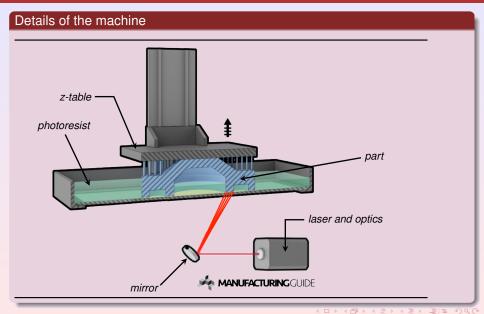

# Summary of the last lesson: Additive processes with liquid raw material

October 14, 2024


# Stereolithography

# 1.1.0 Stereolithography, the machine

# Details of the machine laser and optics



# 1.1.0 Stereolithography, new design (top-down)



4/6

### Mechanical properties of part (order of magnitude)

| Material       | E, GPa | R <sub>m</sub> , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|----------------|--------|----------------------|----------------------------------|
| VisiJet Flex   | 1.6    | 38                   | 16                               |
| VisiJet HiTemp | 3.4    | 66                   | 6                                |

## Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | Build volume, mm <sup>3</sup> |
|-----------------------|---------------------|-------|-------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$   |

#### Performances

| <b>x-y resol.</b> , μm | <b>layer thick.</b> , μm | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|------------------------|--------------------------|-----------------------------------------|-------------------|
| 25 – 50                | 50 — 100                 | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |



### Mechanical properties of part (order of magnitude)

| Material       | E, GPa | R <sub>m</sub> , MPa | $\varepsilon_{ m rup}$ , % |
|----------------|--------|----------------------|----------------------------|
| VisiJet Flex   | 1.6    | 38                   | 16                         |
| VisiJet HiTemp | 3.4    | 66                   | 6                          |

### Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | Build volume, mm <sup>3</sup> |
|-----------------------|---------------------|-------|-------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$   |

### Performances

| <b>x-y resol.</b> , $\mu$ m | layer thick., $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|-----------------------------|-----------------------|-----------------------------------------|-------------------|
| 25 – 50                     | 50 — 100              | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |

▶ Resolution issues

### Mechanical properties of part (order of magnitude)

| Material       | E, GPa | R <sub>m</sub> , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|----------------|--------|----------------------|----------------------------------|
| VisiJet Flex   | 1.6    | 38                   | 16                               |
| VisiJet HiTemp | 3.4    | 66                   | 6                                |

## Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | Build volume, mm <sup>3</sup> |
|-----------------------|---------------------|-------|-------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$   |

#### Performances

| <b>x-y resol.</b> , μm | <b>layer thick.</b> , μm | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|------------------------|--------------------------|-----------------------------------------|-------------------|
| 25 – 50                | 50 — 100                 | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |



### Mechanical properties of part (order of magnitude)

| Material       | E, GPa | R <sub>m</sub> , MPa | $\varepsilon_{ m rup}$ , % |
|----------------|--------|----------------------|----------------------------|
| VisiJet Flex   | 1.6    | 38                   | 16                         |
| VisiJet HiTemp | 3.4    | 66                   | 6                          |

### Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | Build volume, mm <sup>3</sup> |
|-----------------------|---------------------|-------|-------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$   |

### Performances

| <b>x-y resol.</b> , μm | layer thick., $\mu m$ | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|------------------------|-----------------------|-----------------------------------------|-------------------|
| 25 – 50                | 50 — 100              | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |

► Computation of fabrication time

### Mechanical properties of part (order of magnitude)

| Material       | E, GPa | R <sub>m</sub> , MPa | $\varepsilon_{\mathrm{rup}}$ , % |
|----------------|--------|----------------------|----------------------------------|
| VisiJet Flex   | 1.6    | 38                   | 16                               |
| VisiJet HiTemp | 3.4    | 66                   | 6                                |

## Equipment (type, dimensions)

| Laser                 | $\lambda$ , $\mu$ m | P, W  | Build volume, mm <sup>3</sup> |
|-----------------------|---------------------|-------|-------------------------------|
| Helium-Cadmium (HeCd) | 0.325               | 0.025 | $250 \times 250 \times 500$   |

#### Performances

| <b>x-y resol.</b> , μm | <b>layer thick.</b> , μm | <b>build speed</b> , mm <sup>3</sup> /s | layering time, s  |
|------------------------|--------------------------|-----------------------------------------|-------------------|
| 25 – 50                | 50 — 100                 | MCR = 5 - 10                            | $10 - 20/1 - 2^1$ |



### Companies

3DSYSTEMS™ (PROJET serie 6000 and 7000, IPRO serie 8000 and 9000)

#### Advantages and applications

- Relatively precise (even better then 25  $\mu$ m),
- Transparent materials, Assembly of several parts (bonding),
- Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

▶ Micro-SLA

### Companies

3DSYSTEMS™ (PROJET serie 6000 and 7000, IPRO serie 8000 and 9000)

