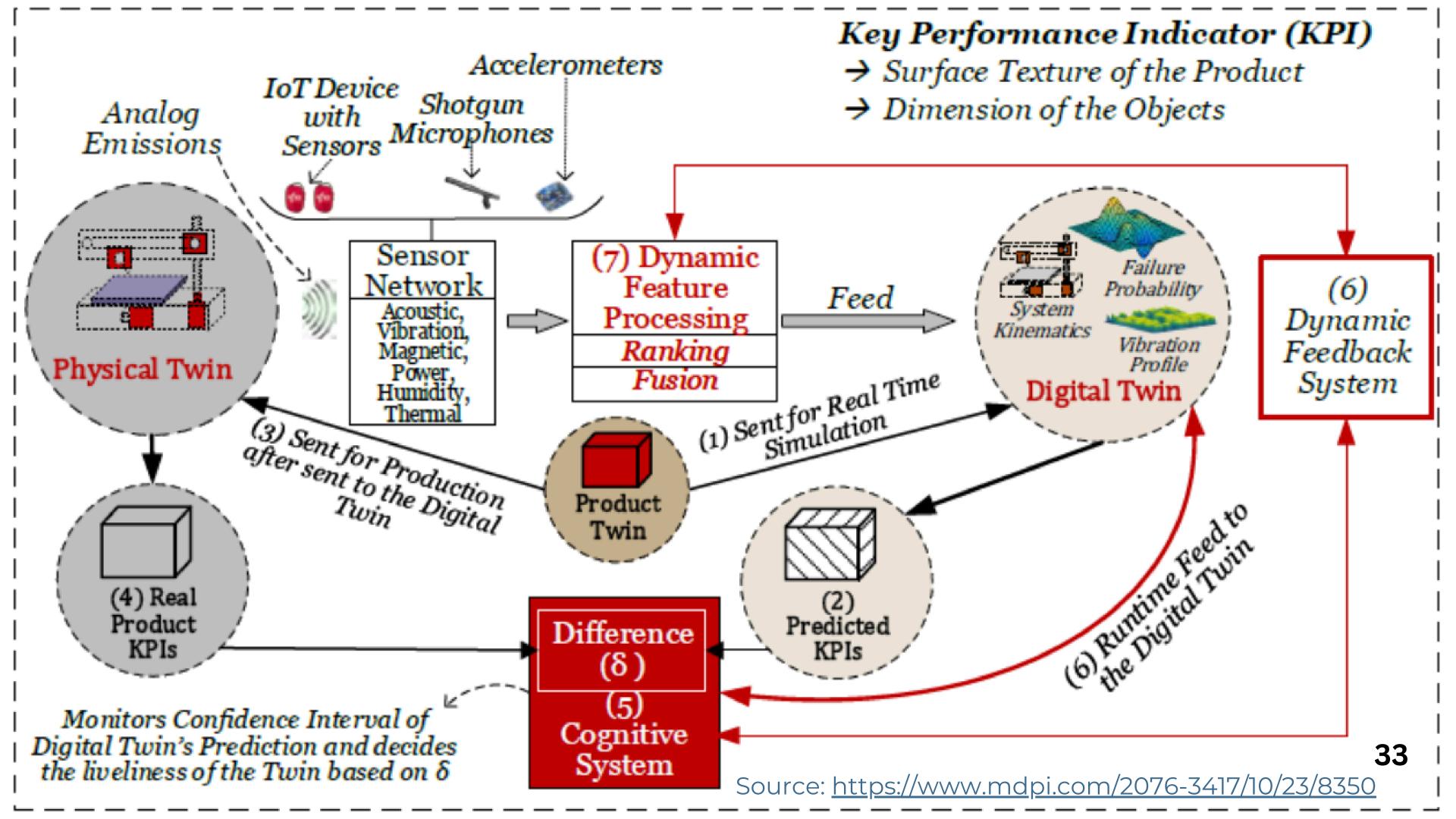
O4 Digital twins Marko Mitric - 315718



Digital twins

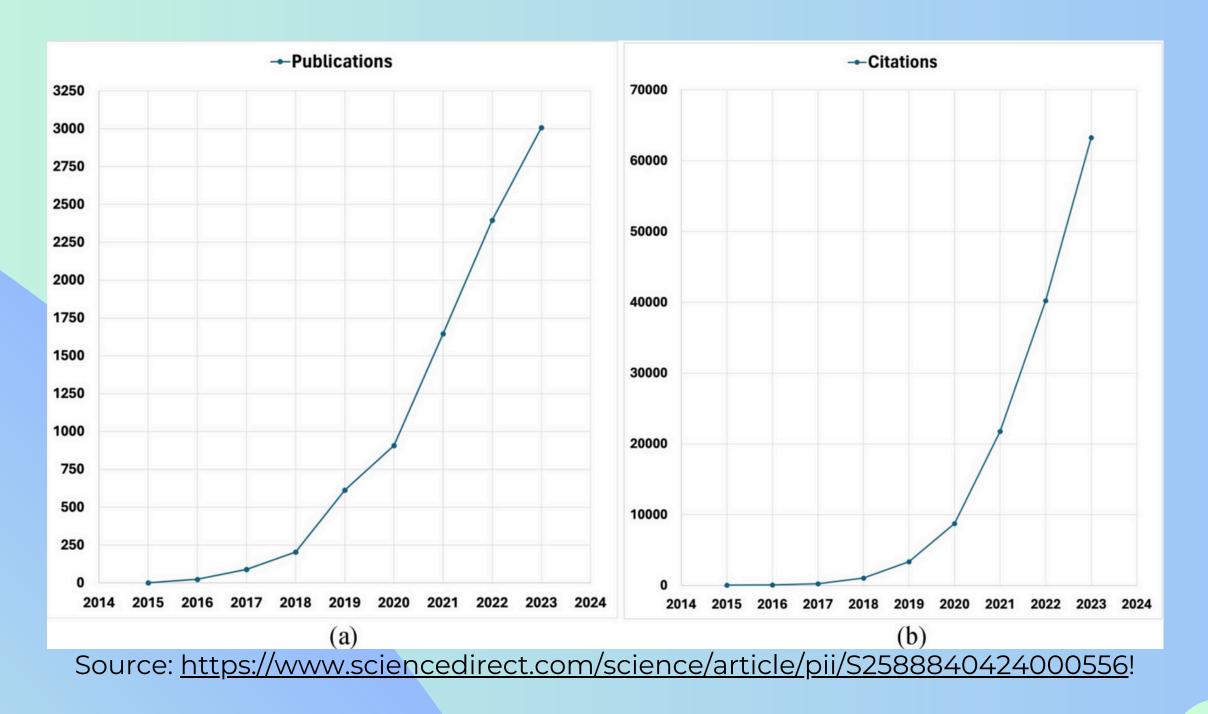
One definition

A digital twin is a set of virtual information constructs that mimics the structure, context, and behavior of a natural, engineered, or social system (or system-of-systems), is dynamically updated with data from its physical twin, has a predictive capability, and informs decisions that realize value. The bidirectional interaction between the virtual and the physical is central to the digital twin.



A new domain

In additive manufacturing



Technologies of DT

A mix of recent technologies

Internet of Things

XR

IoT sensor that allow constant data transmission

loT

Extended Reality

Digitally represent a physical object

Cloud

Cloud Computing

Manage large amounts of data and offers computational power and storage

