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Morphological instabilities and surface wrinkling of soft materials such as gels and biological tissues

are of growing interest to a number of academic disciplines including soft lithography, metrology,

flexible electronics, and biomedical engineering. In this paper, we review some of the recent progresses

in experimental and theoretical investigations of instabilities that lead to the emergence and evolution

of surface wrinkling, folding and creasing under various geometrical constraints (e.g., thin films, sheets,

fibers, particles, tubes, cavities, vesicles and capsules) and loading stimuli (e.g., mechanical forces,

growth, atrophy, swelling, shrinkage, van der Waals interactions). Some representative theoretical and

numerical approaches aimed at modelling the onset of instabilities as well as the postbuckling evolution

involving multiple bifurcations and symmetry-breakings are discussed along with the main

characteristics and some possible applications of this rich phenomenon.
1. Introduction

Soft materials such as elastomers, polymeric gels and biological

tissues can easily undergo large deformation and various
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morphological stabilities in response to environmental stimuli

(e.g., mechanical forces, temperature, humidity, pH value, elec-

tric field and van der Waals interactions).1–12 The stimulus-

sensitive property of soft materials makes them promising

candidates for applications as intelligent materials in therapeu-

tics, sensors, microfluidic systems, nanoreactors, and biological

scaffolds.2

Due to their intrinsic features of low elastic moduli and high

sensitivity to external stimuli, soft materials are especially

susceptible to buckling induced surface instabilities. For

example, various regular or irregular wrinkles can be readily
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observed on human skin and elastomer surfaces. Such behavior

may pose a limit on the performance of materials and is often

thought to be a nuisance which should be avoided.3 On the other

hand, one can also harness the physics and characteristics of

wrinkles to create tunable patterns,13–15 to fabricate functional

surfaces,16–18 to design flexible electronics,19–21 and/or to measure

the mechanical properties of materials.22–25 Understanding the

morphogenesis and the origin of shapes is also a central goal of

developmental biology.26–29 There has been a resurgence of

interest in emulating and utilizing mechanical instabilities in the

morphogenesis of anatomical structures, organs and organ-

isms.30,31 Some techniques based on the mechanical instability of

surfaces have found applications in the biomedical field, e.g.,

assisting the diagnosis and curing of certain diseases, including

asthma, mucosal inflammation, gastroenteritis, and tumor

invasion.32–34

Owing to a wide range of important applications, the

problem of morphological surface instability of soft matter has

attracted the attention, imagination and close scrutiny of many

scientists and engineers over the past decade.3,35 Much experi-

mental and theoretical effort has been directed toward

exploring the characteristics of surface patterns at the critical

state of buckling and the subsequent postbuckling evolution, as

well as understanding the underlying physical mechanisms in

different types of materials.3,23,27,36–39 Morphological instability

of a soft material typically exhibits three phenotypes: wrinkling,

folding, and creasing, as shown in Fig. 1. Wrinkling refers to

periodic or chaotic surface undulations appearing on an orig-

inally flat surface. It is often detected during the buckling of

thin structures with or without lateral supports. In a two-

dimensional (2D) system, for example, a stiff film anchored on

a compliant substrate may buckle into sinusoidal waves.3

Folding refers to a buckling induced surface structure with

localized, deep surface valleys. Folds are often observable, for
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instance, during the postbuckling evolution of surface wrinkles

in a hard layer bonded to a soft substrate or floating on

a liquid.40,41 Noticeably, the term folding has been extensively

adopted in fields such as biomedicine and tectonophysics to

stand for traditional buckling or wrinkling.32,42 In contrast,

creasing usually occurs at the surface of soft materials without

hard skins, when an initially smooth surface forms a self-con-

tacting shape with a sharp ridge or sulci.43–45

Soft materials often undergo large volumetric variations due

to factors such as temperature change, tissue growth/atrophy and

swelling/shrinkage induced by water imbibing/release. Inhomo-

geneous deformation and stresses are often incurred in materials

experiencing an inhomogeneous or anisotropic distribution of

volumetric variations arising from structural heterogeneities,

non-uniform micro-environments and/or spatial limitations in

available nutrients. Constrained swelling/growth may also cause

large enough compressive stresses to trigger elastic instabilities

analogous to the Euler buckling induced by external mechanical

loads.3,22,35,46,47 In this paper, we review some of the recent

experimental and theoretical effort toward understanding the

morphological instabilities of soft materials incurred by non-

uniform volumetric swelling/shrinkage or other external stimuli.

The paper is outlined as follows. Section 2 briefly describes two

representative models dealing with surface instability and

morphological evolution in soft materials induced by swelling or

growth. Sections 3–9 provide an overview of some experimental

and theoretical investigations of morphological instabilities in

various soft material systems including thin films, sheets, fibers,

tubes, particles, cavities, vesicles and capsules. Possible applica-

tions of these results, as well as some closely related wrinkling

phenomena induced by other mechanisms (e.g., van der Waals

interactions, electrostatic forces, and externally applied forces)

will also be discussed. Finally, we offer some perspectives for

future work in this rich and exciting field.
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Fig. 1 Schematic of three types of morphological instability: (a) wrinkling, (b) folding, and (c) creasing.

Fig. 2 Multiplicative decomposition of the deformation gradient tensor.
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2. Theoretical models

2.1. Growth/atrophy of living tissues

The growth or atrophy of living tissues, which usually occurs

through cell division or apoptosis resulting in increase or

decrease in body mass, is crucial for their physiological functions

and can be subjected to various pathological disorders. Growth

is responsible for the morphogenesis of biological organs and

tissues, which consists of a series of carefully orchestrated steps.48

In addition to genetic and chemical effects, mechanical envi-

ronments play a significant role in regulating pattern formation.

Inhomogeneous growth or atrophy of tissues and organs in

a constrained environment induces internal stresses—often

referred to as residual stresses—which are believed to play

a significant role in the morphogenesis of tissues and

organs.27,28,49–54

Tissue growth may take place in three typical forms, namely

tip growth, surface growth, and volumetric growth.27 In tip

growth, which happens in, for instance, root hairs, fungal hyphae

and pollen tubes, cells typically form a slender structure capped

by a prolate dome where expansion occurs.55–57 Surface growth is

often adopted by organisms such as seashells and horn-shells,

where mass tends to accrete on an existing surface.48,58,59 In

contrast, volumetric growth is responsible for the development of

most soft tissues, e.g., arteries, airways, heart, muscles, and solid

tumors.1,60–62 In the present paper, our attention will be focused

on the morphological instability induced by volumetric growth.

In what follows, we will briefly describe a finite deformation

model based on the multiplicative decomposition of the defor-

mation gradient, analogous to the well-known decomposition of

elastic and plastic deformation gradient tensors.63 According to

the pioneering work of Rodriguez et al.,64 the deformation

gradient tensor, F, can be decomposed as

F ¼ Fe$Fg (1)

where Fg is the growth tensor describing the addition of mate-

rials, and Fe is the elastic deformation tensor which ensures the

compatibility and integrity of the tissue.27,48,64,65 Residual stress

arises from the elastic deformation that exists to prevent

discontinuities in a growing body. This decomposition can be

illustrated in Fig. 2.

For the sake of simplicity, it is often assumed that the response

function of a growing material depends only on the elastic part of

the total deformation.51,64 Introducing a strain energy function

W(Fe), the nominal stress S can be written as27

S ¼ JF�1
g

�
vW

vFe

� pF�1
e

�
(2)
5730 | Soft Matter, 2012, 8, 5728–5745
where J ¼ detF and p is a Lagrange multiplier associated with

tissue incompressibility (p ¼ 0 for a compressible soft material).

The stress state of a nonlinear deformation system can also be

expressed by the Cauchy stress, s ¼ J�1F$S.66 The mechanical

equilibrium state induced by tissue growth or atrophy can be

obtained by solving DivS ¼ 0 or divs ¼ 0 together with

appropriate boundary conditions, where ‘‘Div’’ and ‘‘div’’ stand

for divergence operators in the initial and current configurations,

respectively.66

When the residual stresses caused by growth are sufficiently

large, they may trigger morphological instabilities in a soft

material. The critical instability conditions and the induced

surface wrinkling patterns can be predicted through an incre-

mental theory of deformation, following Biot67 and Ogden.66 Ben

Amar and Goriely incorporated the effect of tissue growth into

such a theory.27 Recently, Li et al.33 adopted a similar approach

to study the mucosal wrinkling driven by volumetric growth. The

stability condition was determined by solving the incremental

equilibrium equation div _S0 ¼ 0 in conjunction with specified

boundary conditions, where _S0 is the incremental nominal stress

tensor.33,68 Surface wrinkling occurs when the incremental equi-

librium equation exhibits nontrivial solutions to small pertur-

bations in the system.

Besides the approach of multiplicative decomposition

described above, an additive decomposition has also been sug-

gested by expressing the elastic strain as the difference between

the total geometrical strain and the growth strain, similar to that

used in thermoelastic analyses.28,69
2.2. Swelling/shrinkage of hydrogels

Owing to their relatively low cost, good permeability, stimulus

sensitivity, biocompatibility and biodegradability, hydrogels

hold great promise for important applications in a wide range of

industrial and medical fields, e.g., chemical separation, food

preservation, optical sensing, drug delivery, and wound

dressing.2,10,70 Similar to the growth/atrophy of biological tissues
This journal is ª The Royal Society of Chemistry 2012
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in animals and plants, large volumetric change due to water

imbibing or drying can readily occur in hydrogels and elasto-

mers. For example, a hydrogel is typically composed of one or

more hydrophilic organic polymer components cross-linked into

a network by either covalent or noncovalent interactions.9,71,72

This network structure can swell or shrink by a huge amount in

response to external stimuli such as water imbibing or dehydra-

tion. Inhomogeneous or differential swelling or shrinking due to

nonuniform physical/chemical properties or physiological

changes can elicit stresses and destabilize the morphology of the

material.14,39,73–75

When elastomers or gels are immersed into a solvent, the small

molecules in the solvent can migrate into the organic molecular

network, engendering swelling of the material. The reverse

process, i.e. shrinkage, occurs when the small molecules migrate

out. The Helmholtz free energy density of elastomers can be

expressed as a function of the deformation gradient tensor, F,

and the concentration of solvent molecules in the gel, C, that is,

W ¼ W(F,C). At equilibrium, the chemical potential of the

solvent molecules in the elastomer, defined by f ¼ vW/vC,

should be equal to that in the solvent.9 A Legendre trans-

formation Ŵ ¼ W(F,C) � fC gives the related free energy

density function associated with constant chemical potential.76,77

It is often assumed that both the long polymer chains and the

solvent molecules are incompressible but the polymer network is

itself a compressible structure from the macroscopic perspec-

tive.77 Thus the volume of gel is expressed as the sum of the

volumes of its constituents, that is,9
Fig. 3 (a) Flat sheets swelling in a spherical container.91 (b) Buckling of

swelling sheets.89 Reprinted from ref. 91 and 89 with permission.
1 + VC ¼ J (3)

whereV is the volume per small solvent molecule. Employing eqn

(3), the free energy function Ŵ can be rewritten as

ŴðF;fÞ ¼ W

�
F;

J�1

V

�
� f

V
ðJ � 1Þ (4)

The nominal stress can be defined as S ¼ vŴ /vF. Thus the

equilibrium state of the gel can be solved by following the

theoretical framework of volumetric growth described in

Subsection 2.1. When the free swelling of the gel is inhibited by

gradient or boundary constraints, compressive stresses arise,

which may trigger morphological instabilities in the system.45,74,78

The stability condition can be derived by adopting the traditional

linear perturbation method.66,67,74,77

As in eqn (1) and Fig. 2, the swelling of gels can also be

analyzed by decomposing the deformation gradient tensor as79–81

F ¼ Fe$Fs (5)

where Fs denotes the swelling part of the deformation. The

assumption that the volumetric variation arises entirely due to

the change in the solvent content requires detFe ¼ 1 and det Fs ¼
1 + VC ¼ J. In this fashion, the subsequent stability analysis can

also be conducted in light of the incremental deformation theory

described in Subsection 2.1.

