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01 Industry 4.0 and AM overview
Introduction to the new digital revolution




The New Revolution :
Advanced Digital technologies in Industry 4.0

Rapid development

4th Industrial 4IR technologies

Revolution (4IR) l
Change

Manufacturing Industry



Industry 4.0 and Additive Manufacturing (AM)

Cloud technology, Artificial Intelligence (Al),
Internet of Things (loT), Machine Learning (ML),
Blockchain... Digital Twin... /
4IR
Technologies AM: Additive Manufacturing

Virtual reality (VR),
Augmented reality (AR),
Autonomous vehicles...

Additive Manufacturing,
Renewables technology,
Nanotechnology...




WEF - Future of Manufacturing

0 Future of Manufacturing | Global Lighthouse Networ
- | |. ' -




02 Lighthouses Leading
AM Adoption

Mathieu Stawarz - 312865




The Global Lighthouse Network (GLN)

Hub of 172 Lighthouses

12th wave of Lighthouses

Boost 4IR adoption
Strengthen manufacturers

Mitigate supply chain disruptions

o

00000

WORLD
ECONOMIC
FORUM

McKinsey
& Company

Recognition: selected & identified

Success stories : best 41R tech adopters

Benchmarks: inspire others as leaders

2 Distinctions:
(additonal)

End to end (E2E)

Sustainability



The Global Lighthouse Network (GLN)

@‘i» Hover over visual elements in the map to display more information & Click to display list by Country/Economy

W12 or Prior Waves (click to Filter)

CJwaiz ] Existing
22 (11.5%) S
% Additive Manufacturing:
Nl 2 Lighthouses
;kf Y (US-based)
169 (88.5%)

Lighthouse Type (click to Filter)

Site 116 |17 8g O,
-
J‘f b \,
\_‘ 1.1 R I(-"I
E2E 55 53 L? ;:’
‘ﬂlj y "}-r
«'{A ‘.’ ‘
\? e
Sustainability 20 [

Source: https://initiatives.weforum.org/global-lighthouse-network/lighthouses



https://initiatives.weforum.org/global-lighthouse-network/lighthouses

Fast Radius AM Lighthouse:

* Founded in 2014: Pioneered additive
manufacturing as a supply chain solution.

e Partnered with UPS: Established
microfactories for 3D printing & logistics.

P
= T
.;w_.d.rﬁ—_:-u__?_f:_‘ T

¥ R T

Image Source: https://www.wsj.com/articles/fast-radius-files-for-
bankruptcy-nine-months-after-spac-deal-11667940262

=
=

FAST RADIUS

A SYBRIDGE BRAND

HQ: US, near Chicago

Named Lighthouse Factory: AM
lighthouse for the 1st wave (2018).

Bankruptcy in 2022: Lack of profitability,
acquisition by Sybridge Tech

Largest Carbon DLS Install Base:
Leader in DLP 3D printing systems.

Served 2000+ customers: Delivered

3D-printed parts to key industries.
10


https://www.wsj.com/articles/fast-radius-files-for-bankruptcy-nine-months-after-spac-deal-11667940262
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ProtoLabs AM Lighthouse: [~ ''"JiULADO
e Manufacturing. Accelerated.
HQ: Maple Plain, Minnesota, U.S
e Online 3D Printing Service:

e Founded in 1999: Offers six advanced technologies for producing

Specialized in rapid custom plastic plastic, metal, and elastomeric parts.

Injection molding. G
e Global Presence:

e Entered 3D Printing (2014): DZ(SJOOEir;ngegZ :gztnc;pzr:;ejafsacri]lities in the

Acquired FinelLine Prototyping to
enhance 3D printing capabilities.

e Lighthouse Leader (2021):
Recognized in WEF’s GLN in the 7th wave

e Protolabs Network Launch (2021):

Acquired and rebranded Hubs, creating a Image Source: https://www.protolabs.com/services/3d-
gIobaI manufacturing platform printing/direct-metal-laser-sintering/production-capabilities/

11
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https://www.protolabs.com/services/3d-printing/direct-metal-laser-sintering/production-capabilities/

Protolabs Network: 4IR Technology

PROTOLABS
NETWORK by Hubs

From prototype parts
to production runs

Prototyping Production

e Instant quoting with free design analysis
100+ combinations of materials & surface finishes
e Quality prototypes and end-use parts in as fast as 1 day

Get an instant quote

(3 All uploads are secure and confidential

Image Source:_https://www.hubs.com/

e Global Partner Network:

Matches orders to the best supplier
among 250+ partners.