AI

Artificial Intelligence

Analyse data, provide insights and make predictions

Source: https://link.springer.com/article/10.1007/s43674-023-00058-y

Application on a FDM 3D printer

Paper: "Integrating Machine Learning Model and Digital Twin System for Additive Manufacturing"

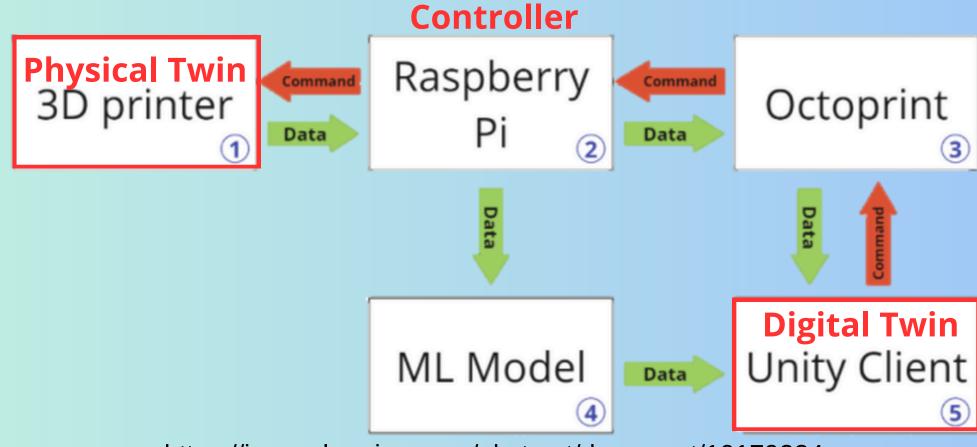
https://ieeexplore.ieee.org/abstract/document/10179224

- Embedded sensors to generate 3D model
- Camera and machine learning for defect detection
- Autonomously stop the printer if defect occurs

Application - 3 characteristics of DT

- Bi-directional communication
- Real time monitoring/control
- A certain level of intelligence

Implementation:



https://ieeexplore.ieee.org/abstract/document/10179224

Application - Results

Detection of printing defects with an average accuracy of 92.34%

Automatically stop the process as soon as error is detected.

