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Studio 8: Circular plate under distributed load

Exercise 8.1 In this studio, we will study two different problems that can be solved us-
ing limiting cases of the Foppl-von Karman equations. Wang et al., Phys. Rev. Lett.
(2019) have shown that multiple layers of graphene undergoing bending can exhibit
a plate-like response when the strength of inter-layer attractions is large (so minimal
inter-layer shearing), but a membrane-like response for small inter-layer attractions
(significant shearing). Consider a circular plate (radius a, thickness h) that is sup-
ported along its edge and loaded with a uniform downward pressure p (dead load), as
shown below. We will investigate its displacement behavior in these two scenarios.
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Plate or membrane

Problem 1: Pure bending

The first problem considers the behavior of a plate undergoing pure bending with the
assumption that the displacements are small.

Questions:
1. How do we account for the work done by the lateral pressure p (applied in the w
direction, where w is the downward displacement of the plate) in the governing
equations?

2. How do we simplify the Foppl-von Karman equations using the assumption of
small displacements?

Hint: In terms of the out-of-plane displacement w and in-plane stress tensor


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.116101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.116101

oo 8 the Foppl-von Karméan equations, derived in the lectures, are
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where F is the Young’s modulus, v is the Poisson’s ratio and the indices «, 3
vary over the in-plane directions 1,2. For convenience we often write

En?
D= 12 (8.3)

3. What is an appropriate coordinate system for this problem, and how do we
write the simplified governing equations in such a coordinate system?

4. Considering axisymmetric deformations, what is the displacement w of the plate
if its boundary is clamped horizontally?

Hint: To obtain all relevant boundary conditions needed to solve for w, you
may find it helpful to consider the moment and transverse shear force within
the plate. In the lectures (section 6.2, page 84) we derived the internal moment
tensor maga:
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where Knp is the curvature tensor. In the polar coordinate system, we can then
calculate the principle curvatures and integrate over the thickness to obtain the
radial and azimuthal moment resultant:
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The resultant shear force (directed upwards) is

dBw  1d%w 1 dw
- D il 7. 8.6

@ (dr3+rdr2 r2dr> (86)
5. What is the displacement of the plate if we instead assume its boundary is sim-

ply supported?

6. What is the stress distribution within the plate?

S 8.0.2 Problem 2: Pure stretching

In this second problem, we consider the behavior of a circular membrane with the
assumption that there is no bending stiffness.



. How do we simplify the Foppl-von Karmén equations to exclude the bending
energy? What other equations are now needed to obtain a closed system of
equations for w and the stress components agﬁ?

. Again assuming axisymmetric deformations, how do we write the simplified gov-
erning equations in polar coordinates?

. If we further assume (for simplicity) that the in-plane displacement u, = 0 ev-
erywhere, what is the displacement of the plate?

. Bonus problem: If we relax the constraint that the in-plane displacement
u, = 0, what is the displacement of the plate?

Further hints:
Problem 1

. Include external work into the variation of the total energy.

2. The equations should simplify to DA?w = p. Note that the in-plane equilibrium

equations 8.2 decouple from the problem, since o, only enters at second-order
in Eq. 8.1.

. Plane-polar coordinates would be most appropriate. The Laplace operator in
plane-polar coordinates is
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. The general solution of the axisymmetric equation for w can be written
pr
w(r) = 51D + Cir?lnr + Cor? + C3Inr + Cy, (8.8)
The boundary conditions at r = a provide two equations for the unknown

constants C,Co,C3 and CYy; for the other two equations, consider the shear
force @ and the behaviour of w as r» — 0. The final solution is
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. The solution for the displacement is
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. Recall that the stress tensor o,g can be written in terms of the in-plane stress
tensor og 5, moment tensor mag and through-thickness coordinate z:

Oaf = Ogop + 2Mag. (8.11)

Problem 2



. Refer to Egs. 8.1-8.2 and neglect the bending term. From lectures (section 6.2,
page 92), the system is closed using the constitutive relations:
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where E,g is the in-plane strain tensor. We can write E,g in terms of the
displacements using the kinematic relations:

> 1 8ug+au%+8w ow
=3\ Ozs | Ora  Orq015)"

(8.13)

. The stress components in the polar coordinate system are o2

Ty 07?9 and 0-39;
axisymmetry then implies that o% = 0 and o7,., op, are functions of r only.
Similarly, the only non-zero strain components are E,,(r) and Egy(r), and the
in-plane displacement is purely radial: w, = wu,(r) and up = 0. Using the

formulae for divergence and gradient in polar coordinates, Eqs. 8.1-8.2 become
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The constitute relations remain unchanged with the indices {«, 8} € {r,0}; the
kinematic relations reduce to
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. Show that the out-of-plane equilibrium equation simplifies to
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The relevant solution is
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. It is helpful to first eliminate the radial displacement w, in favour of the stress
components oy, and o, using the constitutive/kinematic relations. The hoop
stress o, can be written in terms of oy, using the in-plane equilibrium equation,
leading to two equations for o7, and w.
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