¢ Instant Quotes with ML.:

Upload CAD files for real-time
costs, lead times, and specs.

e Design Optimization:

Refine designs using DFM tools and get
tips to reduce costs and lead times.

e Accessible to All:

Open to both businesses and individuals,
team collaboration tools.

12


https://www.hubs.com/

Protolabs Network: 4IR technology PROTOLABS

For NETWORK by Hubs
e Global AM Network: e Skilled AM Network:
+90 factories to meet the demand Specialized 3D printing shops using
for 3D printed parts. FDM, SLA, SLS, and MJF technologies.
Online 3D printing e On-Demand Production:
. Fast, customized parts without
service waiting for quotes.

The easiest way to source high-quality 3D printed
prototypes and production parts. Order from our

network of highly experienced 3D printing shops. ISO
9001, ISO 13485 and AS9100 certified.

e Industrial Scale Printing:

Get an instant 3D printing quote ng h_volume productlon and
tooling, reducing costs.

&) All uploads are secure and confidential

13

Image Source:_https://www.hubs.com/3d-printing/



https://www.hubs.com/
https://www.hubs.com/3d-printing/

Protolabs Network: 4IR technology
For Additive Manufacturing

FDM

Fast & affordable
prototyping

SLS MJF SLA
Functional prototyping & Functional prototyping & Visual prototyping
low-run production low-run production

* Dimensional accuracy of
0.3% with a lower limit of £ 0.3

Dimensional accuracy of = e Dimensional accuracy of = e Dimensional accuracy of =
0.5% with a lower limit: = 0.5 0.3% with a lower limit of = 0.3 0.3% with a lower limit of = 0.3 mm (& 0.012")
mm mm (x 0.012") mm (x 0.012") e Lead times from 2 business
e Lead times from 1 business day e Lead times from 3 business e Lead times from 3 business days
days days

See our FDM services

X-Y Accuracy: 3-6 times less !

See our SLS printing
services See our MJF services See our SLA services

Image Source:_https://www.hubs.com/3d-printing/

14
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Protolabs Network: Testing

Untitled quote 39W76M91C-V1 4 = + New version Total: €8,095.00 B Lock price

Lead time
Parts & specifications 3D printing Change technology o 2 L.
Economy  Thusinsseideys 52000 @ FiCtitious quote
Select all parts

Shipping e 1000 Special Bevel Gear

Bevel Gear Second.SLDPRT 1000 €7,820.00 ey

SHESRRE0I 3-5 business days €275.00 * SLS 3D prlntlng

3D printing ® PA 1 2 (Nylon)

i e Layer thickness ~100um

Color: Dyed Black (default) 25 December 2024 ® SIZG: 47X4 1 X41 mm

View DFM analysis Layer height: 100um
47.2 x 40.9 x 40.9 mm Delivered in 1 6 Days !
22,895.175 mm3 .
Shipping address ° .
fal Enter shipping address COSt ) 7'82 €Ipart
: _ * Total: 8095 €
Special part :
Not a common gear B9 Enter billing address
T
Drag and drop here or select files Subtotal €8.095.00
, SLDPRT, 3DM, SAT, X_1 VAT 0% €0.00
Have a discount code?
Uploading weapons or parts subject to export control regulations such as ITAR, EAR beyond EAR99, or EU Dual 15

Total €8,095.00

Use is a violation of our terms of use



Additive Manufacturing Lighthouses:

Benchmark for 4IR future

e AM's Overlooked Potential in GLN:

IAM’s transformative potential is significant for
manufacturing.

e AM lighthouses importance :

Protolabs and Fast Radius set a benchmark
for the future of AM & 4IR adoption.

Challenges ?

1. Workforce upskilling

2. Resistance to change
3. Constrained budgets

e Expand AM Lighthouses:

More AM lighthouses in Europe could boost
AM adoption and 4IR.