The above theoretical models enable one to investigate the

deformation and instability induced by volumetric changes. In

the following sections, we review some recent experimental and

theoretical advances in the morphological instabilities and
This journal is ª The Royal Society of Chemistry 2012
surface wrinkling of soft material systems under various

geometrical constraints.
3. Thin films or sheets

Freestanding thin sheets can easily lose their morphological

stability and exhibit complex configurational changes in response

to capillary forces,82,83 external compression, differential or

constrained swelling/shrinkage (Fig. 3a). Recently, Efrati et al.69

proposed an elastic theory of thin sheets with internal growth by

introducing the target metric concept. In this theory, the growth

is modeled by embedding another lamella with the same elastic

properties into the original sheet, leading to the so-called non-

Euclidean configuration, a stressed state without any external

constraint.84–87 This approach provides an effective tool to

elucidate pattern formation in freely swelling planar and curved

sheets (Fig. 3b).26,88–90

In essence, the non-Euclidean concept is somewhat similar to

an additive decomposition of the Lagrange strain tensor into an

elastic strain tensor and an incompatible strain (or called

intrinsic strain) tensor.93,94 Liang andMahadevan28,92 utilized the

additive decomposition of the Lagrange strain to investigate the

role of instability in the formation of various patterns in strip-

like leaves (e.g., plantain lily leaves) and flowers (e.g., lily), as

shown in Fig. 4a and 4b. They showed that for sufficiently small

growth at the edge, a global deformation with a long-wavelength

saddle shape occurs. However, for larger growth at the edge, an

edge-localized ripple pattern with a short wavelength occurs

while the global configuration of the leaf remains almost flat. A

combined mode consisting of a saddle-like shape with edge-

localized ripples may appear when the edge growth is sufficiently

large, as shown in Fig. 4c. In addition, it was thought that the

blooming of lily flowers is driven by differential growth along the

thickness of the petals and/or active curving of the midribs, while

the edge-localized growth plays a crucial role in the blooming

process. In artificial materials, Wang et al.95 observed that under

temperature-induced swelling, a polymeric strip restricted along

its two edges, which may buckle into orthogonal, oblique, and

crumple wrinkles (Fig. 5), depending on the strength of the edged
Soft Matter, 2012, 8, 5728–5745 | 5731

https://doi.org/10.1039/c2sm00011c


Fig. 4 Wrinkling of leaves and flowers: (a) plantain lily leaf, (b) flower of

lily, and (c) diagram of pattern, where B is the width of the strip and b is

the maximum growth strain at the edge of the strip.28,92 Reprinted from

ref. 28 and 92 with permission.

Fig. 6 Torsional buckling of strips: (a) closed and open Bauhinia pods,

(b) cylindrical helices in wide strips, (c) twisted helices in narrow strips,96

(d) M€obius strip,97 and (e) twisting with high tension.98 Reprinted from

ref. 96 and 98 with permission.
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constraints, the temperature distribution, and the expansion

properties of the strip.

Differential growth or swelling may also trigger torsional

buckling in strip-like plants and engender a helical morphology

with a smooth surface, as observed during the seed pod opening

process in Bauhinia variegate (Fig. 6a).96 Wide strips favor

a configuration close to a cut from a cylindrical envelope, remi-

niscent of the famous M€obius strip, whereas narrow strips prefer

a pure twist, where the centerline of the strip remains straight

(Fig. 6b–d).99 Nevertheless, when the strip is subjected to torsion

and high longitudinal tension simultaneously, the strip may

buckle into a helix with regular triangular patterns (Fig. 6e).98

The morphology observed has a sharply curved structure with

ridges running at an angle of about 45� measured from the

centerline of the strip, rendering a rough surface with stress

focusing similar to what appears on a crumpling paper or a gel

sheet swelling in a container with limited space.91,100

Based on the multiplicative decomposition in eqn (1), Dervaux

et al.101 developed a model to describe the morphogenesis of thin
Fig. 5 Buckling of an edge-restricted strip into (a) orthogonal, (b) obliqu

5732 | Soft Matter, 2012, 8, 5728–5745
sheets induced by growth or atrophy. They found that the

equilibrium configuration of the sheet can be characterized by

a F€oppl–von Karman (FvK) type of equation where growth acts

as a source of mean and Gaussian curvatures. The morphology

of soft tissues with lamellate shapes, e.g., plant leaves and potato

chips during drying or frying, can also be explained by this

theory.51 Some researchers used the finite element method (FEM)

to simulate the growth of sheet-like structures in nature.94,102

FEM provides a versatile tool to elucidate various morphogen-

esis processes in nature where analytical approaches are limited.

For a circular disc (e.g., a lotus leaf) subjected to relatively small

growth, the theoretical analysis of Dervaux and Ben Amar

showed that the disc may buckle into a saddle shape when the

growth in the circumferential direction is greater than that in the

radial direction or a symmetric conical shape when the radial

growth dominates (Fig. 7a).51 At sufficiently large growth rates,

however, FEM simulations showed that the saddle and cone

shapes are no longer energetically optimal, rather the system will

favor a skewed self-contact cone (Fig. 7b) featured by a skewness

angle and repetitive spiral winding that allows unlimited

growth.103 Self-contacting also takes place when a thin annulus

disc grows sufficiently in the circumferential direction (Fig. 7c);

in this case, the threshold for the self-contact shape is contingent

on the inner radius of the annulus.

Another interesting phenomenon observed in thin sheets is

hierarchical or fractal wrinkles, a cascade of small waves upon

larger waves, which can be seen in tearing a garbage bag
e, and (c) crumple patterns.95 Reprinted from ref. 95 with permission.

This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 Buckling of growing circular sheets: (a) buckling with or without

edge oscillations,51 (b) numerical (left) and experimental (right) results of

skewed buckling in a disc, and (c) numerical (left) and experimental

(right) results of skewed buckling in a ring.103 Reprinted from ref. 51 and

103 with permission.

Fig. 8 Hierarchical wrinkles on (a) a torn plastic sheet,26 (b) an orna-

mental cabbage, and (c) a suspended curtain.107 Reprinted from ref. 26

and 107 with permission.
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(Fig. 8a). Along the newly formed edges of the torn plastic sheet,

patterns with up to six generations of similar waves can be found,

with a scaling factor of about 3.104,105 These patterns occur

because the high plastic strain localizes at the newly formed edge

when the sheet is torn; the expansive stretch leads to edge

buckling in order to reduce the total potential energy of the

system. Hierarchical wrinkles are also widely observed in plants.

For instance, wave-on-wave structures have been found in many

flower petals, lichens, and leaves (Fig. 8b) due to differential edge

growth, which can be understood by invoking the buckling

theory described above.26,106

As a parallel to the fractal wrinkles spontaneously formed at

a free edge, thin elastic sheets under boundary confinement in

a non-growing system may generate branching wrinkles: two

wrinkles with a small wavelength merge into a single wrinkle with

a larger wavelength, as shown in suspended curtains

(Fig. 8c).107,108 This phenomenon arises from the competition

between stretching in the direction parallel to the wrinkles and

bending along the edge.109 The average wavelength scales as l f

xm, where x denotes the distance to the constrained edge.110–112 It

is found that m is close to 2/3 for small downward dragging and

1/2 for large dragging in the direction parallel to the wrinkles.107
This journal is ª The Royal Society of Chemistry 2012
Thin sheets floating on water behave analogously to suspended

curtains because the capillary force at the edge plays a similar

role as downward-drag in curtains.113

4. Soft layers with a hard skin

Most living tissues in animals are featured by layered structures

to meet their physiological and physical functions. For example,

our skin, which accounts for about 16% of the body weight,

comprises three layers: counting from the outer skin first comes

a thin epidermis layer, followed by a thick dermis layer, and then

the underlying hypodermis.3,114 To protect the internal layers

from eventual physical, biological, and chemical trauma caused

by the environment, the epidermis, made of stratum corneum

and keratinizing epithelial cells, is much harder than the inner

layers. For the sake of simplicity, the skin is usually modeled as

a stiff film resting on a compliant substrate.

As the skin ages, each layer undergoes different biological

changes in the moisture content and the collagen fiber density,

inducing compressive stresses in the epidermis layer. The

stresses can be large enough to wrinkle the skin. Considerable

attention has been attracted to the investigation of skin wrin-

kling and the development of possible techniques to reduce or

postpone this aging process.3,114 The epidermis layer can be

described by a thin elastic plate within the FvK theoretical

framework while the compliant substrate is treated as a 2D or

3D elastic continuum.115 When the film is subjected to a suffi-

ciently large in-plane compressive load, it wrinkles into

a pattern that minimizes the total potential energy of the

system. In the case of uniaxial compression, the wrinkles

usually have a sinusoidal profile (Fig. 9a).39 The wavelength, l,

can be approximately expressed as37,116

l ¼ 2p

31=3
h

�
Ef

Es

�1=3

(6)
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where �E ¼ E/(1 � v2), E, and v are the plane-strain elastic

modulus, Young’s modulus, and Poisson’s ratio of the film (f)

and substrate (s), respectively, and h denotes the film thickness.

This relation sheds light on the underlying competitive mecha-

nisms: the stiffness of the film favors a larger wavelength while

that of the substrate prefers a shorter wavelength. Given the

mechanical properties of the system, the wavelength is propor-

tional to the film thickness. These results also offer an effective

approach to modulate surface patterns and design flexible elec-

tronics with controllable dimensions by tuning the aforemen-

tioned mechanical and geometric parameters. Additionally, the

simple relation in eqn (6) opens a novel avenue for measuring the

mechanical properties of thin films at the micro and nano scales,

which are difficult to address with traditional methods.22,25,117

Motivated by this, some buckling-based metrologies have been

developed to characterize the elastic modulus of micro- and

nanofilms/wires/tubes.24,118,119 When subjected to biaxial

compressive stresses, a thin film can buckle into different

patterns, e.g., checkerboard, herringbone, hexagonal, triangular,

and even labyrinths patterns, as shown in Fig. 9.36–38,120–124 The

selection and mutual transition of these wrinkling modes hinge

on the stress state and the loading history. When the load is equi-

biaxial and moderate, the herringbone pattern often appears as

the mode of the lowest energy.36,122

Generally speaking, the theory of finite elasticity is needed to

analyze layered systems with nonlinear constitutive relations and

large deformation. To capture the effects of differential growth

on the wrinkling of skins, consider an isotropic growth of the

epidermis layer (or a shrinkage of the inner layers), that is, Fg ¼
gI with a constant growth rate g. Both the film and the substrate

are assumed to be incompressible neo-Hookean hyperelastic

materials with strain energy functionW ¼ m(a2
1 + a2

2 + a2
3 � 3)/2,

where m is the shear modulus at the ground state and ai (i ¼ 1, 2,

3) are the eigenvalues of the elastic deformation tensor. Under

these assumptions, the characteristic wavelength of sinusoidal

wrinkles has a similar expression as eqn (6) except that the plane-

strain elastic moduli of the film and the substrate, �Ef and �Es,

should be replaced by the shear moduli mf and ms, respectively.
77

It is worth pointing out that other constitutive laws, e.g., Fung

and Gent-types,125,126 can also be used to model the nonlinear

responses of biological tissues. Besides skin, similar wrinkling

phenomena have been seen in many other layered biological

vessels, e.g., those of the pulmonary airway, esophagus, arteries,

eustachian tubes, and stomach.12,32,33,68,127–131 It is believed that

wrinkling also plays an important role in the formation of villi
Fig. 9 Wrinkling patterns of stiff films anchored by a compliant

substrate: (a) sinusoidal pattern, (b) triangular pattern, (c) checkerboard

pattern, (d) hexagonal pattern, (e) herringbone pattern, and (f) labyrin-

thine pattern.

