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Morphological instabilities and surface wrinkling of soft materials such as gels and biological tissues
are of growing interest to a number of academic disciplines including soft lithography, metrology,
flexible electronics, and biomedical engineering. In this paper, we review some of the recent progresses
in experimental and theoretical investigations of instabilities that lead to the emergence and evolution
of surface wrinkling, folding and creasing under various geometrical constraints (e. g., thin films, sheets,
fibers, particles, tubes, cavities, vesicles and capsules) and loading stimuli (e.g., mechanical forces,
growth, atrophy, swelling, shrinkage, van der Waals interactions). Some representative theoretical and
numerical approaches aimed at modelling the onset of instabilities as well as the postbuckling evolution
involving multiple bifurcations and symmetry-breakings are discussed along with the main
characteristics and some possible applications of this rich phenomenon.

1. Introduction

Soft materials such as elastomers, polymeric gels and biological
tissues can easily undergo large deformation and various
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morphological stabilities in response to environmental stimuli
(e.g., mechanical forces, temperature, humidity, pH value, elec-
tric field and van der Waals interactions).'> The stimulus-
sensitive property of soft materials makes them promising
candidates for applications as intelligent materials in therapeu-
tics, sensors, microfluidic systems, nanoreactors, and biological
scaffolds.?

Due to their intrinsic features of low elastic moduli and high
sensitivity to external stimuli, soft materials are especially
susceptible to buckling induced surface instabilities. For
example, various regular or irregular wrinkles can be readily
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observed on human skin and elastomer surfaces. Such behavior
may pose a limit on the performance of materials and is often
thought to be a nuisance which should be avoided.? On the other
hand, one can also harness the physics and characteristics of
wrinkles to create tunable patterns,'*** to fabricate functional
surfaces,'®® to design flexible electronics,'*! and/or to measure
the mechanical properties of materials.*** Understanding the
morphogenesis and the origin of shapes is also a central goal of
developmental biology.?*® There has been a resurgence of
interest in emulating and utilizing mechanical instabilities in the
morphogenesis of anatomical structures, organs and organ-
isms.3**! Some techniques based on the mechanical instability of
surfaces have found applications in the biomedical field, e.g.,
assisting the diagnosis and curing of certain diseases, including
asthma, mucosal inflammation, gastroenteritis, and tumor
invasion.3?7*

Owing to a wide range of important applications, the
problem of morphological surface instability of soft matter has
attracted the attention, imagination and close scrutiny of many
scientists and engineers over the past decade.>* Much experi-
mental and theoretical effort has been directed toward
exploring the characteristics of surface patterns at the critical
state of buckling and the subsequent postbuckling evolution, as
well as understanding the underlying physical mechanisms in
different types of materials.>?**72¢3® Morphological instability
of a soft material typically exhibits three phenotypes: wrinkling,
folding, and creasing, as shown in Fig. 1. Wrinkling refers to
periodic or chaotic surface undulations appearing on an orig-
inally flat surface. It is often detected during the buckling of
thin structures with or without lateral supports. In a two-
dimensional (2D) system, for example, a stiff film anchored on
a compliant substrate may buckle into sinusoidal waves.?
Folding refers to a buckling induced surface structure with
localized, deep surface valleys. Folds are often observable, for

instance, during the postbuckling evolution of surface wrinkles
in a hard layer bonded to a soft substrate or floating on
a liquid.*>*! Noticeably, the term folding has been extensively
adopted in fields such as biomedicine and tectonophysics to
stand for traditional buckling or wrinkling.*>** In contrast,
creasing usually occurs at the surface of soft materials without
hard skins, when an initially smooth surface forms a self-con-
tacting shape with a sharp ridge or sulci.***

Soft materials often undergo large volumetric variations due
to factors such as temperature change, tissue growth/atrophy and
swelling/shrinkage induced by water imbibing/release. Inhomo-
geneous deformation and stresses are often incurred in materials
experiencing an inhomogeneous or anisotropic distribution of
volumetric variations arising from structural heterogeneities,
non-uniform micro-environments and/or spatial limitations in
available nutrients. Constrained swelling/growth may also cause
large enough compressive stresses to trigger elastic instabilities
analogous to the Euler buckling induced by external mechanical
loads.??>354647 In this paper, we review some of the recent
experimental and theoretical effort toward understanding the
morphological instabilities of soft materials incurred by non-
uniform volumetric swelling/shrinkage or other external stimuli.
The paper is outlined as follows. Section 2 briefly describes two
representative models dealing with surface instability and
morphological evolution in soft materials induced by swelling or
growth. Sections 3-9 provide an overview of some experimental
and theoretical investigations of morphological instabilities in
various soft material systems including thin films, sheets, fibers,
tubes, particles, cavities, vesicles and capsules. Possible applica-
tions of these results, as well as some closely related wrinkling
phenomena induced by other mechanisms (e.g., van der Waals
interactions, electrostatic forces, and externally applied forces)
will also be discussed. Finally, we offer some perspectives for
future work in this rich and exciting field.
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Fig. 1 Schematic of three types of morphological instability: (a) wrinkling, (b) folding, and (c) creasing.

2. Theoretical models
2.1. Growth/atrophy of living tissues

The growth or atrophy of living tissues, which usually occurs
through cell division or apoptosis resulting in increase or
decrease in body mass, is crucial for their physiological functions
and can be subjected to various pathological disorders. Growth
is responsible for the morphogenesis of biological organs and
tissues, which consists of a series of carefully orchestrated steps.*®
In addition to genetic and chemical effects, mechanical envi-
ronments play a significant role in regulating pattern formation.
Inhomogeneous growth or atrophy of tissues and organs in
a constrained environment induces internal stresses—often
referred to as residual stresses—which are believed to play
a significant role in the morphogenesis of tissues and
Organs.27’28’49_54

Tissue growth may take place in three typical forms, namely
tip growth, surface growth, and volumetric growth.”” In tip
growth, which happens in, for instance, root hairs, fungal hyphae
and pollen tubes, cells typically form a slender structure capped
by a prolate dome where expansion occurs.**>” Surface growth is
often adopted by organisms such as seashells and horn-shells,
where mass tends to accrete on an existing surface.*®*®% In
contrast, volumetric growth is responsible for the development of
most soft tissues, e.g., arteries, airways, heart, muscles, and solid
tumors."*62 In the present paper, our attention will be focused
on the morphological instability induced by volumetric growth.

In what follows, we will briefly describe a finite deformation
model based on the multiplicative decomposition of the defor-
mation gradient, analogous to the well-known decomposition of
elastic and plastic deformation gradient tensors.®®* According to
the pioneering work of Rodriguez et al,** the deformation
gradient tensor, F, can be decomposed as

F =F,F, (1)

where F, is the growth tensor describing the addition of mate-
rials, and F, is the elastic deformation tensor which ensures the
compatibility and integrity of the tissue.?”#3:6465 Residual stress
arises from the elastic deformation that exists to prevent
discontinuities in a growing body. This decomposition can be
illustrated in Fig. 2.

For the sake of simplicity, it is often assumed that the response
function of a growing material depends only on the elastic part of
the total deformation.”™* Introducing a strain energy function
W(F.), the nominal stress S can be written as?’