Achieved 3 mail goals:

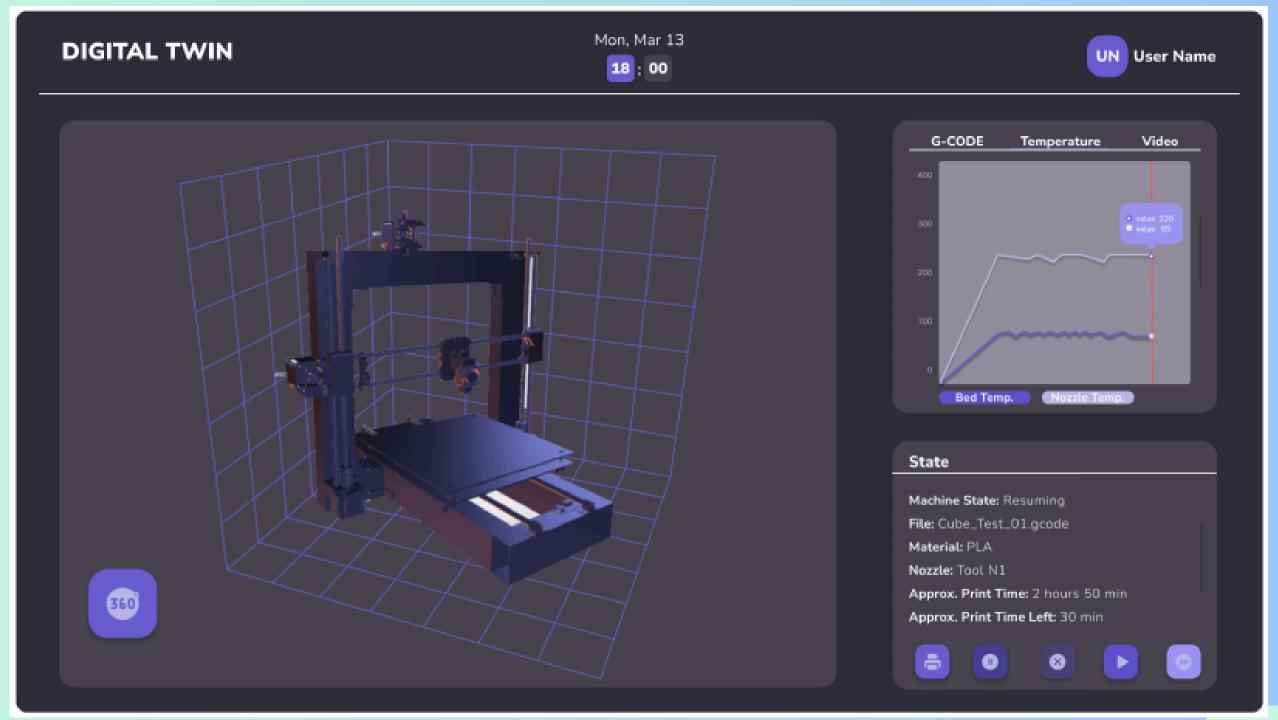
- Bi-directional communication
- Real time monitoring/control
- A certain level of intelligence



https://ieeexplore.ieee.org/abstract/document/10179224

Application

DT User Interface



https://ieeexplore.ieee.org/abstract/document/10179224

Discussion

Digital twins are promising but are still in the development phase. They have the potential to solve some issues of AM.

Enhance simulation by monitor other physical properties Computational challenge to model more involved physics