16
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03 Al'simpacton AM:

NO\ZNEIp)USeld  ADDITIVE MANUFACTURING MARKET SIZE, 2023 T0 2032 (USD BILLION)

$120.19

$99.41

$ 18.01

2023 | 2024 | 2025 | 2026 W 2027 W 2028 QW 2029 Q2030 W 2031 [ 2032

Source: www.novaoneadvisor.com

18
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https://www.novaoneadvisor.com/report/additive-manufacturing-market
https://dribbble.com/shots/11463230-Ai-artificial-intelligence-platform

LEAP FUEL NOZZLE

ADDITIVELY MANUFACTURED

https://raquel-mayer-kwd9.squarespace.com/blog/2018/6/25/how-many-kinds-of-3d-printing

Al use Intensity and testing rates by sector, %

https://giphy.com/gifs/ge-3d-printing-aviation-avgeek-MHyn2EeiU5THy,

2024
%
!
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3
2
5 f L)
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Al in extrustion-based processes :
Refresher : Extrusion-based process:

e Involves depositing material through a nozzle or
extrusion head to create 3D objects layer by layer.

e Materials used : Thermoplastic filaments (e.g., PLA,
ABS), composite pellets or pastes, metals (LMWD).

e Techniques: FDM, BPM, LMWD

https://3dprinting.com/news/researchers-print-ceramics-in-mid-air

https://makeagif.com/qgif/additive-manufacturing-laser-metal-deposition-with-coaxial-wire-supply-U82_-y.

20


https://3dprinting.com/news/researchers-print-ceramics-in-mid-air/
https://makeagif.com/gif/additive-manufacturing-laser-metal-deposition-with-coaxial-wire-supply-U82_-y

Al in extrustion-based processes :
Optimization using Machine Learning :

Table T Recent optimization and ML models for process enhancement in the FDM process

https://www.linkedin.com/pulse/additive-manufacturing-market-forecast-2024-2030-ravalika-m-umrac

AM process  Materials Models [nput features ML/optimization Output measured Reference
method used
FDM ABS Benchmark model Process settings  Taguchi m¢ nod Dimensional M mood et al.
accuracy (2I08)
FDM PLA [SO 527-2 tensile Process factors Taguch? _9 method Dimensional Sharn_ et al.
specimen accuracy, part (2021
quality
FDM PLA Slender cuboid Process Tagu¢ i method Length, width, and  Teng et &
variables breadth (2022
FDM PLA (ASTM)-D638-V Process GA_l NN, GA_RSM  Tensile strength Deshwal ¢ al.
parameters (2020)
FDM PETG slabs Process settings  Cl NI and GA Surface roughness  Ulkir and | <gun
(2023)
FFF ABS ASTM D638, ASTM Process settings  NIU\ Mechanical Chohan et .,
D790 and ASTM properties (2020a, 7 920b)
D256
FFF PLA Benchmark model Extruder path GA Print time and Aguilar-Il' que
dimensional etal. (2 21)
precision
FDM PBS cylinder Step time, ANN, SVi \PCE, Rheological Taylag :t al.
temperature and RSM characteristics (2(°23)
FFF ABS Infill structure [nput image CNN Real-time defect E¢ nan Khan

detection

et al. (2020)

https://doi.org/10.1007/510845-024-02495-7

21
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Al in extrustion-based processes :
Optimization using Machine Learning :
Trade-off between build time and material consumption :

S.no Variable
1 Layer thickness RS SEEL NSNS E AR RS SRR R AR SN S R 0 e
. _ _ Random Forest Simplified | [ cenerting
2 Build orientation I Screening design g database
Instance : 1 |
3 € — ] T Initialize population
- Infill I]’l“i:rﬂ Random Forest g i I|' s E Selection of input Selection of best ML | l
. - e el t del )
4 STL file deviation <l v T : —T— s Six input parameters
5 ST‘L ru]ﬂ].c ../_.,-O-:.::.\._} L /f"a‘\::‘ . /D\:\?‘D : Response surface Predict time and Y
- clle Q/O\Q U/D\F} X ;}/CKQ Qﬁﬁ‘ . F/j:p ‘%ﬂ,’ : \Q i e tREr] material usage
_ / ¥ VR A OO 5 1 FRe SBYe X N LV lection
A Infill density EXEREXXXEDR) ‘EENRENRXKE] 0000 0000 | v Tournament selection,
" Tree-1 Tree-2 Tree-n : el el crossover and mutation
‘;;r RHEI er Aﬂglﬂ : function ton:r::;:?;fe time and 4
v I
] Elano-A Class-B Class-B |
& Foad Width | !
lP\-1;i_im'i[}-\'utiu,q - E I
v mal solution (less Yes N
0 Contour width . : e . o
Final-Class ! e
10 Number of contours !
I
I
11 Extrusion temperature e 2 HominatedSoytiing Genelelgailtim¥ o
. https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d https://doi.org/10.1007/s10845-024-02495-2
12 Extruder nozzle diameter
13 Printing speed
14 Travel speed 22

https://doi.org/10.1007/s10845-024-02495-z



https://doi.org/10.1007/s10845-024-02495-z
https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
https://doi.org/10.1007/s10845-024-02495-z
https://www.linkedin.com/pulse/additive-manufacturing-market-forecast-2024-2030-ravalika-m-umrac