(oW _
S :JFg'(aT—pFel> )

where J = detF and p is a Lagrange multiplier associated with
tissue incompressibility (p = 0 for a compressible soft material).
The stress state of a nonlinear deformation system can also be
expressed by the Cauchy stress, ¢ = J'F-S.*® The mechanical
equilibrium state induced by tissue growth or atrophy can be
obtained by solving DivS = 0 or dive = 0 together with
appropriate boundary conditions, where “Div” and “div” stand
for divergence operators in the initial and current configurations,
respectively.®®

When the residual stresses caused by growth are sufficiently
large, they may trigger morphological instabilities in a soft
material. The critical instability conditions and the induced
surface wrinkling patterns can be predicted through an incre-
mental theory of deformation, following Biot®” and Ogden.®® Ben
Amar and Goriely incorporated the effect of tissue growth into
such a theory.?” Recently, Li et al.** adopted a similar approach
to study the mucosal wrinkling driven by volumetric growth. The
stability condition was determined by solving the incremental
equilibrium equation divS, = 0 in conjunction with specified
boundary conditions, where S, is the incremental nominal stress
tensor.*%® Surface wrinkling occurs when the incremental equi-
librium equation exhibits nontrivial solutions to small pertur-
bations in the system.

Besides the approach of multiplicative decomposition
described above, an additive decomposition has also been sug-
gested by expressing the elastic strain as the difference between
the total geometrical strain and the growth strain, similar to that
used in thermoelastic analyses.?®%

2.2. Swelling/shrinkage of hydrogels

Owing to their relatively low cost, good permeability, stimulus
sensitivity, biocompatibility and biodegradability, hydrogels
hold great promise for important applications in a wide range of
industrial and medical fields, e.g., chemical separation, food
preservation, optical sensing, drug delivery, and wound
dressing.>'*7° Similar to the growth/atrophy of biological tissues

Virtual
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Fig.2 Multiplicative decomposition of the deformation gradient tensor.
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in animals and plants, large volumetric change due to water
imbibing or drying can readily occur in hydrogels and elasto-
mers. For example, a hydrogel is typically composed of one or
more hydrophilic organic polymer components cross-linked into
a network by either covalent or noncovalent interactions.®’*7>
This network structure can swell or shrink by a huge amount in
response to external stimuli such as water imbibing or dehydra-
tion. Inhomogeneous or differential swelling or shrinking due to
nonuniform physical/chemical properties or physiological
changes can elicit stresses and destabilize the morphology of the
material 143%73-7>

When elastomers or gels are immersed into a solvent, the small
molecules in the solvent can migrate into the organic molecular
network, engendering swelling of the material. The reverse
process, ie. shrinkage, occurs when the small molecules migrate
out. The Helmholtz free energy density of elastomers can be
expressed as a function of the deformation gradient tensor, F,
and the concentration of solvent molecules in the gel, C, that is,
W = W(F,C). At equilibrium, the chemical potential of the
solvent molecules in the elastomer, defined by ¢ = dW/IC,
should be equal to that in the solvent.® A Legendre trans-
formation W = W(F,C) — ¢C gives the related free energy
density function associated with constant chemical potential.”®"”
It is often assumed that both the long polymer chains and the
solvent molecules are incompressible but the polymer network is
itself a compressible structure from the macroscopic perspec-
tive.”” Thus the volume of gel is expressed as the sum of the
volumes of its constituents, that is,’

1+VC=1J 3)

where Vis the volume per small solvent molecule. Employing eqn
(3), the free energy function W can be rewritten as

W (F, ) = W<F, ;) - %(17 1 @)

The nominal stress can be defined as S = dW/JF. Thus the
equilibrium state of the gel can be solved by following the
theoretical framework of volumetric growth described in
Subsection 2.1. When the free swelling of the gel is inhibited by
gradient or boundary constraints, compressive stresses arise,
which may trigger morphological instabilities in the system.*57478
The stability condition can be derived by adopting the traditional
linear perturbation method.*%67:7477

As in eqn (1) and Fig. 2, the swelling of gels can also be
analyzed by decomposing the deformation gradient tensor as”-®!

F =F. F (5)

where F; denotes the swelling part of the deformation. The
assumption that the volumetric variation arises entirely due to
the change in the solvent content requires detF, = 1 and det F, =
1 + VC = J. In this fashion, the subsequent stability analysis can
also be conducted in light of the incremental deformation theory
described in Subsection 2.1.

The above theoretical models enable one to investigate the
deformation and instability induced by volumetric changes. In
the following sections, we review some recent experimental and
theoretical advances in the morphological instabilities and

surface wrinkling of soft material systems under various
geometrical constraints.

3. Thin films or sheets

Freestanding thin sheets can easily lose their morphological
stability and exhibit complex configurational changes in response
to capillary forces,®® external compression, differential or
constrained swelling/shrinkage (Fig. 3a). Recently, Efrati e al.®
proposed an elastic theory of thin sheets with internal growth by
introducing the target metric concept. In this theory, the growth
is modeled by embedding another lamella with the same elastic
properties into the original sheet, leading to the so-called non-
Euclidean configuration, a stressed state without any external
constraint.®®” This approach provides an effective tool to
elucidate pattern formation in freely swelling planar and curved
sheets (Fig. 3b).26:88-90

In essence, the non-Euclidean concept is somewhat similar to
an additive decomposition of the Lagrange strain tensor into an
elastic strain tensor and an incompatible strain (or called
intrinsic strain) tensor.”** Liang and Mahadevan®*? utilized the
additive decomposition of the Lagrange strain to investigate the
role of instability in the formation of various patterns in strip-
like leaves (e.g., plantain lily leaves) and flowers (e.g., lily), as
shown in Fig. 4a and 4b. They showed that for sufficiently small
growth at the edge, a global deformation with a long-wavelength
saddle shape occurs. However, for larger growth at the edge, an
edge-localized ripple pattern with a short wavelength occurs
while the global configuration of the leaf remains almost flat. A
combined mode consisting of a saddle-like shape with edge-
localized ripples may appear when the edge growth is sufficiently
large, as shown in Fig. 4c. In addition, it was thought that the
blooming of lily flowers is driven by differential growth along the
thickness of the petals and/or active curving of the midribs, while
the edge-localized growth plays a crucial role in the blooming
process. In artificial materials, Wang et al.* observed that under
temperature-induced swelling, a polymeric strip restricted along
its two edges, which may buckle into orthogonal, oblique, and
crumple wrinkles (Fig. 5), depending on the strength of the edged

Fig. 3 (a) Flat sheets swelling in a spherical container.®’ (b) Buckling of
swelling sheets.®?” Reprinted from ref. 91 and 89 with permission.

This journal is © The Royal Society of Chemistry 2012
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Fig.4 Wrinkling of leaves and flowers: (a) plantain lily leaf, (b) flower of
lily, and (c) diagram of pattern, where B is the width of the strip and g is
the maximum growth strain at the edge of the strip.?*> Reprinted from
ref. 28 and 92 with permission.

constraints, the temperature distribution, and the expansion
properties of the strip.