5734 | Soft Matter, 2012, 8, 5728–5745
and crypts on the inner surface of the small intestine and the

colon.132 In addition, the mechanisms underpinning the wrin-

kling of film–substrate systems are indicative of morphogenetic

events in the stems and fruits of plants.39,49,50,53 In systems with

non-planar geometry, the effect of curvature should be taken into

account, especially when the characteristic scales of wrinkles are

comparable to the radius of curvature.46,133 We will detail the

morphological instability of non-planar systems in the subse-

quent sections.

Let us turn to the swelling of hydrogels with a film–substrate

configuration similar to animal skin. The swelling of the film may

generate strong compressive stresses and induce wrinkling.134,135

When the volumetric compressibility of the material is accounted

for, the strain energy function in the neo-Hookean hyperelastic

constitutive model is written asW ¼ m(a2
1 + a2

2 + a2
3 � 3 � lnJ)/2,

where ai (i ¼ 1, 2, 3) are the principal stretches of the total

deformation gradient. In this case, Dervaux and Ben Amar

derived the critical wavelength of the sinusoidal wrinkles as77

l ¼ 2p

61=3
h

�
mf

ms

�1=3

(7)

In comparison with the aforementioned solution under the

assumption of volumetric incompressibility, eqn (7) predicts

a smaller wavelength. In addition, both eqn (6) and (7) show that

the critical wavelength at the onset of wrinkling, derived from the

linear stability analysis, depends on the geometry and material

properties of the system but not on the compressive strain, as in

the conventional theory of buckling.

While the linear stability analysis can predict the wavelength at

the initial stage of wrinkling, determination of the wrinkle

amplitude and the postbuckling morphological evolution

requires nonlinear analysis. During postbuckling, the wavelength

will vary with the externally applied compressive strain.136Due to

its notorious difficulty, most postbuckling analyses have resorted

to numerical and experimental approaches while a limited

number of exact solutions can be obtained in very simple cases or

with simplifications.36,38,120,121,135,137,138

Pocivavsek et al.139 reported that due to compression, an

elastic film floating on a fluid exhibits a sinusoidal wrinkling

instability with a characteristic wavelength. Far beyond the onset

of instability, the periodical wrinkling state gives way to a large

localized fold, as shown in Fig. 10(a). It has been suggested that

such localized folds play a significant role in the functions of the

lungs.141,142 Similar folding phenomena were observed when

a floating thin film is lifted by a spherical probe, where the

circumferential compression increases as the probe rises.143 When

the water substrate is replaced by an elastic medium, the system

shows distinctly different pattern evolution with increasing

compression.140 Further compression above the onset of buck-

ling triggers a secondary bifurcation: one wrinkle grows in

amplitude at the expense of its neighbors. This bifurcation

creates a period-doubling morphology (Fig. 10(b)). Moreover,

a period-quadrupling bifurcation appears under progressive

compression (Fig. 10(c)). Li et al.68 numerically reproduced these

interesting phenomena by using a pseudo dynamic solution

method, as shown in Fig. 10(d) and 10(e). Very recently, Cao and

Hutchinson144 predicted a newly identified mountain ridge mode

in the postbuckling of a bilayer system wherein an unstretched
This journal is ª The Royal Society of Chemistry 2012
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Fig. 10 Morphological evolution during postbuckling: (a) folding of

a floating film,139 (b) period-doubling wrinkling,140 (c) period-quadru-

pling wrinkling,140 (d) FEM results for period-doubling wrinkling, and (e)

FEM results for period-doubling wrinkling.68 Reprinted from ref. 139

and 140 with permission.
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film is bonded to a pre-stretched substrate with buckling arising

as the stretch in the substrate is relaxed. While the occurrence

of this pattern spans a large range of the modulus ratio, say 4 #

mf/ms # 1000, it depends strongly on the pre-stretching strain of

the substrate: only sufficiently large pre-stretch causes mountain

ridging. In addition, hierarchical folding can be detected under

continuous biaxial-compression: the folds delineate individual

domains and each domain is subdivided into smaller ones over

multiple generations.138

Furthermore, it is worth mentioning that in viscous or visco-

elastic materials, wrinkling patterns may evolve with time due to

their time-dependent mechanical properties.145,146 In such

systems, the instability characteristics can be determined by

integrating the methods of energetics and kinetics.147 However,

investigations on the effects of viscosity on wrinkling pattern

evolution are still very limited and deserve much further effort.
Fig. 11 Surface creasing of a dough swelling of in a bowl.75 Reprinted

from ref. 75 with permission.
5. Soft layers supported by a rigid substrate

In many situations, the constrained growth or swelling of soft

materials can be modeled as a system consisting of a soft layer

bonded on a rigid substrate. When the soft layer undergoes

a volumetric expansion due to water imbibing (swelling) or mass

addition (growth), the induced compressive stresses may also

render an initially flat film surface unstable, leading to the

formation of various surface patterns. For example, Cai et al.75

observed that the swelling of fermenting dough in a bowl is

frustrated in the in-plane direction, and when the volumetric

expansion reaches a threshold, surface instability occurs, leading

to creases on the dough surface, as shown in Fig. 11.75 This

instability, often called creasing, is localized at the free surface of

the soft materials and manifests itself by sharp sulci with finite

depth (amplitude) and self-contact (Fig. 1(c)),43,45,75,148–152 some-

what reminiscent of surface cusps arising from the stress-driven

surface roughening in heteroepitaxial thin films.153 The charac-

teristic of creasing instability is quite different from the initial
This journal is ª The Royal Society of Chemistry 2012
buckling of a stiff film bonded to a compliant substrate, where

the entire film is ‘‘homogeneously’’ subjected to deformation

coming from the instability.154 Creases may look like folds, yet

they are essentially different. While folds tend to emerge from

postbuckling evolution during a wrinkling process, the forma-

tion of a crease often undergoes a discontinuous transition from

a flat surface to a sharp cusp, bypassing the wrinkling state.

Furthermore, while creases are highly sensitive to surface defects

and perturbations,151 folds are relatively stable.155 Therefore, as

two most representative postbuckling processes involving energy

localization, creasing and folding have some distinctly different

features that deserve further detailed research.

For illustration, we consider an isotropically growing soft

layer bonded to a rigid substrate, with the growth tensor

expressed as Fg ¼ gI. For simplicity, the soft layer is assumed to

be an incompressible neo-Hookean material. Following a linear

stability analysis on an infinitesimal sinusoidal perturbation, the

critical growth gcrit for the onset of surface instability is deter-

mined as g2Dcrit ¼ 1.8393 for the 2D plane-strain case and g3Dcrit ¼
1.5012 for the 3D biaxial case.78 It is found that the volumetric

changes at the critical buckling state in both 2D and 3D have the

same value: JG ¼ (g2Dcrit)
2 ¼ (g3Dcrit)

3 ¼ 3.383. From the solution of

g2Dcrit ¼ 1.8393 in the 2D case, one obtains the critical elastic

stretch ratio at the occurrence of sinusoidal wrinkling as a ¼ 1/

g2Dcrit ¼ 54.4%. Thereby, the critical compressive Green’s elastic

strain is (a2 � 1)/2 ¼ �35.2% and the nominal strain is a � 1 ¼
�45.6%, which is in accordance with the solution of Biot.156

However, the wavenumber for the sinusoidal wrinkling pattern is

infinite, or in other words, the wrinkling wavelength is undeter-

mined and can be arbitrarily small in the soft layer-rigid

substrate system. This surprising result was also predicted by

Biot,156 and he believed that the wavelength at the critical state

can be determined by introducing such factors as inhomogenei-

ties and surface irregularities in the material. Ben Amar and

Ciarletta78 argued that the reason why the wavelength cannot be

determined lies in the lack of competition between characteristic

length scales. Since the gel is represented by a neo-Hookean

model having no material length dependence, there is only one

scale, i.e., the initial thickness of the layer, serving as the length

unit in the whole system. This lack of characteristic length makes

it impossible to relate the wavelength of wrinkling to any phys-

ical length scale and, consequently, there exists no critical
Soft Matter, 2012, 8, 5728–5745 | 5735
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wavelength.78 Therefore, it is necessary to take into account other

physical effects, such as surface tension78,157 electrostatic force,158

and strengthening by strain gradients,151 to regularize the char-

acteristic wavelength to a finite value. In addition to these

physical effects, geometrical factors such as the curvature of the

substrate can also be utilized to regularize the characteristic

wavelength.33,159

With the introduction of surface tension g, the characteristic

elastocapillary length L ¼ g/m enters the system. Thereafter, the

characteristic wavelength is fixed as78

l ¼ 4pH

lnð32:246H=LÞ (8)

where H denotes the thickness of the soft layer. Eqn (8)

demonstrates that the wavelength is of order of the initial

thickness, and surface tension plays the role of setting and

amplifying the wavelength. Clearly, the wavelength has

a nonlinear dependence on the thicknessH. Eqn (8) works for the

constrained growth of the soft layer. When it comes to the case of

volumetric change incurred by water imbibing, the wavelength is

modified as77

l ¼ 4pH

lnð44:953H=LÞ (9)

Although the critical wavelength can be regularized by intro-

ducing another length scale, as given in eqn (8) and (9), the

sinusoidal wrinkles remain highly unstable and lead to crease

formation soon after the onset of wrinkling.151 In the case of

a soft layer constrained by a rigid substrate,45,160 therefore, dis-

cretized creases occur instead of well-developed sinusoidal

wrinkles. In this sense, creasing can be regarded as a collapsed

state of wrinkling.151
6. Cylinders and tubes

Long cylinders or tubes typically exhibit two buckling modes,

namely surface buckling with the central axis remaining straight

and global buckling with a wavy axis like an Euler bar or with

a curling axis. In such systems, 2D or 3D elasticity should be

utilized to uncover surface instability while beam models are

usually adopted to deal with global buckling. In some situations,

the two modes may take place simultaneously, as in the case of

morphogenesis in the small intestine of human.
Fig. 12 Wrinkle-to-fold transition occurring in a core–shell cylinder.166
6.1. Surface buckling

Many one-dimensional soft materials such as fibers, rods, wires,

cylinders and tubes have a relatively stiff skin. An example is

electrospun polymer fibers.133 Such core–shell structured mate-

rials hold promise for important applications in, for instance,

drug delivery, enzyme supports, biosensors and functionalized

coatings.161–163

As the circumferential compressive stress in the shell reaches

a critical value, surface buckling becomes energetically favored

over uniform deformation. The characteristic wavelength is

selected to minimize the total energy of the system.133,164 Based

on the idea of surface buckling, Yin et al.164 suggested a novel

approach for fabricating microcomponents with designed

surface structures, e.g., microgears. Their analysis demonstrated
5736 | Soft Matter, 2012, 8, 5728–5745
that cylindrical core–shell fibers may buckle into sinusoidal

morphologies with a designed wavelength dictated by different

geometrical and material parameters.165 Recently, Cao et al.166

found that when the swelling of the shell with thickness H or the

shrinkage of the core with radiusA reaches a larger threshold, the

pattern bifurcates again and a wrinkle-to-fold transition occurs,

rendering a period-doubling surface topography, as shown in

Fig. 12. This wrinkle-to-fold transition is also a process of

increasing stress concentration. As can be seen from the right

inset in Fig. 12, stress distribution is localized in narrow ridges of

the patterns. The FvK number h f (A/H)2, defined in the theory

of elastic plates and shells,167 can be used to characterize the

relative importance of tensile and bending rigidities. Since h is

large at small shell thickness, the deformation of the shell favors

pure bending almost everywhere except at the folding ridges

where the energetically expensive stretching is localized. There-

fore, the competition between the stretching/shearing-dominated

deformations in the core and the bending-dominated deforma-

tions in the shell leads to the wrinkle-to-fold transition. Although

the emergence of the wrinkle-to-fold transition requires a large

modulus ratio, the second critical shrinkage magnitude is almost

independent of the modulus ratio between the shell and the

core.166

In addition to the artificial structures, surface wrinkling may

also occur in tubular organs of animals such as the esophagus,

pulmonary airway, eustachian tube, gastrointestinal tract and

many other animal lumens (see Fig. 13(a) for an image of

bovine esophagus).12,32,128,168,169 These organs normally consist

of a muscular, a submucosal, and a mucosal layer (Fig. 13(a)).

