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Introduction

Additive Manufacturing (AM), or 3D printing. It has evolved from
prototyping to producing end-use components.
Composites Overview: Composites combine materials to achieve
superior strength, durability, and functionality. They use
reinforcements in a matrix to enhance performance

MMCs
FRPs
CMCs
Smart Composites
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AM of MMCs

What are MMCs?
A meta l  matr ix  (e .g . ,  A l ,  T i )  re inforced
with  ceramic  part ic les  (e .g . ,  S iC,  T iB2)
or  f ibers .  

Advantages
High strength,  wear  res istance,  thermal
stabi l i ty .

Applications
Aerospace,  automot ive,  too l ing.
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Why AM for MMCs?

Material  Eff ic iency:
Reduced mater ia l  waste compared to
trad i t iona l  methods

Design Flexibi l i ty:
Enables  complex geometr ies  and
l ightweight  st ructures.

Tailored Properties (control of reinforcement distribution):

TiB2 has a  Young ’s  modulus  of  565GPa and a  V ickers  hardness
of  2500HV,  s ign i f icant ly  improv ing st i f fness and wear
res istance.
S iC has a  h igh thermal  conduct iv i ty  and thermal  stab i l i ty  and is
th is  an idea l  re inforcement  for  thermal  management  appl icat ions
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Material Selection for MMCs

Challenge: Achieving uniform distribution of reinforcements

Matrix Materials:
Al ,  T i ,  and Cu a l loys .
Example :  A lS i10Mg widely  used
for  l ightweight  aerospace
components .

In  convent iona l  methods,  re inforcement  of ten agglomerates,
leading to  poor  wettabi l i ty  and bonding between the matr ix  and
re inforcement

Reinforcement Materials:
Ceramics l ike  S iC,  T iB2,  A l2O3.
Propert ies :  H igh hardness,  thermal
stabi l i ty ,  wear  res istance.
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Material Selection for MMCs
Challenge: Achieving uniform distribution of reinforcements

Mechanica l  a l loy ing,  such as  h igh-energy ba l l  mi l l ing,  has proven
effect ive in  producing composi te  powders  where each part ic le  is
re inforced wi th  ceramic  mater ia l .
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Material Selection for MMCs
Challenge: Achieving uniform distribution of reinforcements

 Morphological evolution of Al–Al2O3 composites and Al powders ball-milled for up to 20h. 8



AM Techniques for 
Metal Matrix Composites

01.
Selective
Laser Melting
(SLM)

02.
Directed
Energy
Deposition
(DED)

03.
Binder 
Jetting
(BJ)
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SLM Process for MMCs

High-powered laser  to  mel t  and fuse
meta l  powders  layer  by layer .
Near-net-shape,  t ime- and cost-
effect ive manufactur ing technique.

Advantages and Challenges
The h igh cool ing rates associated wi th  SLM resu l t  in  f ine-
gra ined microstructures.
Chal lenges in  process ing h igh-melt ing-point  mater ia ls ,  l ike
intermeta l l ics ,  s t i l l  pers ist .
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DED Process for MMCs
 Use lasers  or  e lectron beams,  to  mel t
and depos i t  feedstock mater ia l  (powder
or  wire)  onto a  substrate
Al lows for  the creat ion of  near-net-
shape components  wi th  h igh ly
contro l lab le  microstructures

Advantages and Challanges
 DED del ivers  mater ia l  d i rect ly  into  the mol ten pool ,  enabl ing
the addi t ion of  re inforcement  phases in  s i tu ,  into  t i tan ium or
a luminum a l loys .
Suffers  f rom poor  reso lut ion and lower  surface qua l i ty ,  which
necess i tate  addi t iona l  post-process ing 11



BJ Process for MMCs
Select ive ly  e jects  b inder  droplets  onto
a powder  bed,  layer  by layer .
The use of  react ive s inter ing or
inf i l t rat ion a l lows for  the format ion of
re inforc ing phases d i rect ly  dur ing the
s inter ing process.