Data collection challenges

Due to various data types and protocols across sensors

Development of Digital twins for other AM processes

There is some research on DT for powder based AM

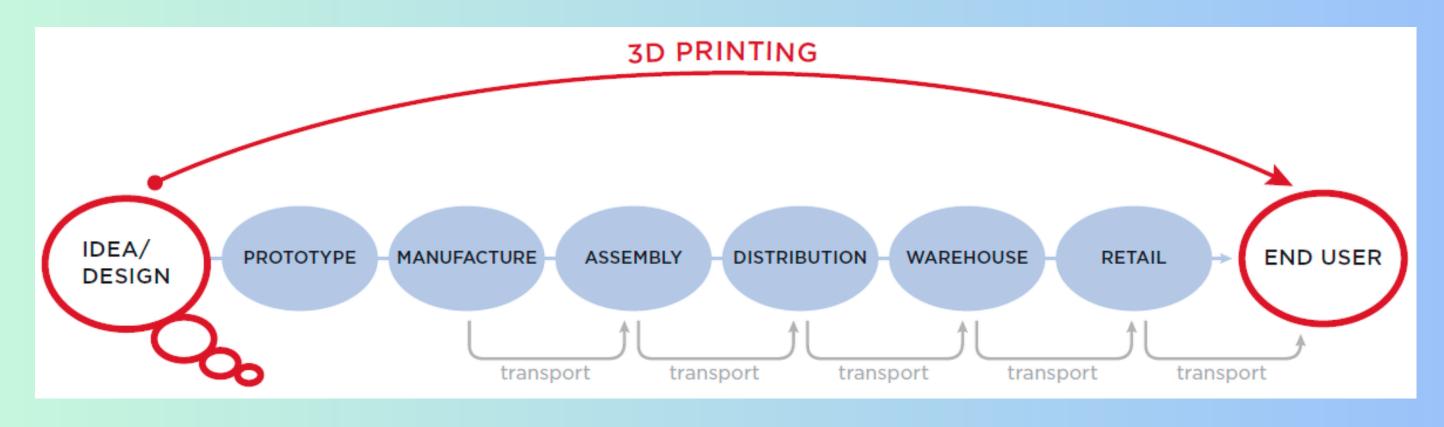
AM and Smart manufacturing

Adrien Maitrot - SCIPER

Today manufacturing:

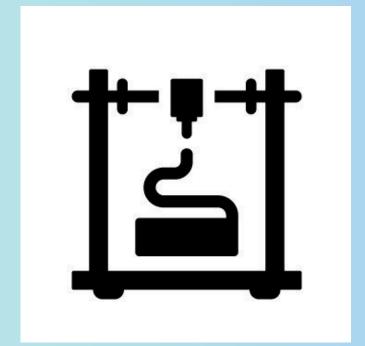
- Today's system is a legacy of Taylorism,
 Fordism, and Toyotism.
- A model built on mass production and mass consumption.
- It actively leverages globalization.
- While highly efficient for certain products, it is inefficient for others.

Smart manufacturing:



- Instantaneous production
- Localization of the production
- Customization of the production

Domains concerned:



Aerospace

Consumer products

Healthcare

But also other domains such as tooling, spare parts and energy...

AM and supply chain:

- Planning: Direct access, universality, accelerate process, no intermediaries
- Sourcing: Compact and standard material, one source, brut material
- Making: Reduction of cost and time production

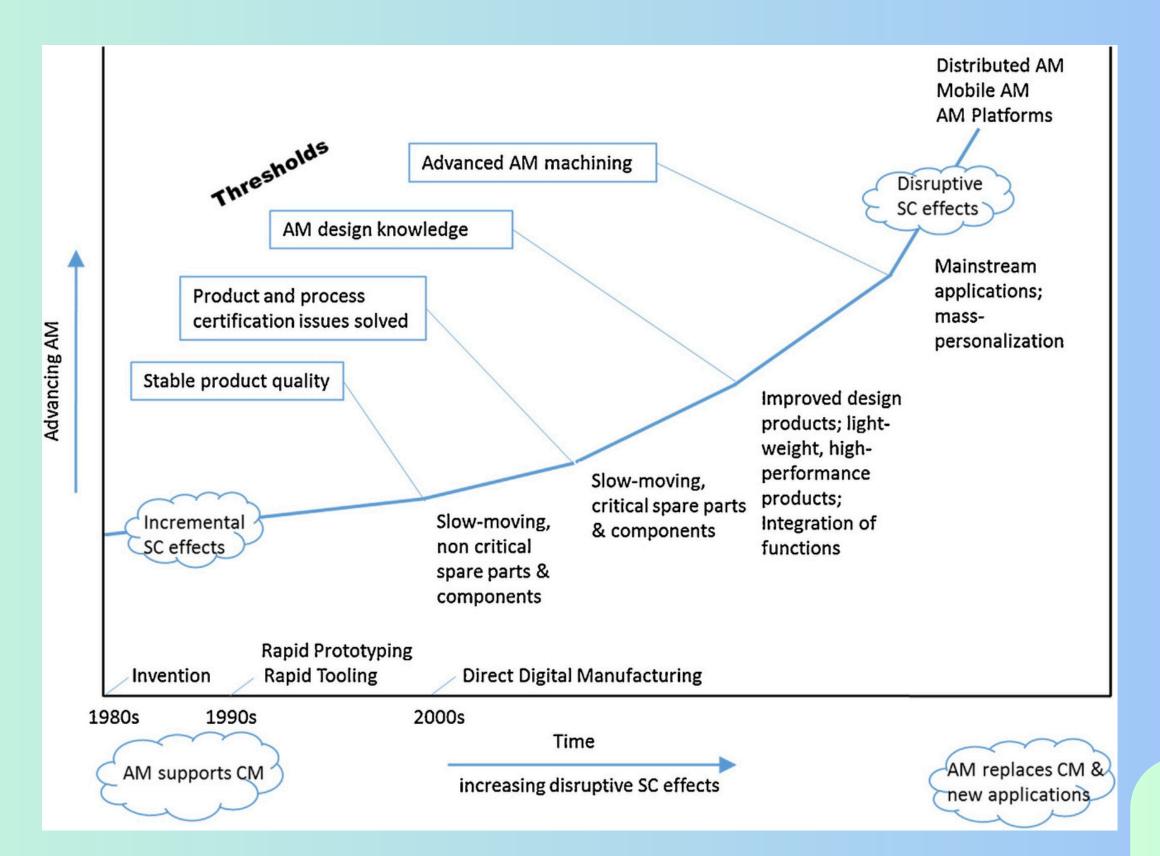
AM and supply chain:

- Delivering: short storage time, low distance of delivering
- Returning: Recycling materials, recycling part, easy to restore and remake

Future challenge of AM in the Industry:

- Surface finish need to be imrpoved
- Technical performance need to be improved
- Impossibility of producing some parts
- Changement of economic and industrial systems need to be apply

Future challenge of AM in the Industry:



06 AM for a sustainable future

Signe Hald Lundby - 396856

AM for a sustainable future

The three pillars of sustainability

Social SustainabilityEmployment, health, and safety

Social sustainability involves a focus on the well-being of people and communities.

SCOPE

DESIGN AND PLANNING

IMPLEMENTATION

EVALUATE OUTCOMES

ASSESS ALTERNATIES AND FINAL PROPOSAL

SOCIAL IMPACT PLAN

SOCIAL BASELINE

Benefits & opportunities

High demand for skilled labor creates opportunities for upskilling and technical education

Employment growth in software development, material science, and robotics

Use of IoT sensors for real-time monitoring of air quality and exposure levels

Challenges

May displace less-experienced workers

AM risks toxicity and health hazards

MONITOR AND MANAGE

Social Impact Assessment

Economic Sustainability

Cost-effective production and resource optimization

Economic sustainability ensures long-term wellbeing by balancing growth, resource efficiency, social fairness, and financial stability.

Benefits & opportunities

Local production reduces transportation needs, lowering logistical costs

Minimizes material waste cost

Enables mass customization at a lower cost than traditional manufacturing

Challenges

High initial investment in AM and I4.0 technologies (equipment, training, and implementation)

Significant barriers without government subsidies or collaborative initiatives.

Scalability to high-volume production is limited due to slow AM processes

Environmental Sustainability

Benefits & opportunities

AM constructs products layer by layer, using only the necessary material

Reduces raw material needs compared to subtractive methods.

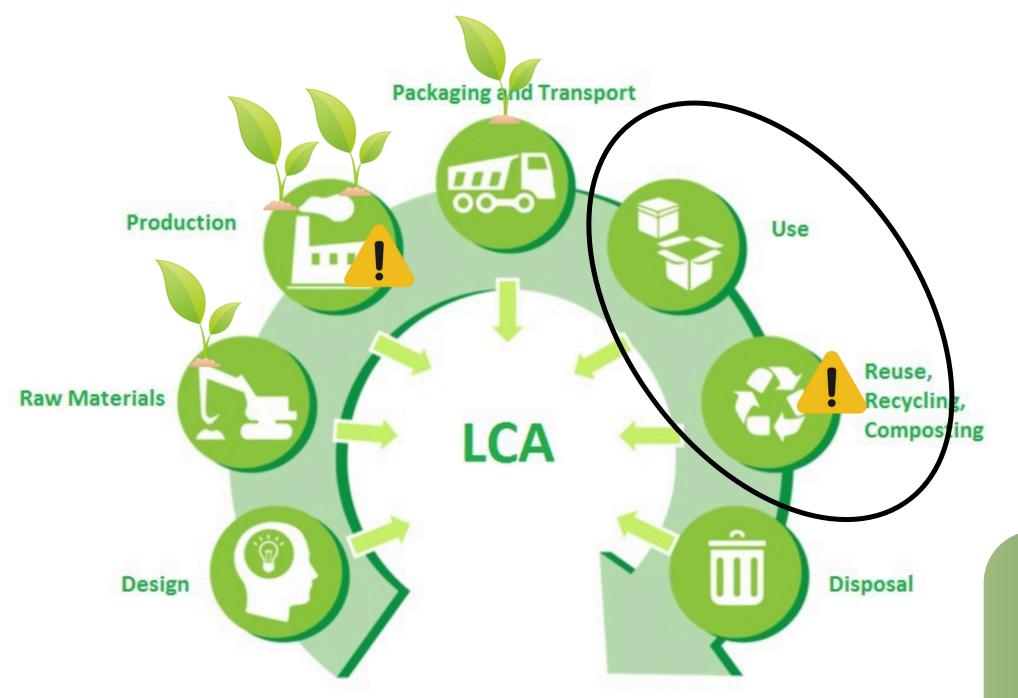
Integrating IoT and AI to optimize energy use through real-time monitoring

Enhances accessibility for in-house manufacturing, reducing travel impacts.