The muscular layer is usually much stiffer than the submucosal

layer. The submucosal layer consists of loosely connective

tissue on the luminal side of the muscle. The mucosal layer

includes the lamina propria or subepithelial collagen layer, the

basement membrane, and the epithelium. The ratio between the

elastic moduli of mucosa and submucosa can vary in a broad

range, e.g., 1–314.127 The modulus of the combined mucosa–

submucosa layer is in the range of 3–24 kPa for the pulmonary

airway of rabbits170 and about 0.5 kPa for porcine esophagus.12

Most previous studies believed that wrinkling at the inner

surface of these tubular organs arises from smooth muscle

contraction or external mechanical loads.12,32,127,128 However, an

alternative explanation is that the wrinkling/folding occurs as

a consequence of constrained tissue growth. Recently, both
This journal is ª The Royal Society of Chemistry 2012
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Fig. 13 Wrinkling in tubular organs: (a) a ring cut from bovine esophagus, (b) sinusoidal wrinkling induced by mucosal growth, (c) period-doubling

pattern induced by large growth, (d) period-doubling pattern in bovine esophagus, (e) local wrinkling in porcine airway and (f) numerical simulation for

local wrinkling.68

Fig. 14 Swelling of a soft layer bonded to a hard core: (a) the initial state

before swelling and (b) creasing state.77 (c) Torsional buckling induced by

anisotropic growth in a core–shell cylinder.177 (d) Axial wrinkling in

a jejunum.179 Reprinted from ref. 77 and 179 with permission.
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single-layer and bilayer models have been proposed to elucidate

the growth-driving mechanisms underpinning surface wrinkling

observed in these soft tissues (Fig. 13(b)).33,68,159,171,172 These

studies have potential applications in clinical diagnose of some

diseases such as inflammation, edema, lymphoma, asthma, and

enterogastritis. Abnormal growth and alteration of wrinkling

patterns in mucosa are important clinical signs and symptoms

of diseases.32,173,174 For instance, clinical observations found

that asthmatic airways exhibit folds deeper than normal.128,169

In addition, wrinkling on the inner surface of a tube offers the

prospect of generating corrugated surfaces on polymeric gels

with adjustable roughness in a confined space, which can be

used to control actively the adhesive and frictional property for

fluid transport.47,75 Experimental observations and numerical

simulations provided evidence that similar period-doubling

folds can appear in growing tubular biological tissues

(Fig. 13(c) and 13(d)).68,142 In addition, the volumetric growth

of soft tissues is not always homogeneous and can be highly

localized or inhomogeneous for various reasons.175 Biological

tissues may undergo instabilities as a result of these growth

forms.68 For example, a porcine airway with local wrinkling is

shown in Fig. 13(e), which has been reproduced by Li et al.68

using FEM simulations (Fig. 13(f)).

Due to the similarities in the wrinkling characteristics, here we

also discuss the instability in some systems satisfying the plane-

strain or plane-stress (with the longitudinal dimension compa-

rable to or even shorter than the cross-sectional sizes, e.g., a disk)

conditions. Following the sinusoidal wrinkling on the surface of

a disk consisting of a soft shell on a hard core (Fig. 14(a)), the

surface instability often manifests itself by creasing (Fig. 14(b)).34

For the wrinkle-to-fold transition occurring in a soft core with

a hard shell, every two neighboring crests would merge into

a single and large bump, creating a period-doubling topography.

Besides, a growing soft layer resting on the wall of a stiff tube

may also trigger a creasing instability.40
This journal is ª The Royal Society of Chemistry 2012
A fiber growing in both the cross section and the longitudinal

directions would develop a 3D wrinkling pattern. If the skins of

the cylindrical tissues consist of fibrous layers with a preferred

orientation, or the growth of the structures is anisotropic,

a torsional buckling can be triggered, forming helical patterns

(Fig. 14(c)).176 Interestingly, multiple bifurcations may take place

with increasing growth, leading to morphological transitions

from trench to hexagon and finally to labyrinth patterns

(Fig. 14(c)).177 It should be pointed out that the axial (Fig. 14(d))

or combined wrinkling in both circumferential and axial direc-

tions may be energetically favored for cylinder or tubular tissues

growing along the longitudinal direction.65,131,132,178
Soft Matter, 2012, 8, 5728–5745 | 5737
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Fig. 15 Wrinkling of guts in animal: (a) gut looping patterns in a chick,

quail, finch and mouse, (b) aligned gut of a chick, (c) composite rubber

model, and (d) theoretical model.31 Reprinted from ref. 31 with

permission.
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6.2. Global buckling

As mentioned above, many growing cylindrical structures such

as plant stems, arteries and small intestines may also undergo

a global Euler buckling to lower the total potential energy of the

system.65,180–182 For example, tortuosity or kinking caused by the

global instability often occurs in human internal carotid arteries

or iliac arteries with significant clinical complications,183 and the

buckling of the internal carotid artery can engender stroke,

vertigo, syncopes, blackout, persistent tinnitus, and other cere-

brovascular diseases.184–186

It is well known that a clamped–clamped beam may buckle

into a half sinusoidal wave while multiple sinusoidal waves are

preferred when it is bonded on a soft substrate.24,187–189 However,

tubular organs (e.g., arteries, veins and guts) are often supported

by their surrounding tissues in vivo. Therefore, the Euler buckling

model for fibers or tubes may not give the best prediction for the

morphogenesis in organ development. More realistic models

which take into account the effects of elastic supports have been

proposed.190 Most recently, Savin et al.31 suggested a biome-

chanical model to unravel the gut looping morphogenesis caused

by the mismatch in growth between the gut tube and the

anchoring dorsal mesenteric sheet. A gut forms as a simple linear

tube of circular cross-section running down the midline of the

embryo, and grows at a greater rate than the surrounding

mesenteric sheet, eventually becoming significantly longer than

the trunk. Owing to the constraints from the mesenteric sheet

and the capacity of the body cavity, the gut is first forced into

a wavy configuration with moderate growth and then to loop

around with greater growth, as shown in Fig. 15(a) and 15(b).

This wrinkling phenomenon can be reproduced by using a rubber

model (Fig. 15(c) and 15(d)), where the effect of growth is

uncovered. The wavelength l of the first stage and the radius

Rloop of the loop forming in the consequent stage can be

expressed as31

lf

�
EgutIgut

Esheeth

�1=3

; Rloopf

�
EgutIgut

Esheeth3
2
0

�1=3

(10)

where Egut and Esheet are the Young’s moduli of the gut and the

mesenteric sheet, respectively, Igut denotes the cross-sectional

moment of inertia of the gut tube, 30 is the elastic strain and h is

the thickness of the mesenteric sheet.

Besides the applications in morphogenesis of soft tissues,

buckling metrology has also been proposed to estimate the

mechanical properties of cylinders, e.g., plant stems.65 Because

beam models are usually employed in the global buckling anal-

ysis, the buckling metrology can also be applied to other

geometrical configurations, for example, measuring the elastic

modulus of nanowires with various shapes by wrinkling them on

a compliant substrate.24
7. Spheres and cavities

Much experimental effort has been directed toward the synthesis

of core–shell or multi-layer structured soft particles,71,191,192 with

promising applications in drug delivery, enzyme supports and

biosensors. Recently, engineering of the geometrical character-

istics of surface texture has gained recognition for their potential

to alter the properties of particles, especially in the biological and
5738 | Soft Matter, 2012, 8, 5728–5745
biomedical fields. However, the controllable fabrication of

morphology on soft particles often requires complicated proce-

dures that change their originally smooth appearance.193 In

recent years, it has been increasingly recognized that the differ-

ential swelling/shrinkage originating from physical and chemical

mechanisms in core–shell structures can trigger various

morphological instabilities, providing a novel and facile way for

surface patterning of particles.39,194

Moreover, many fruits or plants also have core–shell struc-

tures, e.g., Korean melon, ridged gourd, small pumpkin, and

acorn squash, which lead to various surface patterns. The

intrinsic mechanisms underlying the morphogenesis of a growing

fruit, according to Charles Darwin, could ‘‘drive the sanest man

mad’’ and remain far from being uncovered. Yin et al.49,50 argued

that mechanical buckling incurred by the mismatch in growth

between the shell and the core may have important implications

on the formation of these patterns. Based on the theory of a thin

elastic shell, they discussed the stability of various spheroidal

structures with different equatorial and polar radii, and related

the characteristic patterns to those observed on the surfaces of

fruits. Besides, dehydration of pollen grains and green fruits such

as peas and grapes indeed gives rise to mechanical buckling and

subsequent formation of various surface patterns.39,195

Recently, Li et al.196 carried out theoretical analysis and

nonlinear FEM simulations to elucidate the wrinkling on a soft

neo-Hookean core–shell sphere induced by shrinkage of the core.

Initially, the sphere shrinks isotropically (Fig. 16(a)). As the

shrinkage reaches a critical value, the sphere suddenly bifurcates

into a periodic dimple structure to release circumferential

compression in the shell (Fig. 16(b)). With further shrinking,

a pattern consisting of regular pentagons and hexagons
This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c2sm00011c


Fig. 17 (a) Energetic mechanism underpinning the wrinkle-to-fold

transition, where ms/mc ¼ 10. (b) Evolution of the surface morphologies of

spheres with different values of ms/mc. In this figure, the core radius A ¼
100 and the shell thickness H ¼ 4.196
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characterizes the surface of the sphere, as shown in Fig. 16(c).