Advantages and Challanges
Commonly  used because of  i ts  low costs  and a l lows for  the
creat ion of  complex shapes.
Chal lenges remain  in  opt imiz ing the process parameters  to
achieve des i red mechanica l  propert ies  and in  dea l ing wi th
potent ia l  issues l ike  re inforcement  d isso lut ion dur ing
inf i l t rat ion 12



Post-Processing of MMCs

Necessity:
Reduce poros i ty ,  res idua l  st resses,  surface roughness

Methods
S i n t e r i n g  improves the dens i ty  and structura l  integr i ty .
H e a t  t r e a t m e n t ,  m a c h i n i n g ,  o r  s u r f a c e  f i n i s h i n g  t e c h n i q u e s  are
ut i l ized to  reduce res idua l  st resses and improve surface qua l i ty .
H o t  I s o s t a t i c  P r o c e s s i n g  ( H I P )  reduces poros i ty  and enhances
dens i ty .
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Aerospace and Defense:
Lightweight  components :  turb ine
blades,  heat  exchangers ,
structura l  parts
Thermal  management :  heat  s inks,
thermal  sh ie lds
Wear-res istant  components :
bear ings,  gear  components ,
miss i le  cas ings

Automotive Industry:
Engine components :  engine
blocks,  cy l inder  heads,  p istons
Brake rotors  and pads
Suspens ion systems:
l ightweight  suspens ion arms
and jo ints

Biomedical Applications:
Orthopedic  implants
Denta l  appl icat ions:  customized
denta l  crowns,  prosthet ics

Applications of AM for MMCs
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Challenges and 
Further Directions

01.
Optimization of Material
Properties

uni formity  of  re inforcement
d istr ibut ion
the matr ix-re inforcement
interface
the format ion of  defects

Enhanced contro l  over  the
microstructure in  terms of
re inforcement  d ispers ion
and interfac ia l  bonding

Develop advanced
feedstocks and techniques,  
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Challenges and 
Further Directions

02.
Development of Standardized
Processes and Parameters

lack  of  gu ide l ines for
achiev ing opt imal  process
condi t ions

Standard iz ing process
parameters  for  var ious
MMCs to  improve
reproducib i l i ty  and
qual i ty  contro l
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Challenges and 
Further Directions

03.
 Hybrid Manufacturing

combin ing AM with  t rad i t iona l  methods
enhance the mechanica l  propert ies  of  MMCs by improv ing part  dens i ty ,  reducing
res idua l  st resses,  and f ine-tun ing mater ia l  propert ies  through post-process ing
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Challenges and 
Further Directions

04.
New Material Systems

Mg and Cu a l loys of fer  un ique benef i ts ,  such as  lower  weight  or  improved thermal
conduct iv i ty ,  but  face cha l lenges re lated to  ox idat ion,  h igh evaporat ion rates ,
and re inforcement  d ist r ibut ion
hybr id  composi tes  combin ing mul t ip le  re inforcements
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AM for 
FRPCs

FRPCs
Fiber-Reinforced
Polymer  Composi tes

Two types of fiber
Short  (a lso known as
chopped or  mi l led)

Cont inuous 
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Materials for FRPCs

Polymer matrix
PLA
ABS
Nylon
PEEK
ULTEM

Fiber
Carbon f iber
F iberg lass
Kevlar
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FRPC FDM

Short Fiber Continuous Fiber

f iber  incorporated into
f i lament
Simply  pr ints  as  bas ic
FDM 

f iber  and polymer  are
separated
Polymer  pr inted as  she l l
f iber  as  an inf i l l
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FRPC other technics

SLS SLA
Fiber  mixed wi th  res in

Tr ied but  very  l imi ted

di f f icu l ty  of  f iber-
f i l led res in

short  f iber  mixed wi th
polymer

Modest  improvement
Negat ive inf luence on part
qua l i ty
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Performance

FRPCs Continuous fiber

tens i le  propert ies
better  at  5wt%
Toughness and
Yie ld  st rength less
than p last ic
F lexura l  propert ies
better  at  5wt%
worse when 10wt%

misa l ignment
poros i ty
delaminat ion

High an isotropy
large choice of
propert ies
needs numer ica l
ana lys is  
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AM Commercial

Desktop 3D Printer

Arevo Inc .
Mant is  Composi te

Industrial 3D Printer

Desktop Meta l

Robotic arms

Markforged
Anisopr int
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AM Application

Energy

l ightweight
Fuel  ef f ic iency

Aerospace

Wind turb ines b lades
insu lat ive components

Automobil

Fire  retardant  parts
respect  f lame,tox ic i ty
and smoke standard
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AM of CMC