Al in extrustion-based processes :

Optimization using Machine Learning:
Results :

Build time: Material consumption :

-37%

: -
) pi

Cube printed using standard Cube printed using
printing parameter Optimal printing parameter 0.96 I 0.94

Mat. consump. Build time

Accuracy : (R?)

https://doi.org/10.1007/510845-024-02495-7 https://doi.org/10.1007/s10845-024-02495-z 2 3

An R? of 1indicates that the regression predictions perfectly fit the data.


https://doi.org/10.1007/s10845-024-02495-z
https://doi.org/10.1007/s10845-024-02495-z
https://www.linkedin.com/pulse/additive-manufacturing-market-forecast-2024-2030-ravalika-m-umrac

Al in extrustion-based processes :

Optimization using Machine Learning:
Trade-off between build time and strength :

Build time: Strength: Infill density :

N . %

24



https://ijmmt.ro/vol14no12022/01_Abbas.pdf
https://www.linkedin.com/pulse/additive-manufacturing-market-forecast-2024-2030-ravalika-m-umrac

Al in extrustion-based processes :

Optimization using data-driven Al techniques :
LMWD Optimizing porosity detection : Problem statement

¢ However, due to the
manufacturing process, the
mMaterials often have tiny Lo
pores inside them, which P
can grow when a load Is
applied, resulting in poor | |8k _ '
quallty defectlve parts. ¥ sk s

https://www.scie ect.com/science/article/pii/S1350630723004181 ?via%3Dihub

i

I5kV X1000 10 1

25
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https://www.mdpi.com/2411-5134/8/2/52
https://www.sciencedirect.com/science/article/pii/S1350630723004181?via%3Dihub
https://makeagif.com/gif/additive-manufacturing-laser-metal-deposition-with-coaxial-wire-supply-U82_-y

Al in extrustion-based processes :

Optimization using data-driven Al techniques :
Optimizing porosity detection

Laser power

Input (optimized) parameters: Movement velocity

b ﬂ Wire feed rate

Data Set Sample of the data
Random Forest Simplified
Instance Support Vector @ D, D, Dn
Random Forest —_— | Machines (SVM) :
- , e il residual residual residual
- | 3
A AN A © Construction of
y e “_“'/-Q-‘\\ A H';g\-\‘ . ) ¢ ‘,,.i';g\ Hyperplanes that Best decision-trees
b U\O R R\ £ R K/ * LR (T Separates Different Classes
60000000 G000 S0 00000000
A i T
Tree-1 Tree-2 Tree-n Prediction Prediction Prediction
W, W, %
Class-A Class-B Class-B
|
[l\-1;!_im'i[_\ -Voting | Summation

A SR Final Qutput
Final-Class

Final Results
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https://www.researchgate.net/figure/GBoost-extreme-gradient-boosting-algorithm-structure-31_fig2_362325316
https://spotintelligence.com/2024/05/06/support-vector-machines-svm/
https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
https://makeagif.com/gif/additive-manufacturing-laser-metal-deposition-with-coaxial-wire-supply-U82_-y

Al in extrustion-based processes :

Optimization using data-driven Al techniques :
Optimizing porosity detection :

Validation Partition Algorithm Lagar il
Accuracy Recall
KNN 0.954 0.855
2/3 part to train and SVM 0.959 0.855
1/3 part to test RF 0.937 0.818
XGBoost 0.964 0.804
EKNN 0.971 0.742
2/3 total to train and SVM 0.956 0.762
1/3 total to test RF 0.914 0.728
XGBoost 0.972 0.694
KNN 0.969 0.393
2 parts to train and SVM 0.966 0.034
1 part to test RF 0.903 0.267
XGBoost 0.975 0.021