### Advantages and applications

- Relatively precise (even better then 25  $\mu$ m),
- Transparent materials, Assembly of several parts (bonding),
- Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

Small to medium series of parts

### Companies

3DSYSTEMS™ (PROJET serie 6000 and 7000, IPRO serie 8000 and 9000)

#### Advantages and applications

- Relatively precise (even better then 25  $\mu$ m),
- Transparent materials, Assembly of several parts (bonding),
- Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

### Companies

3DSYSTEMS<sup>™</sup> (PROJET serie 6000 and 7000, IPRO serie 8000 and 9000)

#### Advantages and applications

- Relatively precise (even better then 25 μm),
- Transparent materials, Assembly of several parts (bonding),
- Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

#### Disadvantages

- Technique limited to photoresists,
- · Standard materials are expensive, toxic and difficult to store,
- Significant change in properties of the parts with time (aging),
- Post-processing required, need to make supports.





### Companies

3DSYSTEMS™ (PROJET serie 6000 and 7000, IPRO serie 8000 and 9000)

#### Advantages and applications

- Relatively precise (even better then 25 μm),
- Transparent materials, Assembly of several parts (bonding),
- Master model for investment casting, for PUR molding (vacuum casting),
- Rapid manufacturing of parts in small series, fabrication of custom items.

#### Disadvantages

- Technique limited to photoresists,
- · Standard materials are expensive, toxic and difficult to store,
- Significant change in properties of the parts with time (aging),
- Post-processing required, need to make supports.

## **APPENDICES**

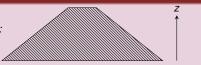
#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

I2AM


2/7

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (*z*)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (*z*)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (*z*)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



### In the layer plane (x, y)

- the resolution is limited by two independant factors:
  - (1) the dimensions of the smallest matter element to be added:
    - UV-cured or molten volume, deposited liquid droplet,.
  - (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:

nozzle, laser beam, binder jet

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



#### In the layer plane (x, y)

- the resolution is limited by two independant factors:
  - (1) the dimensions of the smallest matter element to be added:
    - UV-cured or molten volume, deposited liquid droplet,...
  - (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:
    - nozzle, laser beam, binder jet

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



### In the layer plane (x, y)

- the resolution is limited by two independant factors:
  - (1) the dimensions of the smallest matter element to be added:
    - UV-cured or molten volume, deposited liquid droplet,...
  - (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:
    - nozzle, laser beam, binder jet.

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



### In the layer plane (x, y)

- the resolution is limited by two independant factors:
  - (1) the dimensions of the smallest matter element to be added:
    - · UV-cured or molten volume, deposited liquid droplet,...
  - (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:
    - · nozzle, laser beam, binder jet.

retour

#### Resolution in different directions

- Most of the additive processes build the part layerwise.
- Their resolution has to be considered differently in the build direction and in the layer plane.

#### In the build direction (z)

The resolution is limited by a stair effect.
 It is proportional to the layer thickness e:



### In the layer plane (x, y)

- the resolution is limited by two independant factors:
  - (1) the dimensions of the smallest matter element to be added:
    - UV-cured or molten volume, deposited liquid droplet,...
  - (2) the positionning accuracy of the system depositing or inducing the consolidation of that element:
    - nozzle, laser beam, binder jet.

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

fab. time 
$$\simeq \frac{\textit{volume}}{\textit{MCR}}$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the lab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

fab. time 
$$\simeq \frac{\text{volume}}{\text{MCR}}$$

- For a particular process, the build speed MCH varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate
  computation of the fabrication time of a part by an additive process also involves a term
  proportional to the construction height of the part :

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part :

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

fab. time 
$$\simeq \frac{\textit{volume}}{\textit{MCR}}$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part :

> Table 3d: How is the fabrication time computed in subtractive processes (machining)?

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm<sup>3</sup>/s):

fab. time 
$$\simeq \frac{\text{volume}}{\text{MCR}}$$
.

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \tau_{\textit{layer}}. \tag{1}$$

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm<sup>3</sup>/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \tau_{\textit{layer}}. \tag{1}$$

where  $\underline{e}$  is the layer thickness and  $\tau_{layer}$  the time to prepare a layer:

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm<sup>3</sup>/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \tau_{\textit{layer}}. \tag{1}$$

where e is the layer thickness and  $\tau_{layer}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers.