Differential growth or swelling may also trigger torsional
buckling in strip-like plants and engender a helical morphology
with a smooth surface, as observed during the seed pod opening
process in Bauhinia variegate (Fig. 6a).°® Wide strips favor
a configuration close to a cut from a cylindrical envelope, remi-
niscent of the famous M0bius strip, whereas narrow strips prefer
a pure twist, where the centerline of the strip remains straight
(Fig. 6b—d).*” Nevertheless, when the strip is subjected to torsion
and high longitudinal tension simultaneously, the strip may
buckle into a helix with regular triangular patterns (Fig. 6¢).”®
The morphology observed has a sharply curved structure with
ridges running at an angle of about 45° measured from the
centerline of the strip, rendering a rough surface with stress
focusing similar to what appears on a crumpling paper or a gel
sheet swelling in a container with limited space.®*-'%°

Based on the multiplicative decomposition in eqn (1), Dervaux
et al.*! developed a model to describe the morphogenesis of thin

Fig. 6 Torsional buckling of strips: (a) closed and open Bauhinia pods,
(b) cylindrical helices in wide strips, (c) twisted helices in narrow strips,*®
(d) Mobius strip,” and (e) twisting with high tension.”® Reprinted from
ref. 96 and 98 with permission.

sheets induced by growth or atrophy. They found that the
equilibrium configuration of the sheet can be characterized by
a Foppl-von Karman (FvK) type of equation where growth acts
as a source of mean and Gaussian curvatures. The morphology
of soft tissues with lamellate shapes, e.g., plant leaves and potato
chips during drying or frying, can also be explained by this
theory.! Some researchers used the finite element method (FEM)
to simulate the growth of sheet-like structures in nature.®*1%?
FEM provides a versatile tool to elucidate various morphogen-
esis processes in nature where analytical approaches are limited.
For a circular disc (e.g., a lotus leaf) subjected to relatively small
growth, the theoretical analysis of Dervaux and Ben Amar
showed that the disc may buckle into a saddle shape when the
growth in the circumferential direction is greater than that in the
radial direction or a symmetric conical shape when the radial
growth dominates (Fig. 7a).’! At sufficiently large growth rates,
however, FEM simulations showed that the saddle and cone
shapes are no longer energetically optimal, rather the system will
favor a skewed self-contact cone (Fig. 7b) featured by a skewness
angle and repetitive spiral winding that allows unlimited
growth.'® Self-contacting also takes place when a thin annulus
disc grows sufficiently in the circumferential direction (Fig. 7c);
in this case, the threshold for the self-contact shape is contingent
on the inner radius of the annulus.

Another interesting phenomenon observed in thin sheets is
hierarchical or fractal wrinkles, a cascade of small waves upon
larger waves, which can be seen in tearing a garbage bag

Fig. 5 Buckling of an edge-restricted strip into (a) orthogonal, (b) oblique, and (c¢) crumple patterns.® Reprinted from ref. 95 with permission.
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Fig. 7 Buckling of growing circular sheets: (a) buckling with or without
edge oscillations,* (b) numerical (left) and experimental (right) results of
skewed buckling in a disc, and (c) numerical (left) and experimental
(right) results of skewed buckling in a ring.'”® Reprinted from ref. 51 and
103 with permission.

(Fig. 8a). Along the newly formed edges of the torn plastic sheet,
patterns with up to six generations of similar waves can be found,
with a scaling factor of about 3.'°%'% These patterns occur
because the high plastic strain localizes at the newly formed edge
when the sheet is torn; the expansive stretch leads to edge
buckling in order to reduce the total potential energy of the
system. Hierarchical wrinkles are also widely observed in plants.
For instance, wave-on-wave structures have been found in many
flower petals, lichens, and leaves (Fig. 8b) due to differential edge
growth, which can be understood by invoking the buckling
theory described above.?1%

As a parallel to the fractal wrinkles spontaneously formed at
a free edge, thin elastic sheets under boundary confinement in
a non-growing system may generate branching wrinkles: two
wrinkles with a small wavelength merge into a single wrinkle with
a larger wavelength, as shown in suspended curtains
(Fig. 8c).'°"1%® This phenomenon arises from the competition
between stretching in the direction parallel to the wrinkles and
bending along the edge.'” The average wavelength scales as A o«
x™, where x denotes the distance to the constrained edge.'***** It
is found that m is close to 2/3 for small downward dragging and
1/2 for large dragging in the direction parallel to the wrinkles.'*”

Fig. 8 Hierarchical wrinkles on (a) a torn plastic sheet,” (b) an orna-
mental cabbage, and (c) a suspended curtain.'”” Reprinted from ref. 26
and 107 with permission.

Thin sheets floating on water behave analogously to suspended
curtains because the capillary force at the edge plays a similar
role as downward-drag in curtains.'*®

4. Soft layers with a hard skin

Most living tissues in animals are featured by layered structures
to meet their physiological and physical functions. For example,
our skin, which accounts for about 16% of the body weight,
comprises three layers: counting from the outer skin first comes
a thin epidermis layer, followed by a thick dermis layer, and then
the underlying hypodermis.>''* To protect the internal layers
from eventual physical, biological, and chemical trauma caused
by the environment, the epidermis, made of stratum corneum
and keratinizing epithelial cells, is much harder than the inner
layers. For the sake of simplicity, the skin is usually modeled as
a stiff film resting on a compliant substrate.

As the skin ages, each layer undergoes different biological
changes in the moisture content and the collagen fiber density,
inducing compressive stresses in the epidermis layer. The
stresses can be large enough to wrinkle the skin. Considerable
attention has been attracted to the investigation of skin wrin-
kling and the development of possible techniques to reduce or
postpone this aging process.>'* The epidermis layer can be
described by a thin elastic plate within the FvK theoretical
framework while the compliant substrate is treated as a 2D or
3D elastic continuum.'’®> When the film is subjected to a suffi-
ciently large in-plane compressive load, it wrinkles into
a pattern that minimizes the total potential energy of the
system. In the case of uniaxial compression, the wrinkles
usually have a sinusoidal profile (Fig. 9a).° The wavelength, 2,
can be approximately expressed as®”!1¢

21 Ff 173
=3(z) ©

This journal is © The Royal Society of Chemistry 2012
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where £ = E/(1 — 1?), E, and v are the plane-strain elastic
modulus, Young’s modulus, and Poisson’s ratio of the film (f)
and substrate (s), respectively, and / denotes the film thickness.
This relation sheds light on the underlying competitive mecha-
nisms: the stiffness of the film favors a larger wavelength while
that of the substrate prefers a shorter wavelength. Given the
mechanical properties of the system, the wavelength is propor-
tional to the film thickness. These results also offer an effective
approach to modulate surface patterns and design flexible elec-
tronics with controllable dimensions by tuning the aforemen-
tioned mechanical and geometric parameters. Additionally, the
simple relation in eqn (6) opens a novel avenue for measuring the
mechanical properties of thin films at the micro and nano scales,
which are difficult to address with traditional methods.?>?5"7
Motivated by this, some buckling-based metrologies have been
developed to characterize the elastic modulus of micro- and
nanofilms/wires/tubes.>+!%11  When subjected to biaxial
compressive stresses, a thin film can buckle into different
patterns, e.g., checkerboard, herringbone, hexagonal, triangular,
and even labyrinths patterns, as shown in Fig. 9.36-38.120-124 The
selection and mutual transition of these wrinkling modes hinge
on the stress state and the loading history. When the load is equi-
biaxial and moderate, the herringbone pattern often appears as
the mode of the lowest energy.3¢1??

