ME-410 Mechanical Product Design & Development

Jamie Paik
Reconfigurable Robotics Laboratory
EPFL, Switzerland

By this week

- Slide 1: Updated motivation functionality definition with the updated state of the art (more details due to the solutions)
- Slide 2: Three solutions comparison Back hand calculation for all three solutions
- Slide 3: Final solution slide decide on the final solution direction and the motor and sensor types.

By this week

 Solutions that vary in performances not on design or motivations (e.x. as below)

Engineering specification	values	Solution A	Solution B	Solution C
Range of motion	90< hinge range <300	90 <r<10 0</r<10 	200 <r<300< td=""><td>40<r<41< td=""></r<41<></td></r<300<>	40 <r<41< td=""></r<41<>
Overall payload	10N < load	13N	20N	50N
Bandwidth rpm	100 <rpm< td=""><td>101</td><td>200</td><td>100</td></rpm<>	101	200	100

By Next week

Slide 1: Final solution: concept components

- Decision reasoning on the motor and sensor
- Small sketches of other solutions of the dropped solutions
- Run a quick calculation to show the functionality with the chosen dimensions

Slide 2: Final solution: working principle

- Sketches of the product's working mechanism schematics
- Control loop schematics

Slide 3: Final solution optimization

 identify 1 critical design dimensional parameter / sets of parameters to optimize toward improving the functionality (engineering specification) → push the dimensional limit

By this week

 Slide 3: Solutions that vary in performances not on design nor motivations

Engineering specification	values	Solutio n A	Solution B	Solution C	Solution B'
Range of motion	90< hinge range <300	90 <r<1 00</r<1 	200 <r<300< td=""><td>40<r<41< td=""><td>200<r<300< td=""></r<300<></td></r<41<></td></r<300<>	40 <r<41< td=""><td>200<r<300< td=""></r<300<></td></r<41<>	200 <r<300< td=""></r<300<>
Overall payload	10N < load	13N	20N	50N	30N
Bandwidth rpm	100 <rpm< td=""><td>101</td><td>200</td><td>100</td><td>200</td></rpm<>	101	200	100	200