Such a pattern is reminiscent of the structure of the buckyball

(Fig. 16(k) and 16(i)). As the shrinkage increases further,

a second bifurcation (wrinkle-to-fold) takes place and the

buckyball pattern from the first bifurcation breaks into fold-like

structures: some polygons narrow into troughs, while others

merge with their neighbors (Fig. 16(d)). In comparison with the

buckyball pattern, the folding patterns can release more elastic

strain energy at this stage. Finally, the spherical surface evolves

toward a labyrinthine pattern (Fig. 16(e)), corresponding to the

further localization of elastic strain energy. This evolution

process has been confirmed by the dehydration of green peas, as

shown in Fig. 16(f)–(j). To some extent, this furrowed pattern

resembles the topography of brain folds (Fig. 16(m)).197

The morphological evolution can be understood from an

energetic view. For a core–shell sphere with core radius A and

shell thickness H, as show in Fig. 17(a), the normalized total

energy �U of the system increases as a function of the shrinking

factor �g of the core, where U ¼ Ð
U
J½W � pðdet A�1Þ�dU, p is

a Lagrangian multiplier, U the initial volume occupied by the

sphere and �U ¼ U/(mcA
3), ms and mc denote the shear moduli of

the shell and the core, respectively. The energy variation from

FEM simulations is in good agreement with the theoretical

solution prior to the onset of buckling (region I). When the

shrinkage exceeds a critical value, �gcrit, the spherical surface

buckles and the system enters region II as a consequence of

energy minimization. With further shrinking, a buckyball pattern

characterizes the surface of the sphere. As the shrinkage increases

further, the buckyball pattern is not energetically optimal any

more. To reduce the total energy, a second bifurcation may take

place and the system enters region III. The buckyball pattern

from the first bifurcation breaks into fold-like structures. In
Fig. 16 Wrinkling of soft core–shell spheres. (a)–(e) Displacement on the spherical surface caused by shrinkage of the core and (f)–(j) experimental

observations in dehydration of a green pea. From left to right, the time interval is one hour. (k) Buckyball-like pattern. (l) Buckyball.196 (m) Human

brain.197 Reprinted from ref. 197 with permission.
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addition, the modulus ratio between the shell and the core can

be used to modulate the topography: thick folding occurs when

ms/mc is large and vice versa (Fig. 17(b)).

The morphological instability in core–shell soft structures that

incorporate growth may also have important implications on

tumor development and invasion. Many types of mammalian

cells can aggregate into multicellular tumors with spherical

shapes (e.g., cervical squamous cell carcinoma, see Fig. 18(a)).198

The early development stages (avascular phase) of solid tumors

are apparently regulated by the diffusion of nutrients within the

extracellular matrix. However, the consumption of the nutrients

means that their concentration must decrease toward the center

of the tumor. When the available nutrients at the center fall

below the critical level to sustain cell life, a core–shell structure

develops with a central necrotic core surrounded by layers of

distinct levels of cellular activity.199 A tumor, therefore, consists

of an inner necrotic core, an intermediate region with quiescent

cells, and the outmost rim with actively proliferating cells

(Fig. 18(b)).78,198,200 Such an avascular tumor under development

can be modeled as a growing shell enclosing a core of non-grown

cells. The growth confined at the periphery of tumors can not

only alter the size of the tumors but also elicit residual stresses,

which may destabilize the system, engendering multiple

symmetry breaking processes and varied topographies. It is

believed that this surface instability, breaking a uniform and

compact tumor front into wavy and irregular morphologies, as

observed in experiments, dramatically correlates with increased

tumor aggressiveness (Fig. 18(c)).201–203 The mechanical stability

analysis suggests that increasing the thickness and reducing the

stiffness of a proliferative cellular layer can inhibit the invasion of

the tumor. Besides, growth beyond the critical instability renders

labyrinthine patterns consisting of ridges and troughs, which

sheds light on the intricate pattern on the tumor surface.

Although many biochemical processes are involved in the onset

of invasion of a solid tumor, mechanics and chemistry should be

considered on an equal footing to describe accurately the

evolution of tumors.

In systems with negative surface curvature (i.e., cavities),

constrained swelling or growth of soft layer will also cause

surface buckling and pattern transition. For example, as the

mucosal layer grows in the stomach of animals, mechanical

buckling is observable due to the constraints of the gastric

wall.129 The surface patterns depend on the elastic modulus and

thickness of the mucosa, as well as the radius of curvature of the

cavity. A slight increase in the thickness of a thin mucosa may

incur significant reduction of surface wrinkles. These pattern
Fig. 18 Solid tumors: (a) scanning electron micrograph of human cervical s

histological section through the center of a solid tumor similar to that shown i

ref. 200 and 201 with permission.

5740 | Soft Matter, 2012, 8, 5728–5745
changes may be closely related to certain mucosal diseases. For

instance, mucosal wrinkles are found to enlarge and thicken in

the stomach of patients with eosinophilic gastroenteritis.204
8. Vesicles and capsules with or without internal
pressure

Soft particles with a hollow interior are often referred to as

vesicles or capsules. They are particularly interesting not only for

applications in drug carrier, catalysis, and biotechnology, but

also are vital for serving as the crust for cells and virus.205,206 For

example, viral capsids, the nanometer-sized protein shells of

viruses, are composed of a two-dimensional protein assembly,

which serve to contain and protect viral genome molecules.207 As

experimentally observed, both macroscopic and microscopic

capsules can buckle and even collapse under external pressure or

evaporation of solvent.208,209 Buckling of vesicles or capsules may

pose limits to their engineering applications but also have

important implications for the morphology of cells and virus.

For example, it has been conjectured that the shapes of spherical

viruses with icosahedral symmetry (Fig. 19(a)) are closely asso-

ciated with their morphological instability.167,210 Understanding

the buckling mechanisms of capsules is helpful for probing their

structures and mechanical properties and for gaining new

insights into the etiology of relevant diseases.

Lidmar et al.167 argued that the faceting of large viruses is

caused by a buckling transition associated with twelve isolated

points of five-fold symmetry. The singularity at these points was

regarded as a disclination in an otherwise six-coordinated

medium. They demonstrated that the faceted shape of viruses

depends only on the dimensionless FvK number, h ¼ Y �R2/D,

where Y is the 2D Young’s modulus of the protein shell, �R the

mean virus radius, and D the bending rigidity. The critical

characteristics were determined by considering the competition

between the stretching and bending elastic energies of the closed

shell. More recently, the instability characteristics and morpho-

genesis of spherical colloid capsules or viral capsids with non-

icosahedral symmetries, e.g., spherocylindrical and conical

shells,211 have been examined with or without volumetric

constraint (Fig. 19(b)–(d)).212–214 These studies showed that the

FvK number plays a significant role in the wrinkling of capsules.

To characterize the mechanical properties of a capsule,

a point force is often applied on its surface. When the force

reaches a threshold, the capsule will buckle and a depression

will form. From the geometry of the sunken region, the elastic

parameters of the capsule can be determined by an inverse
quamous cell carcinoma spheroid with a diameter about 300 mm and (b)

n (a).200 (c) Invasion of a spherical solid tumor in vitro.201 Reprinted from

This journal is ª The Royal Society of Chemistry 2012
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Fig. 19 (a) Cryo-TEM (transmission electron microscopy) reconstruc-

tion of the cowpea chlorotic mottle virus.210 (b) Numerical simulation of

the buckling of an icosadeltahedral capsule under external pressure.213 (c)

Transmission optical microscopy of a colloidal capsule with local buck-

ling due to the evaporation in inner solution, and (d) the simulation

results corresponding to (c).214 Reprinted from ref. 210, 213 and 214 with

permission.

Fig. 20 (a) Wrinkling of a beach ball under point indentation. (b)–(d)

The transition from polygonal localizations to wrinkles with increasing

internal pressure, where the wavenumbers are 3, 7, and 18, respectively.216

Reprinted from ref. 216 with permission.

Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

01
2.

 D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 P
O

L
Y

T
E

C
H

N
IC

 F
E

D
 D

E
 L

A
U

SA
N

N
E

 o
n 

10
/3

0/
20

19
 6

:4
1:

50
 P

M
. 

View Article Online
analysis.209,215 Using the theory of an elastic thin shell, Vella

et al.216 showed that during indentation, the shape of the

sunken region is not only contingent on the material properties

of the capsule but also on the internal pressure, P. If the shell is

unpressurized, a regular triangular structure occurs, as pre-

dicted previously.217 However, increasing the internal pressure

will lead to an increase in the number of wrinkles in the

annular depression region, as shown in Fig. 20. As the inden-

tation deepens, the size of this annular region increases but the

wavenumber n remains constant. For an elastic shell of natural

radius R, thickness h, and Young’s modulus E, one can define

a dimensionless bending stiffness x by216

xf
P

E

�
R

h

�2

(11)

When x # 1, the depression is expected to have a triangular

structure, that is, n¼ 3. When x[ 1, the wavenumber scales as n

f x1/2. This reveals that one can estimate the elastic modulus of

a capsule by counting the number of wrinkles arising from the

point indentation.

The above studies provide clues for developing new methods

to measure the mechanical properties of capsules, cell

membranes, and some other biological structures. In addition,

the morphological instability and evolution of capsules are

closely associated with the topographical development of cells

and virus. Systematic theoretical and experimental investigations

on this issue will be of great interest.
This journal is ª The Royal Society of Chemistry 2012
9. Surface instability driven by long-range
interactions

Besides the above-described mechanisms that may cause

morphological instability, soft materials can also be destabilized

by long-range interactions such as van der Waals forces, electric

double-layer forces and electrostatic forces, which are normally

negligible for macroscopic structures of hard materials. For

instance, when a soft thin film bonded to a rigid substrate is

approached by a rigid indenter, the film may wrinkle due to its

van der Waals interaction with the indenter (Fig. 21(a)).5,7,8,218,219

This morphological instability occurs due to a competition

between the combination of elastic and surface energies, which

tend to stabilize the system, and the interaction energy, which

acts as the main destabilizing force.8 When the film thickness is

reduced to less than 1 mm, the relationship between the wave-

length and the film thickness becomes nonlinear due to the

enhanced contribution of surface energy. Besides, the

compressibility of the film, which is manifested through Pois-

son’s ratio v, plays a significant role in the surface instability. For

v # 1/4, the film undergoes a stable and homogeneous defor-

mation insensitive to surface perturbations. For v > 1/4, however,

the film prefers surface undulation to lower the potential energy

of the system when the van der Waals interaction force with the

indenter reaches a critical value.7,218 This indicates that highly

compressible films tend to deform uniformly.

It is noticed that the buckling-induced surface patterns depend

strongly on the mechanism that triggers the instability. A soft

layer resting on a rigid substrate will buckle into a stable sinu-

soidal wrinkling patter when subjected to the van der Waals

interaction force. In contrast, under in-plane compression the

sinusoidal pattern is unstable and a wrinkle-to-crease transition

occurs soon after the occurrence of buckling. In addition, the

wrinkling behavior of a thin elastic film is different from
Soft Matter, 2012, 8, 5728–5745 | 5741
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Fig. 21 Surface wrinkling induced by long-range interaction forces: (a)

interaction between a thin film and a contacting solid; (b) peeling of

adhesive;233 (c) finger instability238 and (d) worm-like instability.233

Reprinted from ref. 233 and 238 with permission.
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a viscous liquid film.220–223 If the surface energy of the film is

negligible, the instability-induced pattern wavelength in the

former case is proportional to the film thickness but independent

of the nature of the interaction force normal to the film surface,

while in the latter case, the wavelength and pattern characteris-

tics depend strongly on the nature and magnitude of the external

stimuli.