Porosity detection
& prevention

in real time, with high

accuracy and recall -

Recall : is the percentage of data samples that a machine learning model correctly identifies as belonging to a class of interest—the “positive class”—out of the total samples for that class.


https://makeagif.com/gif/additive-manufacturing-laser-metal-deposition-with-coaxial-wire-supply-U82_-y

Al in powder-based processes :
Refresher : Powder-based process :

e Powder based processes involve bonding
powdered materials to form solid parts. This
bonding can be achieved either by applying heat
to partially or fully melt and fuse the powder
particles or by using a binding agent to adhere

the particles together.
e Techniques : BJ (binder), PBF (LB (SLS, SLM), EB,

IR)

—_—

\ |

melting-ehBvzO

https://makeagif.com/gif/new-method-of-manufacturing-using-powder-bed-additive-manufacturing-with-selective-laser-meltin

28
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https://www.researc
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https://makeagif.com/gif/new-method-of-manufacturing-using-powder-bed-additive-manufacturing-with-selective-laser-melting-ehBvzO
https://www.researchgate.net/figure/Defects-formed-during-SLM-The-first-type-of-pores-Figure-2-1-can-be-designated-as-gas_fig2_356116313
https://makeagif.com/gif/slm-solutions-selective-laser-melting-MTpWDb

Al in powder-based processes :

Optimization using data-driven Al techniques :

Input (optimized) parameters:

Laser power | Scan speed | Layer speed | Hatch spacing*

*It is the spacing between the centers of two adjacent beams

A Architecture of

Artificial Neural Network

- Bayesian Network

Output

Cause Table of Conditional Hidden
Probabilities

https://blog.knoldus.com/architecture-of-artificial-neural-network/

https://www.eecs.gmul.ac.uk/~william/PSAM7/img7.html

29
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Al in powder-based processes :
Optimization using data-driven Al techniques :

Results :
ANN
Prediction Prediction errors
part density surface roughness <&4.4%
density <0.98%

30
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https://doi.org/10.1007/s10845-021-01773-4
https://doi.org/10.1007/s00170-022-09555-9
https://makeagif.com/gif/slm-solutions-selective-laser-melting-MTpWDb
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Digital twins
Marko Mitric - 315718

illustration from https://www.nature.com/articles/s43588-024-00617-4
https://www.photonicsonline.com/doc/understanding-digital-twins-in-metrology-0001
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Digital twins

One definition

A digital twin is a set of virtual information constructs that mimics the structure,
context, and behavior of a natural, engineered, or social system (or system-of-
systems), is dynamically updated with data from its physical twin, has a predictive
capability, and informs decisions that realize value. The bidirectional interaction
between the virtual and the physical is central to the digital twin.

National Academies 2023: Foundational Research Gaps and Future Directions for Digital Twins

32



Key Performance Indicator (KPI)
- Surface Texture of the Product
= Dimension of the Objects

_ Accelerometers
IoT Deuvice Sh |
Analog with , 2ohotgun |
Emissions  Sensors M icrophones |
—— v N
o RGN \o\a | \f ’_/' i
» N
’ "‘{HH Sensor (7) Dynamic
2 ) ., | Network Feature
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Dynamic

Feedback
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Cognitive

System
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A new dome

In additive manufac

——Publications ——Citations
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https://www.sciencedirect.com/science/article/pii/S2588840424000556

TEChn()Iogies Of DT Internet of Things

A mix of recent technologies loT sensor that allow constant data
transmission

Extended Reality
Digitally represent a physical object

Cloud Computing
Manage large amounts of data and

offers computational power and
storage

Artificial Intelligence
Analyse data, provide insights and
make predictions

Source: https:/link.springer.com/article/10.1007/s43674-023-00058-y
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Application on a FDM 3D printer

Paper: “Integrating Machine Learning Model and Digital Twin System for
Additive Manufacturing”
https://ieeexplore.ieee.org/abstract/document/101/79224

e Embedded sensors to generate 3D model
e Camera and machine learning for defect detection
e Autonomously stop the printer it defect occurs

36


https://ieeexplore.ieee.org/abstract/document/10179224

Application - 3 characteristics of DT

e Bi-directional communication
e Real time monitoring/control
e A certain level of intelligence

Implementation:

Physical Twin
3D printer

1

&mmm Raspberry <

Data

Controller

o

ejeq

ML Model

4

Data

Data

Octoprint

i

3

ejeq

Digital Twin
Unity Client

5

https://ieeexplore.ieee.org/abstract/dobument/10179224
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Application - Results

Detection of printing defects with an average accuracy of 92.34%
Automatically stop the process as soon as error is detected.