I2AM (

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm<sup>3</sup>/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \tau_{\textit{layer}}. \tag{1}$$

where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm<sup>3</sup>/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \frac{\textit{T_{layer}}}{\textit{N}}. \tag{1}$$

where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \frac{\textit{T_{layer}}}{\textit{N}}. \tag{1}$$

where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

The mutualization is a pricewise mutualization: what can be shared is the price to pay for the layering time of course

## Build speed of an additive process

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \frac{\tau_{\textit{layer}}}{\textit{N}}. \tag{1}$$

where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

I2AM October 14, 2024

# Build speed of an additive process

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \frac{\tau_{\textit{layer}}}{\textit{N}}. \tag{1}$$

where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

retoui

I2AM

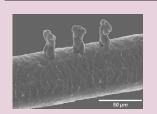
## Build speed of an additive process

#### Build speed (material consolidation rate MCR)

- In AM, the fabrication time is essentially proportional to the volume of the part and does not depend on its geometrical complexity.
- The ratio between the fabrication time of a part and its volume is called build speed (MCR) is (unit: mm³/s):

$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}}.$$

- For a particular process, the build speed MCR varies between limits as a function of the used material.
- For most processes, the above formula only underestimates the fab. time. An accurate computation of the fabrication time of a part by an additive process also involves a term proportional to the construction height of the part:


$$\textit{fab. time} \simeq \frac{\textit{volume}}{\textit{MCR}} + \frac{\textit{height}}{\textit{e}} \times \frac{\tau_{\textit{layer}}}{\textit{N}}. \tag{1}$$

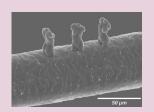
where e is the layer thickness and  $\tau_{\text{layer}}$  the **time to prepare a layer**: the ratio height/e represents the total number of layers. Note that the layering time can be **mutualized** between the N parts built in the same batch.

I2AM October 14, 2024

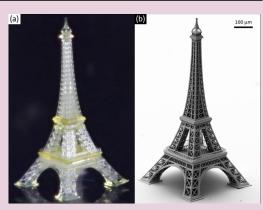
# Micro-stereolithography

## Very small parts can be obtained by scaling down the process









source: Fraunhofer-Institut für Lasertechnik Aachen

# Micro-stereolithography

#### Very small parts can be obtained by scaling down the process







source: Fraunholer-Institut für Lasertechnik Aachen

#### Electrical components





source: Fraunholer-Institut für Lasertechnik Aachen

16'000 parts to produce

The injection and SLA processes are considered SLA proves to be slightly more expensive

#### Electrical components





source: Fraunhofer-Institut für Lasertechnik Aachen

- 16'000 parts to produce
  - · The injection and SLA processes are considered
    - SLA proves to be slightly more expensive

      SLA is finally **chosen** due to shorter lead time (2 weeks again

#### Electrical components





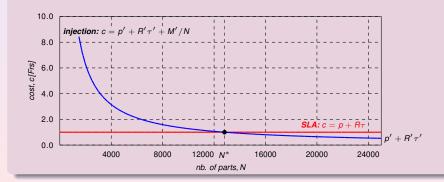
source: Fraunhofer-Institut für Lasertechnik Aachen

- 16'000 parts to produce
  - The injection and SLA processes are considered
  - · SLA proves to be slightly more expensive
    - SLA is finally **chosen** due to shorter lead time (2 weeks against 2 month)

#### Electrical components



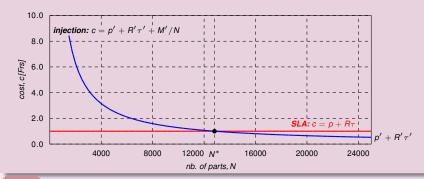



source: Fraunhofer-Institut für Lasertechnik Aachen

- 16'000 parts to produce
  - The injection and SLA processes are considered
  - SLA proves to be slightly more expensive
  - SLA is finally **chosen** due to shorter lead time (2 weeks against 2 month)

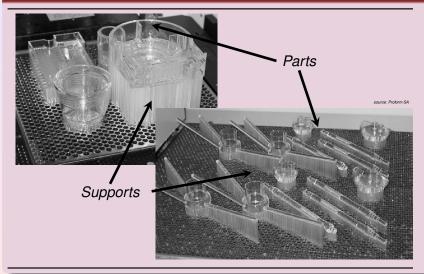
## Cost comparison SLA-injection.

### Determining parameters and cost comparison


|           | material  | hourly rate        | fab. time, h | tool      |
|-----------|-----------|--------------------|--------------|-----------|
|           | cost, Frs | (men+mach.), Frs/h | time, h      | cost, Frs |
| SLA       | р         | R                  | au'          | _         |
| injection | р'        | R'                 |              | M'        |



## Cost comparison SLA-injection.

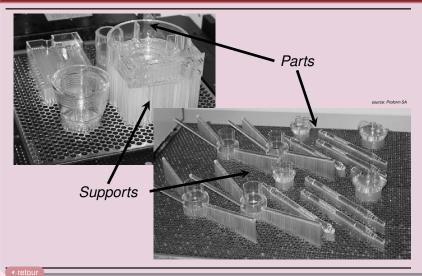

## Determining parameters and cost comparison

|           | material  | hourly rate        | fab. time, h | tool      |
|-----------|-----------|--------------------|--------------|-----------|
|           | cost, Frs | (men+mach.), Frs/h | time, h      | cost, Frs |
| SLA       | р         | R                  | au'          | _         |
| injection | р'        | R'                 |              | М′        |



## Supports

#### Example of support structures




I2AM

October 14, 2024

# Supports

#### Example of support structures



I2AM October 14, 2024