Besides the external stimuli, such interactions as van derWaals

forces and electrostatic forces within the system can also trigger

surface bifurcation, commonly referred to as spontaneous

instability.224–226 For a planar thin elastic film bonded on a rigid

substrate, the characteristic wrinkling wavelength of the spon-

taneous instability is contingent on the film thickness via an

exponential relation with power index in the range of 0.75–1.0,

depending on the ratio between the surface energy and shear

modulus of the film.225 In addition, it is emphasized that the

surface curvature of the substrate plays a significant role in the

wrinkling behavior. To uncover the effect of surface curvature,

Li et al.226 presented a generic method for analyzing the surface

stability of a thin film interacting with the substrate. In partic-

ular, they discussed several important geometric configurations

with either a positive or negative mean curvature. The above

results on the surface instability of soft films under different

driving forces may find important applications in a number of

fields including soft lithography. It is also indicated that one may

fabricate nanopatterns or enhance the surface stability of soft

thin films by modulating the mechanical properties of the films

and/or geometrical properties such as film thickness and

substrate curvature.

Recently, wrinkling phenomena in several other complex

systems have also been studied, e.g. a soft bilayer, mutually

attracting films, and a thin film on a patterned or slipping

substrate.227–232 For instance, when a thin elastic film is peeled

from a rigid flat surface, its surface loses its planarity and

subsequently evolves into a fingering shape (Fig. 21(b) and 21(c))

or a worm-like pattern (Fig. 21(d)) with a fairly regular

spacing.233–237 The wavelength of this instability varies linearly

only with the thickness but is independent of other properties of

the film. However, different behavior is observed when the

peeling takes place between two soft elastic solids. In this case,

the wavelength becomes a nonlinear function that depends not
5742 | Soft Matter, 2012, 8, 5728–5745
only on the thicknesses but also on the elastic properties of the

two materials.238 This issue is of fundamental importance for

understanding the effects of elastic instability on the interfacial

properties such as friction, adhesion, and failure.
10. Conclusions

This review has been aimed to provide an illustrative glance at

the rich phenomenon of morphological instability and surface

wrinkling in soft materials. The wrinkling behavior depends

strongly on the geometric configuration of the system, and we

have discussed the wrinkling patterns and morphological

evolution in some representative configurations, including thin

films, sheets, fibers, particles, tubes, cavities, and capsules, with

particular attention on the surface instability induced by volu-

metric growth/shrinkage. Some of the recent advances in the 2D

and 3D modeling of critical buckling and postbuckling have also

been briefly discussed.

Although remarkable progress has been made in recent years

on the modeling of morphological instability in soft matter, there

remain heaps of significant and interesting problems that deserve

further experimental and theoretical investigation. First of all,

advances in theoretical modeling in this field are hindered by

a number of mechanical and mathematical complexities. For

example, the surface instability of soft materials usually involves

both strong geometrical and material nonlinearities, making the

theoretical analysis difficult. The morphological evolution

beyond the critical state is incredibly complicated, especially in

the case of 3D surface instability on curved surfaces, and the

conventional methods of buckling have difficulties in predicting

surface patterns and their evolution. The postbuckling evolution

of surface wrinkling often involves large deformation, nonlinear

constitutive relations, multiple symmetry-breakings, loading

path-dependence, stress singularity, and other complexities. In

addition, as to the morphogenesis of living tissues and organs,

a number of chemical and biological mechanisms, which couple

with the mechanical factors, may contribute to the wrinkling

behavior but so far little progress has been made in this direction.

Systematic investigations on the influence of these mechanisms

would be of interest not only for understanding the morpho-

logical evolution of living tissues but also for the diagnosis and

treatment of some diseases. Therefore, it is of significance to

develop more effective methods for studying the buckling and

postbuckling behavior of soft materials taking into account the

effects of biological–chemical–mechanical coupling, 3D geom-

etry, and other influential factors. Finally, it is worth mentioning

that much effort has been directed toward exploring the appli-

cations of buckling-based techniques for the surface patterning

of materials (e.g., soft lithography and imprinting), mechanical

and physical measurements of material properties (e.g., Young’s

modulus and Poisson’s ratio), medical and biological applica-

tions (e.g., prevention of skin wrinkles), most of which have not

been included in this review.
Acknowledgements

Support from the National Natural Science Foundation of

China (grant no. 10972121, 10732050, and 11172155), Tsinghua

University (2009THZ02122), the 973 Program of MOST
This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c2sm00011c


Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

01
2.

 D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 P
O

L
Y

T
E

C
H

N
IC

 F
E

D
 D

E
 L

A
U

SA
N

N
E

 o
n 

10
/3

0/
20

19
 6

:4
1:

50
 P

M
. 

View Article Online
(2010CB631005 and 2012CB934101), and the SRFDP Program

of MOE (20090002110047) is gratefully acknowledged. We also

wish to thank Professors H. Y. Liang and H. M. Xie for their

helpful suggestions.
References

1 S. C. Cowin, Annu. Rev. Biomed. Eng., 2004, 6, 77–107.
2 J. Kopecek, Biomaterials, 2007, 28, 5185–5192.
3 J. Genzer and J. Groenewold, Soft Matter, 2006, 2, 310–323.
4 L. He and L. Qiao, Europhys. Lett., 2007, 80, 14003.
5 W. Monch and S. Herminghaus, Europhys. Lett., 2001, 53, 525–531.
6 K. Li and L. He, Int. J. Solids Struct., 2010, 47, 2784–2789.
7 S. Q. Huang, Q. Y. Li, X. Q. Feng and S. W. Yu, Mech. Mater.,
2006, 38, 88–99.

8 V. Shenoy and A. Sharma, Phys. Rev. Lett., 2001, 86, 119–122.
9 W. Hong, X. Zhao, J. Zhou and Z. Suo, J. Mech. Phys. Solids, 2008,
56, 1779–1793.

10 I. Tokarev and S. Minko, Soft Matter, 2009, 5, 511–524.
11 B. Li, X. Q. Feng, Y. Li and G. F. Wang, Appl. Phys. Lett., 2009, 95,

021903.
12 W. Yang, T. Fung, K. Chian and C. Chong, J. Biomech., 2007, 40,

481–490.
13 M. Guvendiren, S. Yang and J. A. Burdick, Adv. Funct. Mater.,

2009, 19, 3038–3045.
14 S. Singamaneni, M. E. McConney and V. V. Tsukruk, Adv. Mater.,

2010, 22, 1263–1268.
15 P. J. Yoo, K. Y. Suh, S. Y. Park and H. H. Lee, Adv. Mater., 2002,

14, 1383–1387.
16 E. P. Chan and A. J. Crosby, Adv. Mater., 2006, 18, 3238–3242.
17 D. Chandra, S. Yang and P. C. Lin, Appl. Phys. Lett., 2007, 91,

251912.
18 H. Mei, R. Huang, J. Y. Chung, C. M. Stafford and H. H. Yu, Appl.

Phys. Lett., 2007, 90, 151902.
19 D. H. Kim and J. A. Rogers, Adv. Mater., 2008, 20, 4887–4892.
20 A. J. Baca, J. H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H. S. Kim,

W. M. Choi, D. H. Kim, Y. Huang and J. A. Rogers, Angew. Chem.,
Int. Ed., 2008, 47, 5524–5542.

21 W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang and
J. A. Rogers, Nano Lett., 2007, 7, 1655–1663.

22 J. Y. Chung, A. J. Nolte and C. M. Stafford, Adv. Mater., 2011, 23,
349–368.

23 B. Li, S. Q. Huang andX. Q. Feng,Arch. Appl.Mech., 2010, 80, 175–
188.

24 Y. P. Cao, X. P. Zheng, B. Li and X. Q. Feng, Scr. Mater., 2009, 61,
1044–1047.

25 C. M. Stafford, C. Harrison, K. L. Beers, A. Karim, E. J. Amis,
M. R. VanLandingham, H. C. Kim, W. Volksen, R. D. Miller and
E. E. Simonyi, Nat. Mater., 2004, 3, 545–550.

26 E. Sharon, M. Marder and H. L. Swinney, Am. Sci., 2004, 92, 254–
261.

27 M. Ben Amar and A. Goriely, J. Mech. Phys. Solids, 2005, 53, 2284–
2319.

28 H. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. U. S. A., 2009,
106, 22049–22054.

29 D. W. Thompson, On Growth and Form, Cambridge University
Press, 1942.

30 A. Boudaoud, Trends Plant Sci., 2010, 15, 353–360.
31 T. Savin, N. A. Kurpios, A. E. Shyer, P. Florescu, H. Liang,

L. Mahadevan and C. J. Tabin, Nature, 2011, 476, 57–62.
32 B. R. Wiggs, C. A. Hrousis, J. M. Drazen and R. D. Kamm, J. Appl.

Physiol., 1997, 83, 1814–1821.
33 B. Li, Y. P. Cao and X. Q. Feng, J. Biomech., 2011, 44, 182–188.
34 J. Dervaux, Y. Couder, M. A. Guedeau-Boudeville andM. B. Amar,

Phys. Rev. Lett., 2011, 107, 018103.
35 A. Schweikart and A. Fery, Microchim. Acta, 2009, 165, 249–263.
36 S. Cai, D. Breid, A. J. Crosby, Z. Suo and J. W. Hutchinson, J.

Mech. Phys. Solids, 2011, 59, 1094–1114.
37 Z. Huang, W. Hong and Z. Suo, J. Mech. Phys. Solids, 2005, 53,

2101–2118.
38 B. Audoly and A. Boudaoud, J. Mech. Phys. Solids, 2008, 56, 2401–

2421.
39 E. Cerda and L. Mahadevan, Phys. Rev. Lett., 2003, 90, 074302.
This journal is ª The Royal Society of Chemistry 2012
40 L. Jin, S. Cai and Z. Suo, Europhys. Lett., 2011, 95, 64002.
41 J.-Y. Sun, S. Xia,M.-W.Mon, K. H. Oh andK.-S. Kim, Proc. Royal

Soc. London Ser. A, 2012, 468, 932–953.
42 F. S. Jeng and K. Huang, J. Struct. Geol., 2008, 30, 633–648.
43 W. Hong, X. Zhao and Z. Suo, Appl. Phys. Lett., 2009, 95, 111901.
44 E. Hohlfeld and L. Mahadevan, Phys. Rev. Lett., 2011, 106, 105702.
45 V. Trujillo, J. Kim and R. C. Hayward, Soft Matter, 2008, 4, 564–

569.
46 X. Chen and J. Yin, Soft Matter, 2010, 6, 5667–5680.
47 Y. Mei, S. Kiravittaya, S. Harazim and O. G. Schmidt, Mater. Sci.

Eng., R, 2010, 70, 209–224.
48 L. A. Taber, Appl. Mech. Rev., 1995, 48, 487–545.
49 J. Yin, Z. Cao, C. Li, I. Sheinman and X. Chen, Proc. Natl. Acad.

Sci. U. S. A., 2008, 105, 19132–19135.
50 J. Yin, X. Chen and I. Sheinman, J. Mech. Phys. Solids, 2009, 57,

1470–1484.
51 J. Dervaux and M. Ben Amar, Phys. Rev. Lett., 2008, 101, 68101.
52 A. Goriely and M. Ben Amar, Phys. Rev. Lett., 2005, 94,

198103.
53 P. D. Shipman and A. C. Newell, Phys. Rev. Lett., 2004, 92, 168102.
54 C. R. Steele, J. Appl. Mech., 2000, 67, 237–247.
55 A. Goriely and M. Tabor, J. Theor. Biol., 2003, 222, 211–218.
56 J. Dumais, S. L. Shaw, C. R. Steele, S. R. Long and P.M. Ray, Int. J.