Generally speaking, the theory of finite elasticity is needed to
analyze layered systems with nonlinear constitutive relations and
large deformation. To capture the effects of differential growth
on the wrinkling of skins, consider an isotropic growth of the
epidermis layer (or a shrinkage of the inner layers), that is, F, =
gl with a constant growth rate g. Both the film and the substrate
are assumed to be incompressible neo-Hookean hyperelastic
materials with strain energy function W = u(ai + o3 + o} — 3)/2,
where u is the shear modulus at the ground state and «; (i = 1, 2,
3) are the eigenvalues of the elastic deformation tensor. Under
these assumptions, the characteristic wavelength of sinusoidal
wrinkles has a similar expression as eqn (6) except that the plane-
strain elastic moduli of the film and the substrate, E; and E,
should be replaced by the shear moduli ur and us, respectively.””
It is worth pointing out that other constitutive laws, e.g., Fung
and Gent-types,'?*!?¢ can also be used to model the nonlinear
responses of biological tissues. Besides skin, similar wrinkling
phenomena have been seen in many other layered biological
vessels, e.g., those of the pulmonary airway, esophagus, arteries,
eustachian tubes, and stomach.!%3%3%68.127-131 Tt j5 believed that
wrinkling also plays an important role in the formation of villi

Fig. 9 Wrinkling patterns of stiff films anchored by a compliant
substrate: (a) sinusoidal pattern, (b) triangular pattern, (c) checkerboard
pattern, (d) hexagonal pattern, (e) herringbone pattern, and (f) labyrin-
thine pattern.

and crypts on the inner surface of the small intestine and the
colon.’®* In addition, the mechanisms underpinning the wrin-
kling of film—substrate systems are indicative of morphogenetic
events in the stems and fruits of plants.3*#*5%5 In systems with
non-planar geometry, the effect of curvature should be taken into
account, especially when the characteristic scales of wrinkles are
comparable to the radius of curvature.**'3* We will detail the
morphological instability of non-planar systems in the subse-
quent sections.

Let us turn to the swelling of hydrogels with a film—substrate
configuration similar to animal skin. The swelling of the film may
generate strong compressive stresses and induce wrinkling. 3135
When the volumetric compressibility of the material is accounted
for, the strain energy function in the neo-Hookean hyperelastic
constitutive model is written as W = u(af + a3 + a3 — 3 — InJ)/2,
where «; (i = 1, 2, 3) are the principal stretches of the total
deformation gradient. In this case, Dervaux and Ben Amar
derived the critical wavelength of the sinusoidal wrinkles as”

27 g 1/3

In comparison with the aforementioned solution under the
assumption of volumetric incompressibility, eqn (7) predicts
a smaller wavelength. In addition, both eqn (6) and (7) show that
the critical wavelength at the onset of wrinkling, derived from the
linear stability analysis, depends on the geometry and material
properties of the system but not on the compressive strain, as in
the conventional theory of buckling.

While the linear stability analysis can predict the wavelength at
the initial stage of wrinkling, determination of the wrinkle
amplitude and the postbuckling morphological evolution
requires nonlinear analysis. During postbuckling, the wavelength
will vary with the externally applied compressive strain.’*® Due to
its notorious difficulty, most postbuckling analyses have resorted
to numerical and experimental approaches while a limited
number of exact solutions can be obtained in very simple cases or
Wlth Simpliﬁcations.36’38’120’121’135’137’138

Pocivavsek et al'® reported that due to compression, an
elastic film floating on a fluid exhibits a sinusoidal wrinkling
instability with a characteristic wavelength. Far beyond the onset
of instability, the periodical wrinkling state gives way to a large
localized fold, as shown in Fig. 10(a). It has been suggested that
such localized folds play a significant role in the functions of the
lungs.**2 Similar folding phenomena were observed when
a floating thin film is lifted by a spherical probe, where the
circumferential compression increases as the probe rises.'** When
the water substrate is replaced by an elastic medium, the system
shows distinctly different pattern evolution with increasing
compression.'® Further compression above the onset of buck-
ling triggers a secondary bifurcation: one wrinkle grows in
amplitude at the expense of its neighbors. This bifurcation
creates a period-doubling morphology (Fig. 10(b)). Moreover,
a period-quadrupling bifurcation appears under progressive
compression (Fig. 10(c)). Li et al.®® numerically reproduced these
interesting phenomena by using a pseudo dynamic solution
method, as shown in Fig. 10(d) and 10(e). Very recently, Cao and
Hutchinson** predicted a newly identified mountain ridge mode
in the postbuckling of a bilayer system wherein an unstretched
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Fig. 10 Morphological evolution during postbuckling: (a) folding of
a floating film,"** (b) period-doubling wrinkling,'*® (c) period-quadru-
pling wrinkling,'** (d) FEM results for period-doubling wrinkling, and (e)
FEM results for period-doubling wrinkling.®® Reprinted from ref. 139
and 140 with permission.

film is bonded to a pre-stretched substrate with buckling arising
as the stretch in the substrate is relaxed. While the occurrence
of this pattern spans a large range of the modulus ratio, say 4 =
wuelus = 1000, it depends strongly on the pre-stretching strain of
the substrate: only sufficiently large pre-stretch causes mountain
ridging. In addition, hierarchical folding can be detected under
continuous biaxial-compression: the folds delineate individual
domains and each domain is subdivided into smaller ones over
multiple generations.'3®

Furthermore, it is worth mentioning that in viscous or visco-
elastic materials, wrinkling patterns may evolve with time due to
their time-dependent mechanical properties.’*>'4¢ In such
systems, the instability characteristics can be determined by
integrating the methods of energetics and kinetics.’*” However,
investigations on the effects of viscosity on wrinkling pattern
evolution are still very limited and deserve much further effort.

5. Soft layers supported by a rigid substrate

In many situations, the constrained growth or swelling of soft
materials can be modeled as a system consisting of a soft layer
bonded on a rigid substrate. When the soft layer undergoes
a volumetric expansion due to water imbibing (swelling) or mass
addition (growth), the induced compressive stresses may also
render an initially flat film surface unstable, leading to the
formation of various surface patterns. For example, Cai et al.”®
observed that the swelling of fermenting dough in a bowl is
frustrated in the in-plane direction, and when the volumetric
expansion reaches a threshold, surface instability occurs, leading
to creases on the dough surface, as shown in Fig. 11.75 This
instability, often called creasing, is localized at the free surface of
the soft materials and manifests itself by sharp sulci with finite
depth (amplitude) and self-contact (Fig. 1(c)),**:57148-152 some-
what reminiscent of surface cusps arising from the stress-driven
surface roughening in heteroepitaxial thin films.'** The charac-
teristic of creasing instability is quite different from the initial

buckling of a stiff film bonded to a compliant substrate, where
the entire film is “homogeneously” subjected to deformation
coming from the instability.’** Creases may look like folds, yet
they are essentially different. While folds tend to emerge from
postbuckling evolution during a wrinkling process, the forma-
tion of a crease often undergoes a discontinuous transition from
a flat surface to a sharp cusp, bypassing the wrinkling state.
Furthermore, while creases are highly sensitive to surface defects
and perturbations,*** folds are relatively stable.'*® Therefore, as
two most representative postbuckling processes involving energy
localization, creasing and folding have some distinctly different
features that deserve further detailed research.