Achieved 3 mail goals:
e Bi-directional communication
e Real time monitoring/control
e A certain level of intelligence

https://ieeexplore.ieee.org/abstract/document/10179224
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Application

DT User Interface

Mon, Mar 13

DIGITAL TWIN UN User Name

18 : 00

State

Machine Stabe: Hesuming

Fille: Cube_Tegt O1 goode
Material: FLA

Mozzle: Taal M1

Apprax. Print Teme: 2 hourg 50 min

dpprax. Print Time Left 30 min

anap.

https://ieeexplore.ieee.org/abstract/document/10179224



https://ieeexplore.ieee.org/abstract/document/10179224

Discussion

Digital twins are promising but are still in the development phase. They
have the potential to solve some issues of AM.

Enhance simulation by monitor other physical properties
Computational challenge to model more involved physics

Data collection challenges
Due to various data types and protocols across sensors

Development of Digital twins for other AM processes
There is some research on DT for powder based AM

40



O5 AM and Smart manufacturing

Adrien Maitrot - SCIPER

41



Today manufacturing :

e Today's system is a legacy of Taylorism,
Fordism, and Toyotism.

A, ® v [
& B, g W, =

L Al Logistics h — (=
Raw Materials Supplier Distributor

e A model built on mass production and

>
mass consumption. :I 4 Supply Chain v P
5 4
. It actively leverages globalization. .:. & .E. & ..LL
= Hr H L

Consumer Retailer / Route to Manufacturer
Market

. While highly efficient for certain
products, it is inefficient for others.
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Smart manufacturing :

3D PRINTING

PROTOTYPE MANUFACTURE ASSEMBLY DISTRIBUTION WAREHOUSE RETAIL

e |nstantaneous production

e Localization of the production

e Customization of the production
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Domains concerned

-l
X [

Aerospace Consumer products Healthcare

But also other domains such as tooling, spare
parts and energy...
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AM and supply chain:

RETURN e Planning : Direct access,
universality, accelerate
process, no intermediaries

DELIVER

distribution channels

ADDITW’E Diplivery process

e Sourcing : Compact and

T MANUFACTURING | standard material, one
_5UPPLTCHA!N .
source, brut material
podt g | iOwsgk e Making : Reduction of cost

Multiple design nodes

and time production

DESIGN _ | PRODUCTION
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AM and supply chain:

RETURN

DELIVER

Racoup
manufacturing costs

Mult-DC bazed spares
replacement

Cantralized planning.
diverse manufacturing

Hub and Spoke
distribution model

ADDITIVE
MANUFACTURING
SUPPLY CHAIN 4

LEGEND
Traditional Supply Chain iditrve Manufact pery

Product licensing

Mult-tier
production process

Qffshore
manufacturing

DESIGN el PRODUCTION

Industry standarnds
dietine guality

Multiple design nodes

Low cott stancang
matenal sourcing

MATERIALS

e Delivering : short storage
time, low distance of
delivering

e Returning : Recycling

materials, recycling part,
easy to restore and remake
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Future challenge of AM in the Industry :

e Surface finish need to be imrpoved

e Technical performance need to be
improved

e Impossibility of producing some
parts

e Changement of economic and
industrial systems need to be apply
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Future challenge of AM in the Industry :

Advancing AM

o
2 o\é Advanced AM machining
(€
<\

AM design knowledge

Product and process
certification issues solved

Stable product quality

Distributed AM
Mobile AM
AM Platforms

Disruptive
SC effects ™

Mainstream
applications;
mass-
personalization

iImproved design
products; light-

weight, high-
Slow-moving, performance

) critical spare parts products;
Incrementa._l Slow-moving, & components Integration of

SC effects non critical functions

= spare parts &
components
Rapid Prototyping
Invention Rapid Tooling Direct Digital Manufacturing
1980s 1990s 2000s

Time

AM ts CM . . : :
PROre increasing disruptive SC effects

AM replaces CM &
new applications
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06 AM for a sustainable future
Signe Hald Lundby - 396856
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AM for a sustainable future
The three pillars of sustainability