Dev. Biol., 2006, 50, 209–222.
57 I. B. Heath, Tip Growth in Plant and Fungal Cells, Academic Press,

New York, 1990.
58 R. Skalak, D. Farrow and A. Hoger, J. Math. Biol., 1997, 35, 869–

907.
59 K. Garikipati, Appl. Mech. Rev., 2009, 62, 030801.
60 D. Ambrosi and F. Mollica, Int. J. Eng. Sci., 2002, 40, 1297–1316.
61 J. Humphrey, Proc. R. Soc. London, Ser. A, 2003, 459, 3–46.
62 J. Dunlop, F. Fischer, E. Gamsj ger and P. Fratzl, J. Mech. Phys.

Solids, 2010, 58, 1073–1087.
63 E. H. Lee, J. Appl. Mech., 1969, 36, 1–6.
64 E. K. Rodriguez, A. Hoger and A. D. McCulloch, J. Biomech., 1994,

27, 455–467.
65 R. Vandiver and A. Goriely, Europhys. Lett., 2008, 84, 58004.
66 R. W. Ogden, Non-linear Elastic Deformations, Courier Dover

Publications, New York, 1997.
67 M. A. Biot, Mechanics of Incremental Deformations, Wiley, New

York, 1965.
68 B. Li, Y. P. Cao, X. Q. Feng and H. Gao, J. Mech. Phys. Solids,

2011, 59, 758–774.
69 E. Efrati, E. Sharon and R. Kupferman, J. Mech. Phys. Solids, 2009,

57, 762–775.
70 R. Luo and H. Li, Acta Biomater., 2009, 5, 2920–2928.
71 S. Nayak and L. A. Lyon, Angew. Chem., Int. Ed., 2005, 44, 7686–

7708.
72 H. Li, R. Luo, E. Birgersson and K. Y. Lam, J. Mech. Phys. Solids,

2009, 57, 369–382.
73 T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera,

Y. Hirose and T. Amiya, Nature, 1987, 325, 796–798.
74 M. K. Kang and R. Huang, J. Mech. Phys. Solids, 2010, 58, 1582–

1598.
75 S. Cai, K. Bertoldi, H. Wangab and Z. Suo, Soft Matter, 2010, 6,

5770–5777.
76 W. Hong, Z. Liu and Z. Suo, Int. J. Solids Struct., 2009, 46, 3282–

3289.
77 J. Dervaux and M. Ben Amar, J. Mech. Phys. Solids, 2011, 59, 538–

560.
78 M. Ben Amar and P. Ciarletta, J. Mech. Phys. Solids, 2010, 58, 935–

954.
79 M. C. Boyce and E. M. Arruda, Math. Mech. Solids, 2001, 6, 641–

659.
80 S. A. Chester and L. Anand, J. Mech. Phys. Solids, 2010, 58, 1879–

1906.
81 F. P. Duda, A. C. Souza and E. Fried, J. Mech. Phys. Solids, 2010,

58, 515–529.
82 J. Huang, M. Juszkiewicz, W. H. de Jeu, E. Cerda, T. Emrick,

N. Menon and T. P. Russell, Science, 2007, 317, 650–653.
83 D. Vella, M. Adda-Bedia and E. Cerda, Soft Matter, 2010, 6, 5778–

5782.
84 E. Sharon and E. Efrati, Soft Matter, 2010, 6, 5693–5704.
85 M. Marder and N. Papanicolaou, J. Stat. Phys., 2006, 125, 1065–

1092.
Soft Matter, 2012, 8, 5728–5745 | 5743

https://doi.org/10.1039/c2sm00011c


Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

01
2.

 D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 P
O

L
Y

T
E

C
H

N
IC

 F
E

D
 D

E
 L

A
U

SA
N

N
E

 o
n 

10
/3

0/
20

19
 6

:4
1:

50
 P

M
. 

View Article Online
86 E. Efrati, Y. Klein, H. Aharoni and E. Sharon, Phys. D, 2007, 235,
29–32.

87 E. Efrati, E. Sharon and R. Kupferman, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2009, 80, 016602.

88 M.Marder, R. D. Deegan and E. Sharon, Phys. Today, 2007, 60, 33–
38.

89 Y. Klein, E. Efrati and E. Sharon, Science, 2007, 315, 1116–1120.
90 T. Mora and A. Boudaoud, Eur. Phys. J. E, 2006, 20, 119–124.
91 H. Aharoni and E. Sharon, Nat. Mater., 2010, 9, 993–997.
92 H. Liang and L. Mahadevan, Proc. Natl. Acad. Sci. U. S. A., 2011,

108, 5516–5521.
93 A. C. Newell, P. D. Shipman and Z. Sun, J. Theor. Biol., 2008, 251,

421–439.
94 H. Xiao and X. Chen, Soft Matter, 2011, 7, 10794–10802.
95 Q. Wang, Y. Yin, H. Xie, J. Liu, W. Yang, P. Chen and Q. Zhang,

Soft Matter, 2011, 7, 2888–2894.
96 S. Armon, E. Efrati, R. Kupferman and E. Sharon, Science, 2011,

333, 1726–1730.
97 http://en.wikipedia.org/wiki/M%C3%B6bius_strip.
98 A. Korte, E. Starostin andG. van der Heijden, Proc. R. Soc. London,

Ser. A, 2011, 467, 285–305.
99 E. Starostin and G. Van der Heijden, Nat. Mater., 2007, 6, 563–567.
100 T. Witten, Rev. Mod. Phys., 2007, 79, 643–675.
101 J. Dervaux, P. Ciarletta and M. Ben Amar, J. Mech. Phys. Solids,

2009, 57, 458–471.
102 Z. Liu, W. Hong, Z. Suo, S. Swaddiwudhipong and Y. Zhang,

Comput. Mater. Sci., 2010, 49, S60–S64.
103 N. Stoop, F. K. Wittel, M. Ben Amar, M. M. Muller and

H. J. Herrmann, Phys. Rev. Lett., 2010, 105, 068101.
104 E. Sharon, B. Roman, M. Marder, G. S. Shin and H. L. Swinney,

Nature, 2002, 419, 579–579.
105 B. Audoly and A. Boudaoud, Phys. Rev. Lett., 2003, 91, 86105.
106 E. Sharon, B. Roman and H. L. Swinney, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2007, 75, 046211.
107 H. Vandeparre, M. Pineirua, F. Brau, B. Roman, J. Bico, C. Gay,

W. Bao, C. N. Lau, P. M. Reis and P. Damman, Phys. Rev. Lett.,
2011, 106, 224301.

108 B. Audoly and Y. Pomeau, Elasticity and Geometry: From Hair
Curls to the Non-linear Response of Shells, Oxford University
Press, 2010.

109 R. D. Schroll, E. Katifori and B. Davidovitch, Phys. Rev. Lett.,
2011, 106, 74301.

110 M. Ortiz and G. Gioia, J. Mech. Phys. Solids, 1994, 42, 531–559.
111 W. Jin and P. Sternberg, J. Math. Phys., 2001, 42, 192–199.
112 H. Vandeparre, S. Desbief, R. Lazzaroni, C. Gay and P. Damman,

Soft Matter, 2011, 7, 6878–6882.
113 J. Huang, B. Davidovitch, C. D. Santangelo, T. P. Russell and

N. Menon, Phys. Rev. Lett., 2010, 105, 38302.
114 C. O. Flynn and B. A. O. McCormack, Comput. Methods Biomech.

Biomed. Eng., 2009, 12, 125–134.
115 L. Landau and E. Lifshitz, Theory of Elasticity, Pergammon,

Oxford, UK, 1986.
116 N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson and

G. M. Whitesides, Nature, 1998, 393, 146–149.
117 X. P. Zheng, Y. P. Cao, B. Li, X. Q. Feng, H. Jiang and

Y. Y. Huang, J. Phys. D: Appl. Phys., 2009, 42, 175506.
118 D. Y. Khang, J. Xiao, C. Kocabas, S.MacLaren, T. Banks, H. Jiang,

Y. Y. Huang and J. A. Rogers, Nano Lett., 2008, 8, 124–130.
119 X. P. Zheng, Y. P. Cao, B. Li, X. Q. Feng and G. F. Wang,

Nanotechnology, 2010, 21, 205702.
120 B. Audoly and A. Boudaoud, J. Mech. Phys. Solids, 2008, 56, 2422–

2443.
121 B. Audoly and A. Boudaoud, J. Mech. Phys. Solids, 2008, 56, 2444–

2458.
122 X. Chen and J. W. Hutchinson, J. Appl. Mech., 2004, 71, 597–603.
123 X. Chen and J. W. Hutchinson, Scr. Mater., 2004, 50, 797–801.
124 D. Breid and A. J. Crosby, Soft Matter, 2011, 7, 4490–4496.
125 Y. Fung, Biomechanics: Motion, Flow, Stress, and Growth, Springer,

1990.
126 A. Goriely, M. Destrade and M. Ben Amar, Q. J. Mech. Appl.

Math., 2006, 59, 615–630.
127 C. A. Hrousis, B. J. R. Wiggs, J. M. Drazen, D. M. Parks and

R. D. Kamm, J. Biomech. Eng., 2002, 124, 334–341.
128 R. Lambert, S. Codd,M. Alley and R. Pack, J. Appl. Phys., 1994, 77,

1206–1216.
5744 | Soft Matter, 2012, 8, 5728–5745
129 B. Li, Y. P. Cao, X. Q. Feng and S. W. Yu, Appl. Phys. Lett., 2011,
98, 153701.

130 M. H. Fayed, M. Elnasharty and M. Shoaib, Int. J. Morphology,
2010, 28, 111–120.

131 A. Goriely and R. Vandiver, IMA J. Appl. Math., 2010, 75, 549–570.
132 E. Hannezo, J. Prost and J. F. Joanny, Phys. Rev. Lett., 2011, 107,

78104.
133 L. Wang, C. L. Pai, M. C. Boyce and G. C. Rutledge, Appl. Phys.

Lett., 2009, 94, 151916.
134 S. K. Basu, a. Alon, V. McCormick and L. Scriven, Langmuir, 2006,

22, 5916–5924.
135 E. Sultan and A. Boudaoud, J. Appl. Mech., 2008, 75, 051002.
136 H. Jiang, D. Y. Khang, J. Song, Y. Sun, Y. Huang and J. A. Rogers,

Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 15607–15612.
137 B. Audoly, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2011,

84, 011605.
138 P. Kim, M. Abkarian and H. A. Stone, Nat. Mater., 2011, 10, 952–

957.
139 L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K. Y. C. Lee

and E. Cerda, Science, 2008, 320, 912–916.
140 F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud and

P. Damman, Nat. Phys., 2011, 7, 56–60.
141 H. Diamant and T. A. Witten, Phys. Rev. Lett., 2011, 107, 164302.
142 L. Pocivavsek, B. Leahy, N. Holten-Andersen, B. Lin, K. Y. C. Lee

and E. Cerda, Soft Matter, 2009, 5, 1963–1968.
143 D. P. Holmes and A. J. Crosby, Phys. Rev. Lett., 2010, 105, 38303.
144 Y. P. Cao and J. W. Hutchinson, ASME J. Appl. Mech., 2011, in

press.
145 E. P. Chan, K. A. Page, S. H. Im, D. L. Patton, R. Huang and

C. M. Stafford, Soft Matter, 2009, 5, 4638–4641.
146 R. Huang and Z. Suo, J. Appl. Phys., 2002, 91, 1135.
147 R. Huang, J. Mech. Phys. Solids, 2005, 53, 63–89.
148 J. Yoon, J. Kim and R. C. Hayward, Soft Matter, 2010, 6, 5807–

5816.
149 M. Guvendiren, J. A. Burdick and S. Yang, Soft Matter, 2010, 6,

5795–5801.
150 W. H. Wong, T. F. Guo, Y. W. Zhang and L. Cheng, Soft Matter,

2010, 6, 5743–5750.
151 Y. Cao and J. W. Hutchinson, Proc. R. Soc. London, Ser. A, 2012,

