Chapter 3. Extrusion based additive processes

October 14, 2024

- 3.1 Fused Deposition Modelling
- 3.2 Ballistic Particle (MultiJet) Manufacturing
- 3.3 Laser Metal Wire Deposition

 FDM
 BPM
 LMWD
 FDM
 BPM
 LMWD

 ●0000000
 0000000000
 0000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000
 000000000
 0000000000
 00000000000
 0000000000

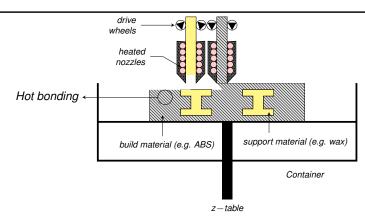
Basic principle

 A 3d part is built out of a molten amorphous thermoplastic wire extruded from a heated nozzle.

3.1.1 Fused Deposition Modelling

- The original and most suited material is ABS (Acrylonitrile Butadiene Styrene).
- The part is built lines by lines and layer by layer. The principle of consolidation is liquid phase bonding.
- The details of the part geometry are transferred into the process through the management of the nozzles (displacement and feed rates).

Acronym and remarks

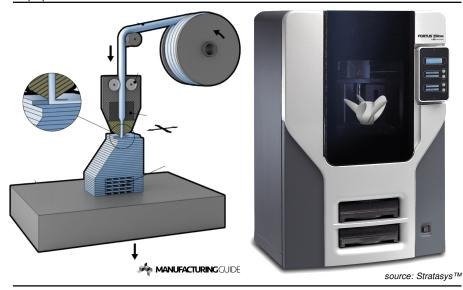

- This process is usually called <u>FDM</u>.
- FDM stations are generally equiped with two nozzles. The first one delivers the construction material (e.g. ABS) and the other a support material (typically wax).

Fused Deposition Modelling (FDM)

^{&#}x27;Since they are less prone to shrinkage during re-solification, amorphous thermoplstics are better adapted to extrusion

3.1.2 Fused Deposition Modelling

Diagram


Remarks

- The nozzles translate along both the x and y directions

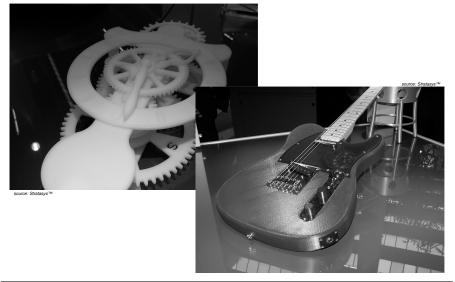
(see Append. 1)

3.1.3 Fused Deposition Modelling

Equipment

 FDM
 BPM
 LMWD
 FDM
 BPM
 LM

 0000 ●000
 0000000000
 0000
 00000
 00000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 000000000000
 00000000000


3.1.4 Fused Deposition Modelling

Examples of parts

3.1.5 Fused Deposition Modelling

Examples of parts

3.1.6 Fused Deposition Modelling, technical data

Mechanical properties of part (order of magnitude)

Material	E, GPa	R_m , MPa	$\varepsilon_{\mathrm{rup}}$, %
ABS plus P430	2.3	37	3
ULTEM 9085	2.2	72	6

Equipment (type, dimensions)

Build volume , mm ³				
from	$250 \times 250 \times 300$		to	915 × 610 × 915

Performances

x-y resol. , μ m	layer thickness, μm	build speed , mm ³ /s	layering time , s
130	130-300	MCR <5	O ¹

¹ The fab. time only depends on the part volume: fab. time = $\frac{\text{volume}}{\text{MCR}}$

3.1.7 Fused Deposition Modelling

Companies

STRATASYS™, MAKERBOT™, ULTIMAKER™, PRUSA™, REPRAP3D™,...

Advantages

- · Simple, clean and safe operation, parts with gradient of properties possible.
- Patterns for the vacuum casting process, metallic or even ceramic parts possible.
- Fabrication of different type of custom items (shoes).

Disadvantages

- (Almost) exclusive use of ABS or PLA (now PET-G) due to their particular ability to make hot bonds on top of already existing cold parts (this property is mostly connected to a favourable combination of wettability and viscosity in liquid phase).
- Anisotropy of the part properties, less accurate then SLA or Polyjet.
- · Relatively low manufacturing speed.