What are CMC?
Ceramic Matr ix  Composi tes
(CMC)
Prov ides des ign f lex ib i l i ty
Al lows for  complex geometr ies

Why do they exist?
High-temperature performance
Lightweight  
Enhanced toughness
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Stereolithography

Slurry :  Ceramic  powders ,
photo in i t iators
Photopolymer izat ion t r iggered by UV
l ight  (b ind ing)
S inter izat ion

Features
High reso lut ion,  smooth surfaces and complex geometr ies
Volume shr inkage,  crack ing dur ing b ind ing
Idea l  for  complex geometr ies ,  not  for  th ick  wal l  components
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Laminated Object Manufacturing

Bonding of  ceramic  mater ia ls  (pressure
or  adhes ive)
Laser  cuts  layers  of  ceramic  
Post-process ing:Pyro lys is  and Quas i-
isosta ic  powder  press ing

Features
Handles low thermal  st ress,  large sca le  monol i th ic  
Mater ia l  waste
L imits  of  geometr ic  complex i ty
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Binder Jetting 

Liqu id  b inder  sprayed onto layers  of
ceramic  powder
Sintered to  bond part ic les  and enhance
strength.
Post-process ing (e .g . ,  in f i l t rat ion)
improves dens i ty  and surface f in ish .

Features
High des ign f reedom,  sca lab i l i ty
Low dens i ty  before s inter ing
Requires  post-process ing for  enhanced propert ies .
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Direct Ink Writing 

Extrus ion of  ceramic  parts  through a
nozz le
Shear  st ress a l igns f ibers/whiskers  in
d i rect ion of  pr int ing

Intent iona l  an isotropy
High poros i ty

Features
Cost-effect ive and versat i le
Usefu l  for  whiskers  and f ibres
Lower  reso lut ion 
Nozz le  c logging 
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Technique Advantages Disadvantages

SLA
High resolution, smooth

surfaces and complex
geometries

Volume shrinkage, cracking
during binding

SLS High-speed processing High porosity 

SLM No post-sintering Sensible to cracking 

LOM Reduced deformation risk low
thermal stress Material waste 

BJ Design freedom, no support
structure needed

Porosity, extra post-
processing processes

IJP Precise Nozzle clogging 

H-AM
Flexible integration of

materials, architectures and AM
techniques

More R&D

ADVANTAGES & DISADVANTAGES
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AM OF CMC

Fibres
High damage to lerance
Improved f lexura l  s t rength
Nozzle  c logging 
S i l i c a  f i b e r - r e i n f o r c e d  p h o s p a t e
c e r a m i c

Carbon Based Nanoreinforcements
CNT and Graphene 
Improved strength,  b iocompat ib i l i ty
and f racture toughness
S i O ₂ – C a O – P ₂ O ₅

Particulates & Whiskers
Increased f lexura l  and compress ive
strength and f racture toughness
Crack def lect ion
Densi f icat ion
Z i r c o n i a ,  A l u m i n a

Bioinspired Reinforcements
Nacre- insp i red structures
Fracture stra in  increase
Hard to  sca le  on an industr ia l  leve l
B e t a - T r i c a l c i u m  P h o s p h a t e
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AM OF CMC

33

Composite Structures



AM OF CMC
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Whisker Reinforced Ceramic
Microstructure



AM OF CMC
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Graphene Reinforced Ceramic
Composite



AM-PRODUCED CMC
APPLICATIONS

01.
Biomedical

Bone scaffo lds
Bone grafts
Denta l  prosthet ics
Implants

02.
Aerospace

Thermal  protect ion
Heat  sh ie lds  in  rotary
and stat ionary
components
Jet  engine ign i ters

03.
Energy

Solar  ce l ls  
So l id  Ox ide
Fuel l  Ce l ls
Batter ies
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Future directions

01.
ADVANTAGES

Reduces mater ia l
waste
Complex geometr ies
Vast  ap l icat ions 

02.
CHALLENGES

Natura l  propert ies
l imi t  techniques
Layer  de laminat ion,
undes i red poros i ty

03.
CONCLUSION

New
appl icat ions
Common usage
of  ceramic  in
composi tes

37



Smart Composite

What is a Smart composite ?
Mater ia ls  that  respond dynamica l ly  to  env i ronmenta l  s t imul i  (e .g . ,
heat ,  pressure,  l ight ,  magnet ic  f ie lds) .