468, 94–115.
152 T. Hwa and M. Kardar, Phys. Rev. Lett., 1988, 61, 106–109.
153 H. Gao, J. Mech. Phys. Solids, 1994, 42, 741–772.
154 S. Mora, M. Abkarian, H. Tabuteau and Y. Pomeau, Soft Matter,

2011, 7, 10612–10619.
155 P. M. Reis, Nat. Mater., 2011, 10, 907–909.
156 M. Biot, Appl. Sci. Res., 1963, 12, 168–182.
157 M. K. Kang and R. Huang, Soft Matter, 2010, 6, 5736–5742.
158 Q. Wang, L. Zhang and X. Zhao, Phys. Rev. Lett., 2011, 106,

118301.
159 D. E. Moulton and A. Goriely, J. Mech. Phys. Solids, 2011, 59, 525–

537.
160 S. Cai, D. Chen, Z. Suo and R. C. Hayward, Soft Matter, 2012, 8,

1301–1304.
161 L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu,

L. Jiang and D. Zhu, Adv. Mater., 2002, 14, 1857–1860.
162 X. Q. Feng, X. Gao, Z. Wu, L. Jiang and Q. S. Zheng, Langmuir,

2007, 23, 4892–4896.
163 F. Xia, Y. Zhu, L. Feng and L. Jiang, Soft Matter, 2009, 5, 275–281.
164 J. Yin, E. Bar-Kochba and X. Chen, Soft Matter, 2009, 5, 3469–

3474.
165 G. Tomar, D. Bandopadhayay and A. Sharma, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2011, 84, 031603.
166 Y. P. Cao, B. Li and X. Q. Feng, Soft Matter, 2012, 8, 556–562.
167 J. Lidmar, L. Mirny and D. R. Nelson, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 2003, 68, 051910.
168 P. B. Noble, A. R. West, R. A. McLaughlin, J. J. Armstrong,

S. Becker, P. K. McFawn, J. P. Williamson, P. R. Eastwood,
D. R. Hillman and D. D. Sampson, J. Appl. Physiol., 2010, 108,
401–411.

169 C. Y. Seow, L.Wang and P. D. Pare, J. Appl. Physiol., 2000, 88, 527–
533.

170 L. Wang, R. Tepper, J. L. Bert, K. L. Pinder, P. D. Pare and
M. Okazawa, J. Appl. Physiol., 2000, 88, 1014–1021.

171 D. E. Moulton and A. Goriely, J. Appl. Physiol., 2011, 110, 1003–
1012.
This journal is ª The Royal Society of Chemistry 2012

https://doi.org/10.1039/c2sm00011c


Pu
bl

is
he

d 
on

 0
6 

M
ar

ch
 2

01
2.

 D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 P
O

L
Y

T
E

C
H

N
IC

 F
E

D
 D

E
 L

A
U

SA
N

N
E

 o
n 

10
/3

0/
20

19
 6

:4
1:

50
 P

M
. 

View Article Online
172 P. Ciarletta andM. Ben Amar, Int. J. Non-LinearMech., 2011, DOI:
10.1016/j.ijnonlinmec.2011.1005.1013.

173 O. A. Stiennon, The Longitudinal Muscle in Esophageal Disease,
WRS Press, Wisconsin, 1995.

174 J. C. Hogg, APMIS, 1997, 105, 735–745.
175 J. Dervaux and M. Ben Amar, IMA J. Appl. Math., 2010, 75, 571–

580.
176 J. Yin and X. Chen, J. Phys. D: Appl. Phys., 2010, 43, 115402.
177 F. Jia, Y. P. Cao and X. Q. Feng, 2011, To be submitted.
178 P. Ciarletta and M. Ben Amar, J. Mech. Phys. Solids, 2012, 60, 525–

537.
179 K. Harish and C. Gokulan, Tropical Gastroenterology, 2008, 29, 37–

39.
180 R. Vandiver and A. Goriely, Philos. Trans. R. Soc. London, Ser. A,

2009, 367, 3607–3630.
181 R. Martinez, C. Fierro, P. Shireman and H.-C. Han, Ann. Biomed.

Eng., 2010, 38, 1345–1353.
182 A. Rachev, J. Biomech. Eng., 2009, 131, 051006.
183 R. S. Vannix, E. J. Joergenson and R. Carter, Am. J. Surg., 1977,

134, 82–89.
184 M. Aleksic, G. Schutz, S. Gerth and J. Mulch, J. Cardiovasc. Surg.,

2004, 45, 43–48.
185 H. C. Han, J. Biomech., 2007, 40, 3672–3678.
186 H. C. Han, J. Biomech., 2008, 41, 2708–2713.
187 H. G. Allen, ed., Analysis and Design of Structural Sandwich Panels,

Pergamon Press, New York, 1969.
188 H. Jiang, D. Y. Khang, H. Fei, H. Kim, Y. Huang, J. Xiao and

J. A. Rogers, J. Mech. Phys. Solids, 2008, 56, 2585–2598.
189 S. Tarasovs and J. Andersons, Int. J. Solids Struct., 2008, 45, 593–

600.
190 H. C. Han, J. Biomech., 2009, 42, 2797–2801.
191 Y. Gerelli, M. T. Di Bari, A. Deriu, D. Clemens and L. Almasy, Soft

Matter, 2010, 6, 2533–2538.
192 Y. Lu and M. Ballauff, Prog. Polym. Sci., 2011, 36, 767–792.
193 K.-H. Hwangbo, M. R. Kim, C.-S. Lee and K. Y. Cho, Soft Matter,

2011, 7, 10874–10878.
194 N. Tsapis, E. R. Dufresne, S. S. Sinha, C. S. Riera,

J. W. Hutchinson, L. Mahadevan and D. A. Weitz, Phys. Rev.
Lett., 2005, 94, 018302.

195 E. Katifori, S. Alben, E. Cerda, D. R. Nelson and J. Dumais, Proc.
Natl. Acad. Sci. U. S. A., 2010, 107, 7635–7639.

196 B. Li, F. Jia, Y. P. Cao, X. Q. Feng and H. Gao, Phys. Rev. Lett.,
2011, 106, 234301.

197 R. S. Hill and C. A. Walsh, Nature, 2005, 437, 64–67.
198 P. Tracqui, Rep. Prog. Phys., 2009, 72, 056701.
199 H. P. Greenspan, Stud. Appl. Math., 1972, 51, 317–340.
200 R. M. Sutherland, Science, 1988, 240, 177–184.
201 T. Deisboeck, M. Berens, A. Kansal, S. Torquato, A. Stemmer-

Rachamimov and E. Chiocca, Cell Proliferation, 2001, 34, 115–134.
202 V. Cristini, H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari and

J. Sinek, Clin. Cancer Res., 2005, 11, 6772–6779.
203 K. Pham, H. B. Frieboes, V. Cristini and J. Lowengrub, J. R. Soc.

Interface, 2011, 8, 16–29.
204 R. L. MacCarty and N. J. Talley, Gastrointestinal Radiology, 1990,

15, 183–187.
205 H. Jiang and S. X. Sun, Phys. Rev. Lett., 2010, 105, 28101.
This journal is ª The Royal Society of Chemistry 2012
206 L. Wang, C. E. Castro and M. C. Boyce, Soft Matter, 2011, 7,
11319–11324.

207 M.M. Gibbons andW. S. Klug, J. Mater. Sci., 2007, 42, 8995–9004.
208 G. Vliegenthart and G. Gompper, New J. Phys., 2011, 13, 045020.
209 W. Roos, R. Bruinsma and G. Wuite, Nat. Phys., 2010, 6, 733–743.
210 R. Zandi and D. Reguera, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2005, 72, 021917.
211 T. Nguyen, R. F. Bruinsma and W. M. Gelbart, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2005, 72, 051923.
212 A. �Siber, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 73,

061915.
213 A. �Siber and R. Podgornik, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2009, 79, 011919.
214 C. Quilliet, C. Zoldesi, C. Riera, A. Van Blaaderen and A. Imhof,

Eur. Phys. J. E, 2008, 27, 13–20.
215 M. Buenemann and P. Lenz, Proc. Natl. Acad. Sci. U. S. A., 2007,

104, 9925–9930.
216 D. Vella, A. Ajdari, A. Vaziri and A. Boudaoud, Phys. Rev. Lett.,

2011, 107, 174301.
217 A. Vaziri and L. Mahadevan, Proc. Natl. Acad. Sci. U. S. A., 2008,

105, 7913–7918.
218 V. Shenoy and A. Sharma, J. Mech. Phys. Solids, 2002, 50, 1155–

1173.
219 J. Sarkar, A. Sharma and V. Shenoy, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2008, 77, 031604.
220 S. Herminghaus, Phys. Rev. Lett., 1999, 83, 2359–2361.
221 B. Li, Y. Li, G. K. Xu and X. Q. Feng, J. Phys.: Condens. Matter,

2009, 21, 445006.
222 E. Schaffer, T. Thurn-Albrecht, T. P. Russell and U. Steiner,Nature,

2000, 403, 874–877.
223 E. Schaffer, T. Thurn-Albrecht, T. P. Russell and U. Steiner,

Europhys. Lett., 2001, 53, 518–524.
224 S. Q. Huang and X. Q. Feng, Acta Mech. Sin., 2008, 24, 289–296.
225 S. Q. Huang, B. Li and X. Q. Feng, J. Appl. Phys., 2008, 103, 083501.
226 B. Li, H. P. Zhao and X. Q. Feng, J. Mech. Phys. Solids, 2011, 59,

610–624.
227 C. Q. Ru, J. Appl. Phys., 2001, 90, 6098–6104.
228 J. Yoon, C. Q. Ru and A. Mioduchowski, J. Appl. Phys., 2005, 98,

113503.
229 R. Mukherjee, R. C. Pangule, A. Sharma and I. Banerjee, J. Chem.

Phys., 2007, 127, 064703.
230 J. Sarkar, V. Shenoy and A. Sharma, Phys. Rev. E: Stat. Phys.,

Plasmas, Fluids, Relat. Interdiscip. Top., 2003, 67, 031607.
231 X. H. Pan, S. Q. Huang, S. W. Yu and X. Q. Feng, J. Phys. D: Appl.

Phys., 2009, 42, 055302.
232 R. Mukherjee, R. Pangule, A. Sharma and G. Tomar, Adv. Funct.

Mater., 2007, 17, 2356–2364.
233 A. Ghatak and M. K. Chaudhury, Langmuir, 2003, 19, 2621–2631.
234 A. Ghatak,M. K. Chaudhury, V. Shenoy and A. Sharma, Phys. Rev.

Lett., 2000, 85, 4329–4332.
235 K. R. Shull, C. M. Flanigan and A. J. Crosby, Phys. Rev. Lett., 2000,

84, 3057–3060.
236 J. Y. Chung and M. K. Chaudhury, J. Adhes., 2005, 81, 1119–1145.
237 J.Y.ChungandM.K.Chaudhury, J.R.Soc. Interface, 2005,2, 55–61.
238 J. Y. Chung, K. H. Kim, M. K. Chaudhury, J. Sarkar and

A. Sharma, Eur. Phys. J. E, 2006, 20, 47–53.
Soft Matter, 2012, 8, 5728–5745 | 5745

https://doi.org/10.1039/c2sm00011c

	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review

	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review

	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review
	Mechanics of morphological instabilities and surface wrinkling in soft materials: a review