Challenges

Limited use of recyclable or bio-based materials

Environmental sustainability ensures the protection of natural resources to meet present needs without compromising future availability



AM's energy use can exceed that of conventional methods like injection molding or machining.

• Laser-based AM processes are particularly energy-intensive.

Circular Economy Potential The Butterfly Diagram

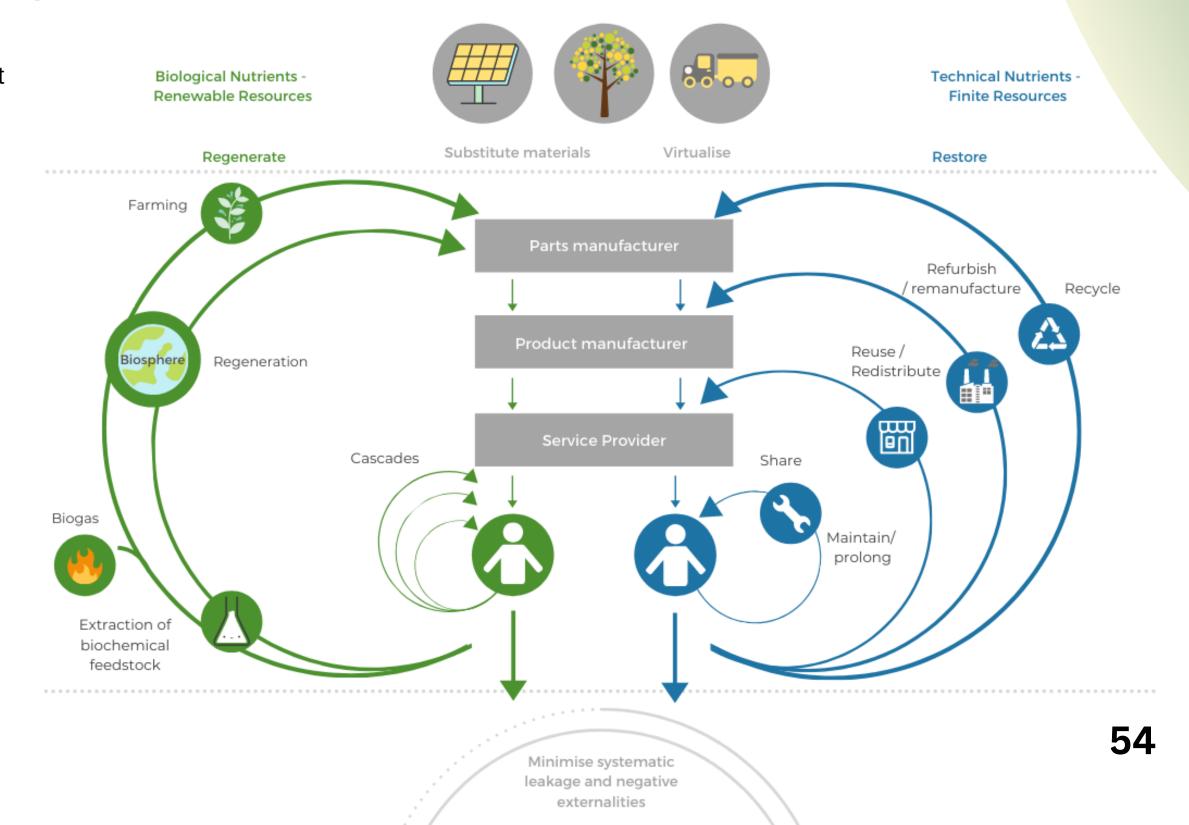
A tool developed by the Ellen MacArthur Foundation that provides a Cradle to Cradle view of the different aspects of Circular Economy needed to facilitate a sustainable transition in practice.

