
Studio 8: Circular plate under distributed load

Exercise 8.1 In this studio, we will study two different problems that can be solved us-

ing limiting cases of the Föppl–von Kármán equations. Wang et al., Phys. Rev. Lett.
(2019) have shown that multiple layers of graphene undergoing bending can exhibit

a plate-like response when the strength of inter-layer attractions is large (so minimal

inter-layer shearing), but a membrane-like response for small inter-layer attractions

(significant shearing). Consider a circular plate (radius a, thickness h) that is sup-

ported along its edge and loaded with a uniform downward pressure p (dead load), as

shown below. We will investigate its displacement behavior in these two scenarios.

S 8.0.1 Problem 1: Pure bending
The first problem considers the behavior of a plate undergoing pure bending with the

assumption that the displacements are small.

Questions:
1. How do we account for the work done by the lateral pressure p (applied in the w

direction, where w is the downward displacement of the plate) in the governing

equations?

2. How do we simplify the Föppl–von Kármán equations using the assumption of

small displacements?

Hint: In terms of the out-of-plane displacement w and in-plane stress tensor

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.116101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.116101
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where E is the Young’s modulus, ⌫ is the Poisson’s ratio and the indices ↵,�
vary over the in-plane directions 1, 2. For convenience we often write

D :=
Eh3
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3. What is an appropriate coordinate system for this problem, and how do we

write the simplified governing equations in such a coordinate system?

4. Considering axisymmetric deformations, what is the displacement w of the plate

if its boundary is clamped horizontally?

Hint: To obtain all relevant boundary conditions needed to solve for w, you

may find it helpful to consider the moment and transverse shear force within

the plate. In the lectures (section 6.2, page 84) we derived the internal moment

tensor m↵� :

m↵� =
E
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where K↵� is the curvature tensor. In the polar coordinate system, we can then

calculate the principle curvatures and integrate over the thickness to obtain the

radial and azimuthal moment resultant:
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The resultant shear force (directed upwards) is
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✓
d3w

dr3
+

1

r

d2w

dr2
� 1

r2
dw

dr

◆
. (8.6)

5. What is the displacement of the plate if we instead assume its boundary is sim-

ply supported?

6. What is the stress distribution within the plate?

S 8.0.2 Problem 2: Pure stretching
In this second problem, we consider the behavior of a circular membrane with the

assumption that there is no bending stiffness.
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1. How do we simplify the Föppl–von Kármán equations to exclude the bending

energy? What other equations are now needed to obtain a closed system of

equations for w and the stress components �o
↵�?

2. Again assuming axisymmetric deformations, how do we write the simplified gov-

erning equations in polar coordinates?

3. If we further assume (for simplicity) that the in-plane displacement ur = 0 ev-

erywhere, what is the displacement of the plate?

4. Bonus problem: If we relax the constraint that the in-plane displacement

ur = 0, what is the displacement of the plate?

S 8.1 Further hints:
Problem 1

1. Include external work into the variation of the total energy.

2. The equations should simplify to D�2w = p. Note that the in-plane equilibrium

equations 8.2 decouple from the problem, since �↵� only enters at second-order

in Eq. 8.1.

3. Plane-polar coordinates would be most appropriate. The Laplace operator in

plane-polar coordinates is
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4. The general solution of the axisymmetric equation for w can be written

w(r) =
pr4

64D
+ C1r

2 ln r + C2r
2 + C3 ln r + C4, (8.8)

The boundary conditions at r = a provide two equations for the unknown

constants C1, C2, C3 and C4; for the other two equations, consider the shear

force Q and the behaviour of w as r ! 0. The final solution is
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5. The solution for the displacement is

w =
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6. Recall that the stress tensor �↵� can be written in terms of the in-plane stress

tensor �o
↵� , moment tensor m↵� and through-thickness coordinate z:

�↵� = �o
↵� + zm↵� . (8.11)

Problem 2
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1. Refer to Eqs. 8.1–8.2 and neglect the bending term. From lectures (section 6.2,

page 92), the system is closed using the constitutive relations:

�o
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where E↵� is the in-plane strain tensor. We can write E↵� in terms of the

displacements using the kinematic relations:
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2. The stress components in the polar coordinate system are �o
rr, �o

r✓ and �o
✓✓;

axisymmetry then implies that �o
r✓ = 0 and �o

rr, �o
✓✓ are functions of r only.

Similarly, the only non-zero strain components are Err(r) and E✓✓(r), and the

in-plane displacement is purely radial: ur = ur(r) and u✓ = 0. Using the

formulae for divergence and gradient in polar coordinates, Eqs. 8.1–8.2 become
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The constitute relations remain unchanged with the indices {↵,�} 2 {r, ✓}; the

kinematic relations reduce to
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3. Show that the out-of-plane equilibrium equation simplifies to
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The relevant solution is

w =
3

4


p(1� ⌫2)

Eh

�1/3 ⇣
a4/3 � r4/3

⌘
. (8.18)

4. It is helpful to first eliminate the radial displacement ur in favour of the stress

components �o
rr and �o

✓✓ using the constitutive/kinematic relations. The hoop

stress �o
✓✓ can be written in terms of �o

rr using the in-plane equilibrium equation,

leading to two equations for �o
rr and w.
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