(see Append. 2, 4)

 FDM
 BPM
 LMWD
 FDM

 00000000
 0000
 00000000

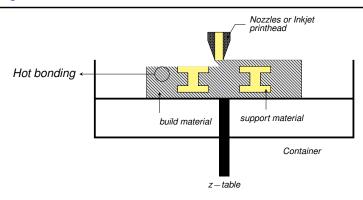
3.2.1 Ballistic Particle Manufacturing

BPM

o.z.i Damono i arnoic

Basic principle

- 3D parts are manufactured out of droplets of molten wax delivered by an array of nozzles
- The part is built line by line and layer by layer. The principle of consolidation is liquid phase bonding
- The details of the part geometry are transferred into the process through the management of the nozzles (displacement and feed rates)


Acronym and remarks

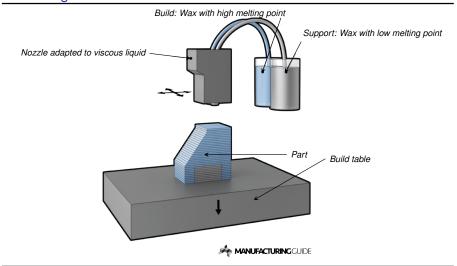
- The acronym <u>BPM</u> is commonly used. It is also referred to as the MultilJet Manufacturing Process with acronym MJM.
- The nozzles deliver at least two different materials (construction/support).
 Support material has a lower melting point than the construction material.
- The material is not fused inside the nozzles. The molten wax is produced from the bulk in a separate containers and then injected to the nozzles. In particular, it means that the solid material to be extruded must not be delivered under the form of a filament like in FDM: abitrary and cheap pelets are enough. Moreover, since the nozzles do not need to be heated individually, it is possible to multiply them (print-head like).

"Ballistic Particle Manufacturing" (BPM)

3.2.2 Ballistic Particle Manufacturing

Diagram

Remarks


FDM

- Since they are not equipped with heating stages (unlike FDM) multiple nozzles side by side are possible (sort of inkjet printhead). The number of nozzles will be limited by the cooling speed of the extruded mass.
- The build and support materials are waxes with different melting points.

(see Append. 1)

3.2.3 Ballistic Particle Manufacturing

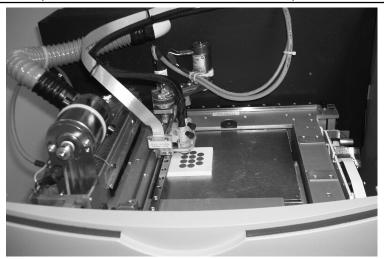
Block diagram

BPM LMWD FDM BPM LMW ○000 ●○0000 ○000 ○00000 ○0000 ●○0000 ○0000 ●○0000

3.2.4 Ballistic Particle Manufacturing

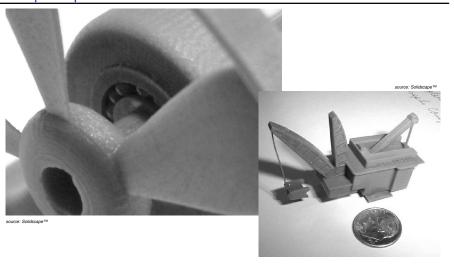
Equipments

3DSYSTEMS[™] SOLIDSCAPE[™]

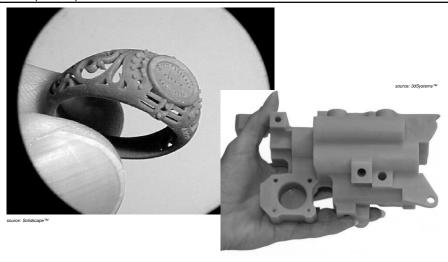


PROJET SERIE (1000, 1500, 3500, 5000)

3D WAX PRINTERS


3.2.5 Ballistic Particle Manufacturing

Equipment (details of the SOLIDSCAPE ™ machine)