Biological nutrients - Renewable materials

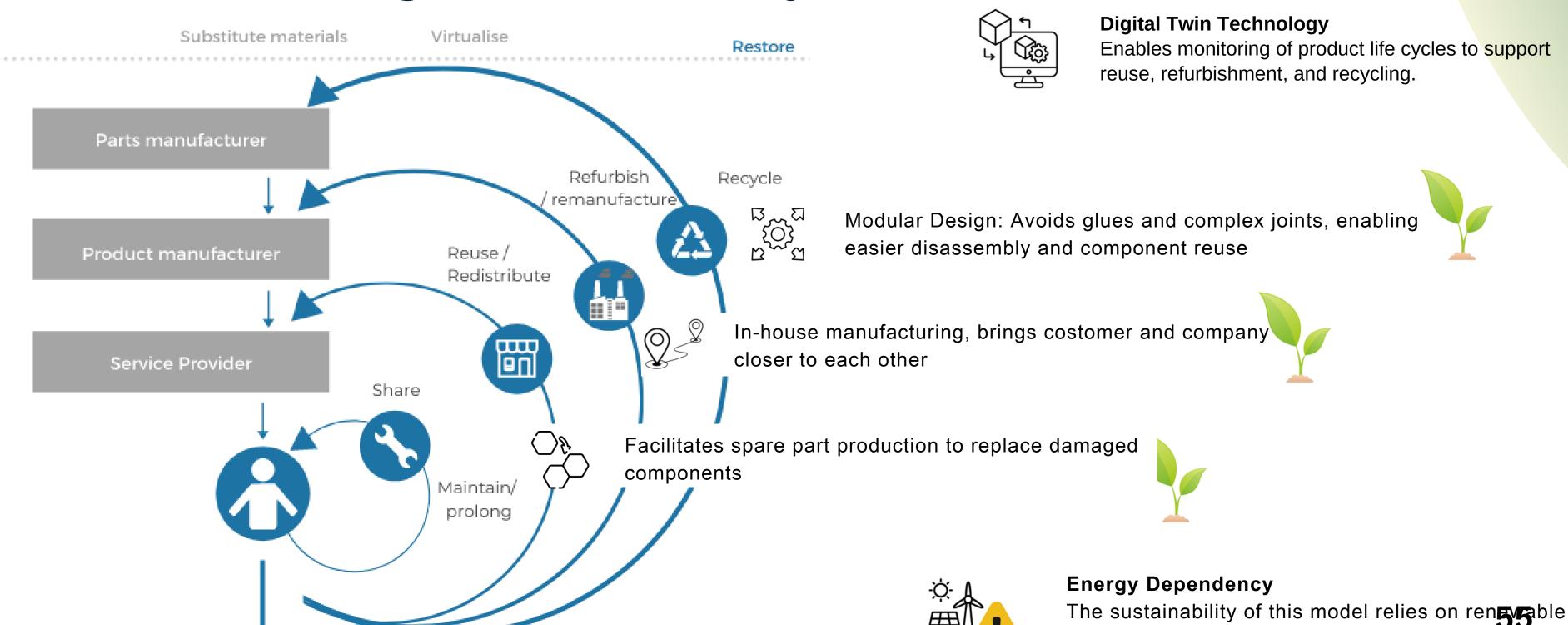
- Capable of decomposing naturally when reatching end of life.
 - E.g. wood, paper, cork, and cotton.

Technical nutrients - Finite materials

- Do not decompose. Therefore, their useful life must be maximized to their full capacity.
 - E.g. aluminum, iron, and plastic

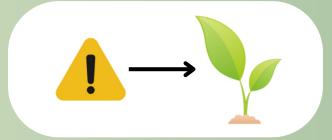


Circular Economy Potential Extending Product Life Cycles



energy sources to power the processes

Sustainable opportunities for AM in 14.0



Energy

Transition to renewable energy sources and integrate loT and AI for efficiency.

Company Scalability

Provide financial support, shared resources, and training programs to lower adoption barriers

Material

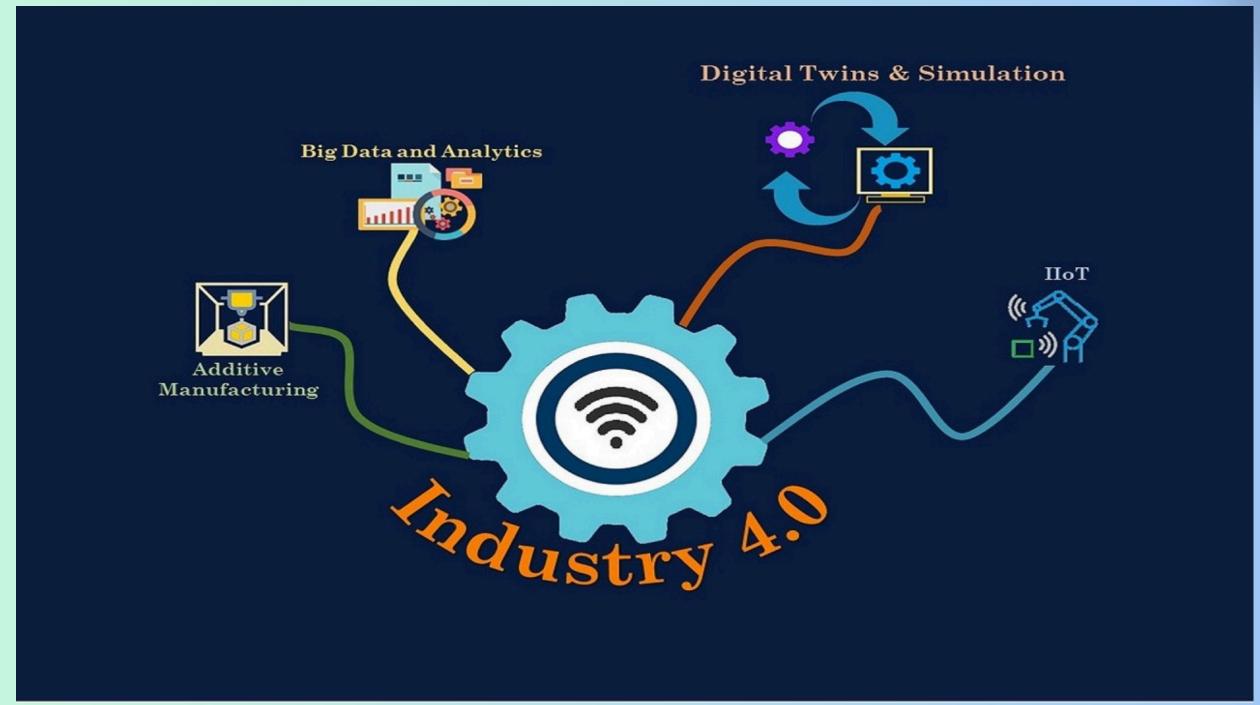
Focus on recyclable and biobased materials while promoting modular, repairable designs.