S t i m u l i  :  Temperature,  Moisture ,  L ight ,  Stress,  Magnet ic  f ie lds  . . .

Ge, Q., Sakhaei, A., Lee, H. et al. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci Rep 6, 31110 (2016).
https://doi.org/10.1038/srep31110
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Smart composite

Key capacities

Importance

Br idg ing the gap between t rad i t iona l
mater ia ls  and mul t i funct iona l  appl icat ions.

Sensing
Actuat ion 

Se l f-repai r
Energy Management
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Smart composite & AM

Enables  prec ise,  layer-by- layer
integrat ion of  complex structures.

AM’s role

Tai lored for  hybr id  des igns combin ing
structura l  and respons ive
funct iona l i t ies .

Compatibility
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Smart composite : Types

Generate e lectr ic  charge under
mechanica l  s t ress .

e .g . :  Sensors ,  Energy harvest ing

Piezoelectric
Return to  a  pre-def ined shape
when heated 

e .g . :  Actuators ,  Medica l  s tents

Shape-Memory Alloys (SMA)

Change shape under  magnet ic
f ie lds .

e .g . :  Vibrat ion contro l ,  Robot ics

Magnetostrictive Materials
Repair  damages autonomously ,
enhancing durabi l i ty .  

Self-Healing Polymers
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Matrix Materials
Polymers :   L ightweight ,  f lex ib le
Meta ls  :   H igh strength and conduct iv i ty
Ceramics :   Thermal  stab i l i ty  and insu lat ion

Smart composite : Materials

Functional Fillers
Macroscale  :   F ibers  for  mechanica l  s t rength
Microsca le  :   Part ic les  for  loca l ized funct iona l i t ies
Nanoscale  :  Nanotubes,  graphene for  e lectr ica l ,  thermal ,  and
.                  mechanica l  enhancements 42



Smart composite : Functional elements

In-situ integration

Embedding sensors ,  actuators ,  and conduct ive pathways dur ing
the AM process

3D printer signal conditioning circuit
Gardan, J. (2019). Smart materials in additive manufacturing: state of the art and trends. Virtual and Physical Prototyping, 14(1), 1–

18. Taylor & Francis. https://doi.org/10.1080/17452759.2018.1518016

3D Surface Strain Measurement using DOFS
Yang, T.; Tao, T.; Guo, X.; Yang, Y.; Liu, S.  Preliminary Test for 3D Surface Strain Measurement in the Tower and 
Foundation of Offshore Wind Turbines Using DOFS. Sensors 2023, 23, 6734.  https://doi.org/10.3390/s23156734
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Smart composite : Functionalities
Sensing 

Actuation Self-Healing

Energy management

Complex flower morphologies. 
Simple flowers composed of 90°/0° bilayers

oriented with respect to the long axis of each petal
Gardan, J. (2019). Smart materials in additive manufacturing: state of the art and trends. Virtual

and Physical Prototyping, 14(1), 1–18. Taylor & Francis.
https://doi.org/10.1080/17452759.2018.1518016

3D-printed thermoplastic on woven
 carbon fiber reinforcement

https://www.compositesworld.com/news/novel-composite-aims-to-resolve-self-healing-material-challenges

previous slide previous slide
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Smart composite : Applications

Soft robotics Building

Conceptual design of a responsive façade using SMA. 
Formentini, M., & Lenci, S. An innovative building envelope (kinetic façade) with Shape Memory Alloys used as actuators and sensors, p. 220-231, 

3D-printable ink with magnetic particles, aligning them
via an electromagnet around the printer nozzle.

https://www.engineering.com/3d-printed-soft-robots-can-be-controlled-by-magnets/
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Smart composite
Challenges 

Precision and scalability

Consistent quality of multi-material prints

Manufacturing speed

Availability of materials
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Conclusion

Revolutionizing Material Design
Key Advantages

Complex geometries
Customizable material properties and functionality

Future Directions
Addressing challenges in reinforcement dispersion, residual
stresses, and fiber alignment
Advances in hybrid manufacturing, post-processing
techniques, and nano-reinforcements
Unlocking new possibilities in lightweight, high-performance,
and adaptive material solutions for advanced industries 47