For illustration, we consider an isotropically growing soft
layer bonded to a rigid substrate, with the growth tensor
expressed as F, = gl. For simplicity, the soft layer is assumed to
be an incompressible neo-Hookean material. Following a linear
stability analysis on an infinitesimal sinusoidal perturbation, the
critical growth g.. for the onset of surface instability is deter-
mined as gZ2P; = 1.8393 for the 2D plane-strain case and gty =
1.5012 for the 3D biaxial case.” It is found that the volumetric
changes at the critical buckling state in both 2D and 3D have the
same value: Jg = (g25)° = (g33))° = 3.383. From the solution of
222 = 1.8393 in the 2D case, one obtains the critical elastic
stretch ratio at the occurrence of sinusoidal wrinkling as o« = 1/
g2 = 54.4%. Thereby, the critical compressive Green’s elastic
strain is (&® — 1)/2 = —35.2% and the nominal strain is a« — 1 =
—45.6%, which is in accordance with the solution of Biot.'s®
However, the wavenumber for the sinusoidal wrinkling pattern is
infinite, or in other words, the wrinkling wavelength is undeter-
mined and can be arbitrarily small in the soft layer-rigid
substrate system. This surprising result was also predicted by
Biot,"*® and he believed that the wavelength at the critical state
can be determined by introducing such factors as inhomogenei-
ties and surface irregularities in the material. Ben Amar and
Ciarletta” argued that the reason why the wavelength cannot be
determined lies in the lack of competition between characteristic
length scales. Since the gel is represented by a neo-Hookean
model having no material length dependence, there is only one
scale, i.e., the initial thickness of the layer, serving as the length
unit in the whole system. This lack of characteristic length makes
it impossible to relate the wavelength of wrinkling to any phys-
ical length scale and, consequently, there exists no critical

Fig. 11 Surface creasing of a dough swelling of in a bowl.” Reprinted
from ref. 75 with permission.
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wavelength.” Therefore, it is necessary to take into account other
physical effects, such as surface tension”'%? electrostatic force,**®
and strengthening by strain gradients,'! to regularize the char-
acteristic wavelength to a finite value. In addition to these
physical effects, geometrical factors such as the curvature of the
substrate can also be utilized to regularize the characteristic
wavelength 3315

With the introduction of surface tension vy, the characteristic
elastocapillary length L = v/u enters the system. Thereafter, the
characteristic wavelength is fixed as™

4mtH

A= n(32.246H/L) ®

where H denotes the thickness of the soft layer. Eqn (8)
demonstrates that the wavelength is of order of the initial
thickness, and surface tension plays the role of setting and
amplifying the wavelength. Clearly, the wavelength has
a nonlinear dependence on the thickness H. Eqn (8) works for the
constrained growth of the soft layer. When it comes to the case of
volumetric change incurred by water imbibing, the wavelength is
modified as”’
4tH
A= In(44.953H/L) ©)
Although the critical wavelength can be regularized by intro-
ducing another length scale, as given in eqn (8) and (9), the
sinusoidal wrinkles remain highly unstable and lead to crease
formation soon after the onset of wrinkling.’s! In the case of
a soft layer constrained by a rigid substrate,*>-'%® therefore, dis-
cretized creases occur instead of well-developed sinusoidal
wrinkles. In this sense, creasing can be regarded as a collapsed
state of wrinkling.'*!

6. Cylinders and tubes

Long cylinders or tubes typically exhibit two buckling modes,
namely surface buckling with the central axis remaining straight
and global buckling with a wavy axis like an Euler bar or with
a curling axis. In such systems, 2D or 3D elasticity should be
utilized to uncover surface instability while beam models are
usually adopted to deal with global buckling. In some situations,
the two modes may take place simultaneously, as in the case of
morphogenesis in the small intestine of human.

6.1. Surface buckling

Many one-dimensional soft materials such as fibers, rods, wires,
cylinders and tubes have a relatively stiff skin. An example is
electrospun polymer fibers.'*® Such core-shell structured mate-
rials hold promise for important applications in, for instance,
drug delivery, enzyme supports, biosensors and functionalized
coatings.!61-163

As the circumferential compressive stress in the shell reaches
a critical value, surface buckling becomes energetically favored
over uniform deformation. The characteristic wavelength is
selected to minimize the total energy of the system.!3%!6* Based
on the idea of surface buckling, Yin er al'®* suggested a novel
approach for fabricating microcomponents with designed
surface structures, e.g., microgears. Their analysis demonstrated

that cylindrical core-shell fibers may buckle into sinusoidal
morphologies with a designed wavelength dictated by different
geometrical and material parameters.'®> Recently, Cao et al. '
found that when the swelling of the shell with thickness H or the
shrinkage of the core with radius 4 reaches a larger threshold, the
pattern bifurcates again and a wrinkle-to-fold transition occurs,
rendering a period-doubling surface topography, as shown in
Fig. 12. This wrinkle-to-fold transition is also a process of
increasing stress concentration. As can be seen from the right
inset in Fig. 12, stress distribution is localized in narrow ridges of
the patterns. The FvK number n « (4/H)?, defined in the theory
of elastic plates and shells,’®” can be used to characterize the
relative importance of tensile and bending rigidities. Since 7 is
large at small shell thickness, the deformation of the shell favors
pure bending almost everywhere except at the folding ridges
where the energetically expensive stretching is localized. There-
fore, the competition between the stretching/shearing-dominated
deformations in the core and the bending-dominated deforma-
tions in the shell leads to the wrinkle-to-fold transition. Although
the emergence of the wrinkle-to-fold transition requires a large
modulus ratio, the second critical shrinkage magnitude is almost
independent of the modulus ratio between the shell and the
core.'6®

In addition to the artificial structures, surface wrinkling may
also occur in tubular organs of animals such as the esophagus,
pulmonary airway, eustachian tube, gastrointestinal tract and
many other animal lumens (see Fig. 13(a) for an image of
bovine esophagus).!>3%128:168.16% Thege organs normally consist
of a muscular, a submucosal, and a mucosal layer (Fig. 13(a)).
The muscular layer is usually much stiffer than the submucosal
layer. The submucosal layer consists of loosely connective
tissue on the luminal side of the muscle. The mucosal layer
includes the lamina propria or subepithelial collagen layer, the
basement membrane, and the epithelium. The ratio between the
elastic moduli of mucosa and submucosa can vary in a broad
range, e.g., 1-314."*” The modulus of the combined mucosa—
submucosa layer is in the range of 3-24 kPa for the pulmonary
airway of rabbits'”® and about 0.5 kPa for porcine esophagus.'?
Most previous studies believed that wrinkling at the inner
surface of these tubular organs arises from smooth muscle
contraction or external mechanical loads.'?32127:128 However, an
alternative explanation is that the wrinkling/folding occurs as
a consequence of constrained tissue growth. Recently, both
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Fig. 12 Wrinkle-to-fold transition occurring in a core-shell cylinder.'¢®
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Fig. 13 Wrinkling in tubular organs: (a) a ring cut from bovine esophagus, (b) sinusoidal wrinkling induced by mucosal growth, (c) period-doubling
pattern induced by large growth, (d) period-doubling pattern in bovine esophagus, (e) local wrinkling in porcine airway and (f) numerical simulation for

local wrinkling.®®

single-layer and bilayer models have been proposed to elucidate
the growth-driving mechanisms underpinning surface wrinkling
observed in these soft tissues (Fig. 13(b)).336815%171.172 Thege
studies have potential applications in clinical diagnose of some
diseases such as inflammation, edema, lymphoma, asthma, and
enterogastritis. Abnormal growth and alteration of wrinkling
patterns in mucosa are important clinical signs and symptoms
of diseases.3>»!”>17* For instance, clinical observations found
that asthmatic airways exhibit folds deeper than normal.'?16°
In addition, wrinkling on the inner surface of a tube offers the
prospect of generating corrugated surfaces on polymeric gels
with adjustable roughness in a confined space, which can be
used to control actively the adhesive and frictional property for
fluid transport.*”””> Experimental observations and numerical
simulations provided evidence that similar period-doubling
folds can appear in growing tubular biological tissues
(Fig. 13(c) and 13(d)).**'** In addition, the volumetric growth
of soft tissues is not always homogeneous and can be highly
localized or inhomogeneous for various reasons.'” Biological
tissues may undergo instabilities as a result of these growth
forms.®® For example, a porcine airway with local wrinkling is
shown in Fig. 13(e), which has been reproduced by Li et al.®®
using FEM simulations (Fig. 13(f)).