Society

Environment

SUSTAINABILITY

\ Benefits ! Hot spots




SOCIAL BASELINE

Social Sustainability

=COPE ALTERNATIES
Employment, health, and safety DESIGN AND o
Social sustainability involves a focus on the well-being of people and communities. IMPLEMENTATION
EVALUATE S0CIAL IMPACT
OUTCOMES PLAN

Challenges MONITOR AND MANAGE

Social Impact Assessment

fits & opportunities

.l High demand for skilled labor creates \‘f " i May displace less-experienced workers !
N opportunities for upskilling and technical (
education
& AM risks toxicity and health hazards !
'f.\. Employment growth in software \‘f
A development, material science, and robotics

Cf\) Use of lIoT sensors for real-time monltorlng\‘ &

of air quality and exposure levels n'




Economic Sustainability

Economic sustainability ensures long-term well-

COSt-effeCtive prOd UCtiOn cl nd being by balancing growth, resource efficiency,

resource optimization

s & opportunities

Local production reduces transportation \‘
needs, lowering logistical costs e

Minimizes material waste cost w

Enables mass customization at a lower cost .
o~

than traditional manufacturing

social fairness, and financial stability.

Challenges

High initial investment in AM and 14.0
technologies (equipment, training, and
implementation)

Significant barriers without government
subsidies or collaborative initiatives.

Scalability to high-volume production is
limited due to slow AM processes




Environmental Sustainability

=

0
@

Lo

= ®

Environmental sustainability ensures the
protection of natural resources to meet present
nefits & opportunities needs without compromising future availability

AM constructs products layer by layer, using
only the necessary material

Reduces raw material needs compared to
subtractive methods.

Integrating 10T and Al to optimize energy
use through real-time monitoring

Enhances accessibility for in-house
manufacturing, reducing travel impacts.

Challenges

Design Disposal

Limited use of recyclable or bio-based materials

AM’s energy use can exceed that of conventional methods like injection molding or machining.
e Laser-based AM processes are particularly energy-intensive.



Circular Economy Potential
The Butterfly Diagram

A tool developed by the Ellen MacArthur Foundation that Biological Nutrients - Technical Nutrients -
provides a Cradle to Cradle view of the different aspects Renewable Resources Finite Resources

of Circular Economy needed to facilitate a sustainable
transition in practice.

Farming

Regenerate Substitute materials Virtualise Restore
Refurbish

Parts manufacturer
l i { remanufacture
Product manufacturer Reuse /

l Redistribute

Recycle

Biosphere Regeneration

Biological nutrients - Renewable materials
o Capable of decomposing naturally when reatching
end of life.
o E.g. wood, paper, cork, and cotton.

Cascades

Technical nutrients - Finite materials Biogas
* Do not decompose. Therefore, their useful life must o

Maintain/
prolong

be maximized to their full capacity.
o E.g. aluminum, iron, and plastic

Extraction of
biochemical
feedstock
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Minimise systematic
leakage and negative
externalities



Circular Economy Potential
Extending Product Life Cycles

f’ N Digital Twin Technology
Restore N Enables monitoring of product life cycles to support
2 reuse, refurbishment, and recycling.

Refurbish
{ remanufacture

Recycle

B@CJ Modular Design: Avoids glues and complex joints, enabling
Deuse [ RN easier disassembly and component reuse

Pedistribute

o

AL closer to each other

/

Facilitates spare part production to replace damaged
components

@ ©  In-house manufacturing, brings costomer and company

'| bMaintain/

| prolong

1% Energy Dependency
ﬁ The sustainability of this model relies on ren%ble

! energy sources to power the processes



Sustainable opportunities for AM in 14.0

Energy
Transition to renewable
energy sources and integrate
loT and Al for efficiency.

Material
Focus on recyclable and bio-
based materials while promoting
modular, repairable designs.

=

Company Scalability
Provide financial support, shared
resources, and training programs

to lower adoption barriers

Shared Use
Promote product service systems
to maximize product lifespan and
reduce unnecessary production.
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07 Conclusion
Advantages and challenges

INDUSTRY

Digital Twins & Simulation

Big Data and Analytics

Additive
Manufacturing



To a new era:
Advantage of AM in

Optimization of production process
Flexibility and customization
Localized production
Environmental benefits

Competitive advantage for early
adopters
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Maybe in a long time...

Challenges of AM in Industry 4.0

Energy consumption

Material recyclability
Inconsistant material properties
accessibility and adoption

Integration complexity

O,

59



THANK YOU!