3.2.6 Ballistic Particle Manufacturing

Example of parts 1

3.2.7 Ballistic Particle Manufacturing

Example of parts 2

 FDM
 BPM
 LMWD
 FDM
 BPM
 LMWD

 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 <t

3.2.8 Ballistic Particle Manufacturing, technical data

Mechanical properties of part (order of magnitude)

Material	E, GPa	R_m , MPa	$arepsilon_{ m rup}$, %
Wax	-	-	-

Equipment (type, dimensions)

		Build volume, mm ³		
from	$120\times120\times120$		to	$300\times200\times200$

Performances

x-y resol. , μ m	layer thickness, μm	build speed , mm ³ /s	layering time, s
6 – 80	down to 15	MCR up to 50	$0 \ or \ 10 - 30^{1}$

3.2.9 Ballistic Particle Manufacturing

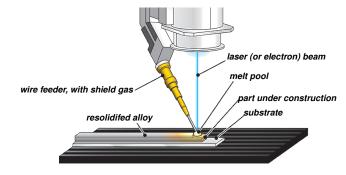
Companies

SOLIDSCAPE TM (part of STRATASYS TM) 3DSYSTEMS TM .

Advantages (compared to FDM)

- The materials are cheaper (pelets insteas fo normalized filaments).
- The manufacture is faster for an equivalent accuracy.
- Ideal for jewelry applications (lost patterns for the investment casting process).
- FDM-like plastic can also be processed by the PROJET machines developed by 3DSYSTEMS ™. The main issues are to maintain large quantities of molten material in the machine and to avoid blocking the printer head with the viscous polymer liquid.

Disadvantages (compared to FDM)


• Low mechanical properties of the part if the standard material (e.g. wax) is in use.

"Laser Metal-Wire Deposition" (LMWD)

3.3.1 Laser Metal Wire Deposition

Principle

- The LMWD process (Laser Metal Wire Deposition) is a metal version of FDM. The metallic wire is molten by a laser. There are two types of systems: systems with a laser integrated in the deposition nozzle (coaxial optical fiber), or systems with a laser moved externally and synchronized with the nozzle.
- The supports (if any) are build in the same material as the part itself (metal).

• The idea to melt the wire with a plasma torch is applied as well. The process is then called WAAM (Wire Arc Additive Manufacturing).

 FDM
 BPM
 LMWD
 FDM
 BPM
 LMWD

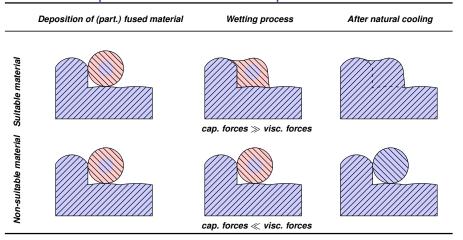
 00000000
 000000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 00000000
 000000000
 000000000
 00000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 00

3.3.2 Laser Metal Wire Deposition

Example of parts 1

3.3.3 Laser Metal Wire Deposition

Example of parts 2

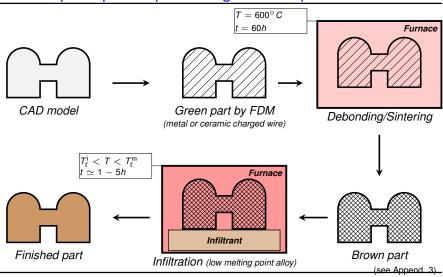


source: 3ders™

●00000

A 1: Liquid phase bonding

Different steps in the consolidation phase (view _ to deposition)



APPENDICES

A 2: Metallic parts obtained by FDM

000000

Indirect principle for producing metallic parts

A 3: Prod. processes: classical sintering

000000

Physical principle of consolidation in classical sintering

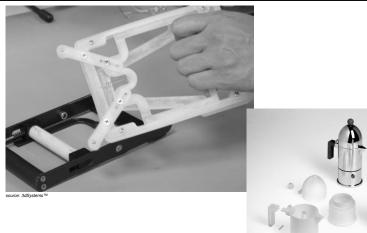
free surfaces with high energy

supplied and supplied and

0000●0

A 4: Custom items (shoes) by FDM

Different types of shoes


Traditional selection of extrusion process

 \Longrightarrow good adequation of the resolution and of the materials with the application

⇒cheap and easy process

A 5: Plastic part obtained by the BPM process

Example of parts