Due to the similarities in the wrinkling characteristics, here we
also discuss the instability in some systems satisfying the plane-
strain or plane-stress (with the longitudinal dimension compa-
rable to or even shorter than the cross-sectional sizes, e.g., a disk)
conditions. Following the sinusoidal wrinkling on the surface of
a disk consisting of a soft shell on a hard core (Fig. 14(a)), the
surface instability often manifests itself by creasing (Fig. 14(b)).*
For the wrinkle-to-fold transition occurring in a soft core with
a hard shell, every two neighboring crests would merge into
a single and large bump, creating a period-doubling topography.
Besides, a growing soft layer resting on the wall of a stiff tube
may also trigger a creasing instability.*®

A fiber growing in both the cross section and the longitudinal
directions would develop a 3D wrinkling pattern. If the skins of
the cylindrical tissues consist of fibrous layers with a preferred
orientation, or the growth of the structures is anisotropic,
a torsional buckling can be triggered, forming helical patterns
(Fig. 14(c)).""¢ Interestingly, multiple bifurcations may take place
with increasing growth, leading to morphological transitions
from trench to hexagon and finally to labyrinth patterns
(Fig. 14(c))." It should be pointed out that the axial (Fig. 14(d))
or combined wrinkling in both circumferential and axial direc-
tions may be energetically favored for cylinder or tubular tissues
growing along the longitudinal direction.6%131:132.178

Fig. 14 Swelling of a soft layer bonded to a hard core: (a) the initial state
before swelling and (b) creasing state.”” (c) Torsional buckling induced by
anisotropic growth in a core-shell cylinder."”” (d) Axial wrinkling in
a jejunum.'” Reprinted from ref. 77 and 179 with permission.
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6.2. Global buckling

As mentioned above, many growing cylindrical structures such
as plant stems, arteries and small intestines may also undergo
a global Euler buckling to lower the total potential energy of the
system. 5180182 Eqor example, tortuosity or kinking caused by the
global instability often occurs in human internal carotid arteries
or iliac arteries with significant clinical complications,'®* and the
buckling of the internal carotid artery can engender stroke,
vertigo, syncopes, blackout, persistent tinnitus, and other cere-
brovascular diseases. 84186

It is well known that a clamped—clamped beam may buckle
into a half sinusoidal wave while multiple sinusoidal waves are
preferred when it is bonded on a soft substrate.>*'#-'% However,
tubular organs (e.g., arteries, veins and guts) are often supported
by their surrounding tissues in vivo. Therefore, the Euler buckling
model for fibers or tubes may not give the best prediction for the
morphogenesis in organ development. More realistic models
which take into account the effects of elastic supports have been
proposed.’ Most recently, Savin er al3' suggested a biome-
chanical model to unravel the gut looping morphogenesis caused
by the mismatch in growth between the gut tube and the
anchoring dorsal mesenteric sheet. A gut forms as a simple linear
tube of circular cross-section running down the midline of the
embryo, and grows at a greater rate than the surrounding
mesenteric sheet, eventually becoming significantly longer than
the trunk. Owing to the constraints from the mesenteric sheet
and the capacity of the body cavity, the gut is first forced into
a wavy configuration with moderate growth and then to loop
around with greater growth, as shown in Fig. 15(a) and 15(b).
This wrinkling phenomenon can be reproduced by using a rubber
model (Fig. 15(c) and 15(d)), where the effect of growth is
uncovered. The wavelength A of the first stage and the radius
Rioop of the loop forming in the consequent stage can be
expressed as’!

E. I 1/3 E. 1 1/3
A gutfgut R oo gutdgut 10
x (Eshcclh ' oo * Eshccthé% ( )

where Ey, and Egpeeq are the Young’s moduli of the gut and the
mesenteric sheet, respectively, I,,, denotes the cross-sectional
moment of inertia of the gut tube, ¢ is the elastic strain and / is
the thickness of the mesenteric sheet.

Besides the applications in morphogenesis of soft tissues,
buckling metrology has also been proposed to estimate the
mechanical properties of cylinders, e.g., plant stems.®® Because
beam models are usually employed in the global buckling anal-
ysis, the buckling metrology can also be applied to other
geometrical configurations, for example, measuring the elastic
modulus of nanowires with various shapes by wrinkling them on
a compliant substrate.?*

7. Spheres and cavities

Much experimental effort has been directed toward the synthesis
of core—shell or multi-layer structured soft particles,”-'**'* with
promising applications in drug delivery, enzyme supports and
biosensors. Recently, engineering of the geometrical character-
istics of surface texture has gained recognition for their potential
to alter the properties of particles, especially in the biological and
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Fig. 15 Wrinkling of guts in animal: (a) gut looping patterns in a chick,
quail, finch and mouse, (b) aligned gut of a chick, (¢) composite rubber
model, and (d) theoretical model.** Reprinted from ref. 31 with
permission.

biomedical fields. However, the controllable fabrication of
morphology on soft particles often requires complicated proce-
dures that change their originally smooth appearance.'®® In
recent years, it has been increasingly recognized that the differ-
ential swelling/shrinkage originating from physical and chemical
mechanisms in core-shell structures can trigger various
morphological instabilities, providing a novel and facile way for
surface patterning of particles.3*'%*

Moreover, many fruits or plants also have core—shell struc-
tures, e.g., Korean melon, ridged gourd, small pumpkin, and
acorn squash, which lead to various surface patterns. The
intrinsic mechanisms underlying the morphogenesis of a growing
fruit, according to Charles Darwin, could “drive the sanest man
mad” and remain far from being uncovered. Yin et al.**° argued
that mechanical buckling incurred by the mismatch in growth
between the shell and the core may have important implications
on the formation of these patterns. Based on the theory of a thin
elastic shell, they discussed the stability of various spheroidal
structures with different equatorial and polar radii, and related
the characteristic patterns to those observed on the surfaces of
fruits. Besides, dehydration of pollen grains and green fruits such
as peas and grapes indeed gives rise to mechanical buckling and
subsequent formation of various surface patterns.3**

Recently, Li er al'® carried out theoretical analysis and
nonlinear FEM simulations to elucidate the wrinkling on a soft
neo-Hookean core—shell sphere induced by shrinkage of the core.
Initially, the sphere shrinks isotropically (Fig. 16(a)). As the
shrinkage reaches a critical value, the sphere suddenly bifurcates
into a periodic dimple structure to release circumferential
compression in the shell (Fig. 16(b)). With further shrinking,
a pattern consisting of regular pentagons and hexagons
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characterizes the surface of the sphere, as shown in Fig. 16(c).
Such a pattern is reminiscent of the structure of the buckyball
(Fig. 16(k) and 16(i)). As the shrinkage increases further,
a second bifurcation (wrinkle-to-fold) takes place and the
buckyball pattern from the first bifurcation breaks into fold-like
structures: some polygons narrow into troughs, while others
merge with their neighbors (Fig. 16(d)). In comparison with the
buckyball pattern, the folding patterns can release more elastic
strain energy at this stage. Finally, the spherical surface evolves
toward a labyrinthine pattern (Fig. 16(e)), corresponding to the
further localization of elastic strain energy. This evolution
process has been confirmed by the dehydration of green peas, as
shown in Fig. 16(f)—(j). To some extent, this furrowed pattern
resembles the topography of brain folds (Fig. 16(m)).**”