Shared Use

Promote product service systems to maximize product lifespan and reduce unnecessary production.

Conclusion

Advantages and challenges

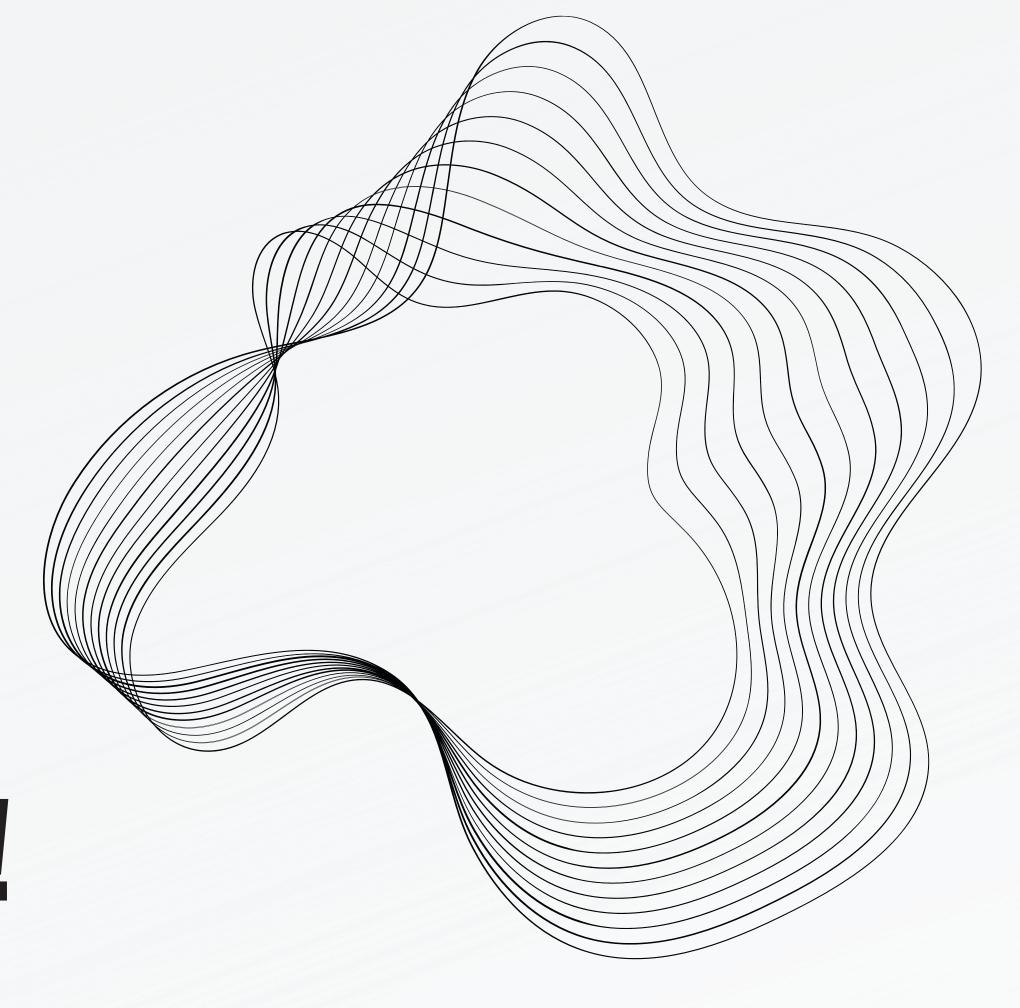


To a new era: Advantage of AM in Industry 4.0

- Optimization of production process
- Flexibility and customization
- Localized production
- Environmental benefits
- Competitive advantage for early adopters

Maybe in a long time... Challenges of AM in Industry 4.0

- Energy consumption
- Material recyclability
- Inconsistant material properties
- accessibility and adoption
- Integration complexity



THANK YOU!