The morphological evolution can be understood from an
energetic view. For a core-shell sphere with core radius 4 and
shell thickness H, as show in Fig. 17(a), the normalized total
energy U of the system increases as a function of the shrinking
factor g of the core, where U = [,J[W — p(det A—1)]dQ, p is
a Lagrangian multiplier,  the initial volume occupied by the
sphere and U = Ul(u.A4%), us and p. denote the shear moduli of
the shell and the core, respectively. The energy variation from
FEM simulations is in good agreement with the theoretical
solution prior to the onset of buckling (region I). When the
shrinkage exceeds a critical value, g.., the spherical surface
buckles and the system enters region II as a consequence of
energy minimization. With further shrinking, a buckyball pattern
characterizes the surface of the sphere. As the shrinkage increases
further, the buckyball pattern is not energetically optimal any
more. To reduce the total energy, a second bifurcation may take
place and the system enters region III. The buckyball pattern
from the first bifurcation breaks into fold-like structures. In
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Fig. 17 (a) Energetic mechanism underpinning the wrinkle-to-fold
transition, where ug/u. = 10. (b) Evolution of the surface morphologies of
spheres with different values of ug/u.. In this figure, the core radius 4 =
100 and the shell thickness H = 4.1

Fig. 16 Wrinkling of soft core—shell spheres. (a)—(e) Displacement on the spherical surface caused by shrinkage of the core and (f)—(j) experimental
observations in dehydration of a green pea. From left to right, the time interval is one hour. (k) Buckyball-like pattern. (1) Buckyball."® (m) Human

brain."” Reprinted from ref. 197 with permission.
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addition, the modulus ratio between the shell and the core can
be used to modulate the topography: thick folding occurs when
us/ue is large and vice versa (Fig. 17(b)).

The morphological instability in core—shell soft structures that
incorporate growth may also have important implications on
tumor development and invasion. Many types of mammalian
cells can aggregate into multicellular tumors with spherical
shapes (e.g., cervical squamous cell carcinoma, see Fig. 18(a)).'*®
The early development stages (avascular phase) of solid tumors
are apparently regulated by the diffusion of nutrients within the
extracellular matrix. However, the consumption of the nutrients
means that their concentration must decrease toward the center
of the tumor. When the available nutrients at the center fall
below the critical level to sustain cell life, a core—shell structure
develops with a central necrotic core surrounded by layers of
distinct levels of cellular activity.’® A tumor, therefore, consists
of an inner necrotic core, an intermediate region with quiescent
cells, and the outmost rim with actively proliferating cells
(Fig. 18(b)).”198:2%0 Sych an avascular tumor under development
can be modeled as a growing shell enclosing a core of non-grown
cells. The growth confined at the periphery of tumors can not
only alter the size of the tumors but also elicit residual stresses,
which may destabilize the system, engendering multiple
symmetry breaking processes and varied topographies. It is
believed that this surface instability, breaking a uniform and
compact tumor front into wavy and irregular morphologies, as
observed in experiments, dramatically correlates with increased
tumor aggressiveness (Fig. 18(c)).2°*2** The mechanical stability
analysis suggests that increasing the thickness and reducing the
stiffness of a proliferative cellular layer can inhibit the invasion of
the tumor. Besides, growth beyond the critical instability renders
labyrinthine patterns consisting of ridges and troughs, which
sheds light on the intricate pattern on the tumor surface.
Although many biochemical processes are involved in the onset
of invasion of a solid tumor, mechanics and chemistry should be
considered on an equal footing to describe accurately the
evolution of tumors.

In systems with negative surface curvature (i.e., cavities),
constrained swelling or growth of soft layer will also cause
surface buckling and pattern transition. For example, as the
mucosal layer grows in the stomach of animals, mechanical
buckling is observable due to the constraints of the gastric
wall.’®® The surface patterns depend on the elastic modulus and
thickness of the mucosa, as well as the radius of curvature of the
cavity. A slight increase in the thickness of a thin mucosa may
incur significant reduction of surface wrinkles. These pattern

changes may be closely related to certain mucosal diseases. For
instance, mucosal wrinkles are found to enlarge and thicken in
the stomach of patients with eosinophilic gastroenteritis.?**

8. Vesicles and capsules with or without internal
pressure

Soft particles with a hollow interior are often referred to as
vesicles or capsules. They are particularly interesting not only for
applications in drug carrier, catalysis, and biotechnology, but
also are vital for serving as the crust for cells and virus.?°52% For
example, viral capsids, the nanometer-sized protein shells of
viruses, are composed of a two-dimensional protein assembly,
which serve to contain and protect viral genome molecules.?” As
experimentally observed, both macroscopic and microscopic
capsules can buckle and even collapse under external pressure or
evaporation of solvent.??®2% Buckling of vesicles or capsules may
pose limits to their engineering applications but also have
important implications for the morphology of cells and virus.
For example, it has been conjectured that the shapes of spherical
viruses with icosahedral symmetry (Fig. 19(a)) are closely asso-
ciated with their morphological instability.’*”?*° Understanding
the buckling mechanisms of capsules is helpful for probing their
structures and mechanical properties and for gaining new
insights into the etiology of relevant diseases.

Lidmar et al'®” argued that the faceting of large viruses is
caused by a buckling transition associated with twelve isolated
points of five-fold symmetry. The singularity at these points was
regarded as a disclination in an otherwise six-coordinated
medium. They demonstrated that the faceted shape of viruses
depends only on the dimensionless FVK number, n = YRYD,
where Y is the 2D Young’s modulus of the protein shell, R the
mean virus radius, and D the bending rigidity. The critical
characteristics were determined by considering the competition
between the stretching and bending elastic energies of the closed
shell. More recently, the instability characteristics and morpho-
genesis of spherical colloid capsules or viral capsids with non-
icosahedral symmetries, e.g., spherocylindrical and conical
shells,?!! have been examined with or without volumetric
constraint (Fig. 19(b)—(d)).?**>'* These studies showed that the
FvK number plays a significant role in the wrinkling of capsules.

To characterize the mechanical properties of a capsule,
a point force is often applied on its surface. When the force
reaches a threshold, the capsule will buckle and a depression
will form. From the geometry of the sunken region, the elastic
parameters of the capsule can be determined by an inverse

Fig. 18 Solid tumors: (a) scanning electron micrograph of human cervical squamous cell carcinoma spheroid with a diameter about 300 um and (b)
histological section through the center of a solid tumor similar to that shown in (a).2*° (c) Invasion of a spherical solid tumor in vitro.?** Reprinted from

ref. 200 and 201 with permission.
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Fig. 19 (a) Cryo-TEM (transmission electron microscopy) reconstruc-
tion of the cowpea chlorotic mottle virus.?'* (b) Numerical simulation of
the buckling of an icosadeltahedral capsule under external pressure.* (c)
Transmission optical microscopy of a colloidal capsule with local buck-
ling due to the evaporation in inner solution, and (d) the simulation
results corresponding to (c).>'* Reprinted from ref. 210, 213 and 214 with
permission.

analysis.?*>?!* Using the theory of an elastic thin shell, Vella
et al*® showed that during indentation, the shape of the
sunken region is not only contingent on the material properties
of the capsule but also on the internal pressure, P. If the shell is
unpressurized, a regular triangular structure occurs, as pre-
dicted previously.’” However, increasing the internal pressure
will lead to an increase in the number of wrinkles in the
annular depression region, as shown in Fig. 20. As the inden-
tation deepens, the size of this annular region increases but the
wavenumber n remains constant. For an elastic shell of natural
radius R, thickness 4, and Young’s modulus E, one can define
a dimensionless bending stiffness & by*'®

2
t5(3) (an

When & = 1, the depression is expected to have a triangular
structure, that is, n = 3. When £ >> 1, the wavenumber scales as n
o £2, This reveals that one can estimate the elastic modulus of
a capsule by counting the number of wrinkles arising from the
point indentation.

The above studies provide clues for developing new methods
to measure the mechanical properties of capsules, cell
membranes, and some other biological structures. In addition,
the morphological instability and evolution of capsules are
closely associated with the topographical development of cells
and virus. Systematic theoretical and experimental investigations
on this issue will be of great interest.

Fig. 20 (a) Wrinkling of a beach ball under point indentation. (b)—(d)
The transition from polygonal localizations to wrinkles with increasing
internal pressure, where the wavenumbers are 3, 7, and 18, respectively.?'¢
Reprinted from ref. 216 with permission.

9. Surface instability driven by long-range
interactions

Besides the above-described mechanisms that may cause
morphological instability, soft materials can also be destabilized
by long-range interactions such as van der Waals forces, electric
double-layer forces and electrostatic forces, which are normally
negligible for macroscopic structures of hard materials. For
instance, when a soft thin film bonded to a rigid substrate is
approached by a rigid indenter, the film may wrinkle due to its
van der Waals interaction with the indenter (Fig. 21(a)).5>7-3-218:21
This morphological instability occurs due to a competition
between the combination of elastic and surface energies, which
tend to stabilize the system, and the interaction energy, which
acts as the main destabilizing force.®* When the film thickness is
reduced to less than 1 pum, the relationship between the wave-
length and the film thickness becomes nonlinear due to the
enhanced contribution of surface energy. Besides, the
compressibility of the film, which is manifested through Pois-
son’s ratio v, plays a significant role in the surface instability. For
v = 1/4, the film undergoes a stable and homogeneous defor-
mation insensitive to surface perturbations. For v > 1/4, however,
the film prefers surface undulation to lower the potential energy
of the system when the van der Waals interaction force with the
indenter reaches a critical value.”*'® This indicates that highly
compressible films tend to deform uniformly.

It is noticed that the buckling-induced surface patterns depend
strongly on the mechanism that triggers the instability. A soft
layer resting on a rigid substrate will buckle into a stable sinu-
soidal wrinkling patter when subjected to the van der Waals
interaction force. In contrast, under in-plane compression the
sinusoidal pattern is unstable and a wrinkle-to-crease transition
occurs soon after the occurrence of buckling. In addition, the
wrinkling behavior of a thin elastic film is different from

This journal is © The Royal Society of Chemistry 2012
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Fig. 21 Surface wrinkling induced by long-range interaction forces: (a)
interaction between a thin film and a contacting solid; (b) peeling of
adhesive;**® (c) finger instability*®® and (d) worm-like instability.?*?
Reprinted from ref. 233 and 238 with permission.

a viscous liquid film.?2*23 If the surface energy of the film is
negligible, the instability-induced pattern wavelength in the
former case is proportional to the film thickness but independent
of the nature of the interaction force normal to the film surface,
while in the latter case, the wavelength and pattern characteris-
tics depend strongly on the nature and magnitude of the external
stimuli.

Besides the external stimuli, such interactions as van der Waals
forces and electrostatic forces within the system can also trigger
surface bifurcation, commonly referred to as spontaneous
instability.?****¢ For a planar thin elastic film bonded on a rigid
substrate, the characteristic wrinkling wavelength of the spon-
taneous instability is contingent on the film thickness via an
exponential relation with power index in the range of 0.75-1.0,
depending on the ratio between the surface energy and shear
modulus of the film.?* In addition, it is emphasized that the
surface curvature of the substrate plays a significant role in the
wrinkling behavior. To uncover the effect of surface curvature,
Li et al.*® presented a generic method for analyzing the surface
stability of a thin film interacting with the substrate. In partic-
ular, they discussed several important geometric configurations
with either a positive or negative mean curvature. The above
results on the surface instability of soft films under different
driving forces may find important applications in a number of
fields including soft lithography. It is also indicated that one may
fabricate nanopatterns or enhance the surface stability of soft
thin films by modulating the mechanical properties of the films
and/or geometrical properties such as film thickness and
substrate curvature.

Recently, wrinkling phenomena in several other complex
systems have also been studied, e.g. a soft bilayer, mutually
attracting films, and a thin film on a patterned or slipping
substrate.??’2%? For instance, when a thin elastic film is peeled
from a rigid flat surface, its surface loses its planarity and
subsequently evolves into a fingering shape (Fig. 21(b) and 21(c))
or a worm-like pattern (Fig. 21(d)) with a fairly regular
spacing.?**2%7 The wavelength of this instability varies linearly
only with the thickness but is independent of other properties of
the film. However, different behavior is observed when the
peeling takes place between two soft elastic solids. In this case,
the wavelength becomes a nonlinear function that depends not

only on the thicknesses but also on the elastic properties of the
two materials.?*® This issue is of fundamental importance for
understanding the effects of elastic instability on the interfacial
properties such as friction, adhesion, and failure.

10. Conclusions

This review has been aimed to provide an illustrative glance at
the rich phenomenon of morphological instability and surface
wrinkling in soft materials. The wrinkling behavior depends
strongly on the geometric configuration of the system, and we
have discussed the wrinkling patterns and morphological
evolution in some representative configurations, including thin
films, sheets, fibers, particles, tubes, cavities, and capsules, with
particular attention on the surface instability induced by volu-
metric growth/shrinkage. Some of the recent advances in the 2D
and 3D modeling of critical buckling and postbuckling have also
been briefly discussed.

Although remarkable progress has been made in recent years
on the modeling of morphological instability in soft matter, there
remain heaps of significant and interesting problems that deserve
further experimental and theoretical investigation. First of all,
advances in theoretical modeling in this field are hindered by
a number of mechanical and mathematical complexities. For
example, the surface instability of soft materials usually involves
both strong geometrical and material nonlinearities, making the
theoretical analysis difficult. The morphological evolution
beyond the critical state is incredibly complicated, especially in
the case of 3D surface instability on curved surfaces, and the
conventional methods of buckling have difficulties in predicting
surface patterns and their evolution. The postbuckling evolution
of surface wrinkling often involves large deformation, nonlinear
constitutive relations, multiple symmetry-breakings, loading
path-dependence, stress singularity, and other complexities. In
addition, as to the morphogenesis of living tissues and organs,
a number of chemical and biological mechanisms, which couple
with the mechanical factors, may contribute to the wrinkling
behavior but so far little progress has been made in this direction.
Systematic investigations on the influence of these mechanisms
would be of interest not only for understanding the morpho-
logical evolution of living tissues but also for the diagnosis and
treatment of some diseases. Therefore, it is of significance to
develop more effective methods for studying the buckling and
postbuckling behavior of soft materials taking into account the
effects of biological-chemical-mechanical coupling, 3D geom-
etry, and other influential factors. Finally, it is worth mentioning
that much effort has been directed toward exploring the appli-
cations of buckling-based techniques for the surface patterning
of materials (e.g., soft lithography and imprinting), mechanical
and physical measurements of material properties (e.g., Young’s
modulus and Poisson’s ratio), medical and biological applica-
tions (e.g., prevention of skin wrinkles), most of which have not
been included in this review.
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