Cost Estimation

Serhat Demirtaş, Prof. Dr. Jamie Paik

Reconfigurable Robotics Laboratory

EPFL, Switzerland

Why cost matters?

Anything you want to sell...

...must be bought by someone

A certain quantity of products, at a certain quality, at a certain cost

Engineering

Common definition

Technical solutions to solve problems

More realistic definition

Solve problems with limited resources

Product Design

- Cost is part of design constraints
- Product design is optimizing a set of functions with limited resources
- This is engineering as well!

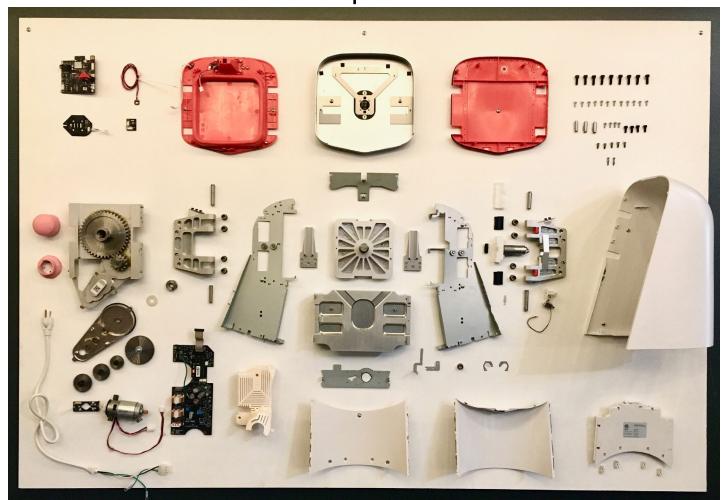
What is Quality?

- How well the functions are achieved
- Quality often increases complexity

Complexity

- Number of parts
- Number of functions on a part
- Diversity of parts

- Time is Money
- Complexity is Time
- Complexity is Money


Overengineering

Product more expensive than the minimum to fulfill specifications

Concept

Juicero

Overengineering

Produc

Concept

Juicero

Overengineering

Product more expensive than the minimum to fulfill specifications

Technical Solution

Tissot Skeleton 2000.- CHF

Casio F-91W 20.- CHF

What about quantity?

- Prototype
 - Design cost is a large part
 - Fast manufacturing is preferred
- Small batch production
- Mass production
 - Design cost is negligible
 - Dedicated large scale manufacturing required

Quantity defines manufacturing

Prototyping

Break pedals (3D printing, Titanum) Scuderia Ferrari, Formula 1

Small batch production

Part (CNC machined, Steel)

Mass manufacturing

Engine casing (Injection molding, Aluminum) Volkswagen Passat

Quantity defines cost

Formula 1

Tesla Roadster 1

Tesla Model 3

>10mio \$

<10 cars

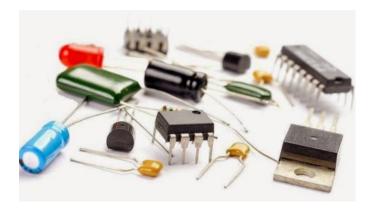
120k\$

2680 cars

40k\$

10mio cars

Cost vs Price


- Price = Overall Cost + Margin (usually 40-50%)
 - Production cost
 - Marketing
 - Sales
 - R&D (includes design, industrialization, etc)
 - Overhead
 - Profit

- Components
- Subcontractors
 - Material
 - Investments
 - Workforce
- Assembly
- Logistics (storage, transport)

- Material (Aluminum: 3.-/kg)
- Investments (Injection Machine: 1-10mio)
- Workforce (Worker: 60.-/h)

$$\rightarrow$$
 (3 + 2.-/kg)

- Material (Titanium: 30.-/kg)
- Investments (500kCHF-)
- Workforce (80.-/h)

Production cost = Investment/#parts + Workforce + Material

	Injection Molding	3D Printing
1 part	3'000'000/1 + 60/60 + 3 = 3'000'004	500'000/1 + 80*3 + 30 = 500'270
1'000 parts	3'000'000/1000 + 60/60 + 3 = 3'004. -	500'000/1000 + 80*3 + 30 = 770
1mio parts	3'000'000/1mio + 60/60 + 3 = 7	

Production cost = Investment/#parts + Workforce + Material

	Injection Molding	3D Printing
1 part	3'000'000/1 + 60/60 + 3 = 3'000'004	500'000/1 + 80*3 + 30 = 500'270
1'000 parts	3'000'000/1000 + 60/60 + 3 = 3'004	500'000/1000 + 80*3 + 30 = 770
1mio parts	3'000'000/1mio + 60/60 + 3 = 7	

1.56 years

8.6 years

240 working days / years * 8 hours = 1920h/y/machine

- Quantity: large
- Price range: cheap

- Components
 - Electronics
 - Bluetooth
 - Trackpad
 - Processing
 - Bundle
 - Batteries
- Subcontractors
 - Plastic injection molding
 - Buttons
 - PCB (w/ components)
- Material
 - None
- Investments
 - None or Assembly
- Workforce
 - Assembly
- Logistics (storage, transport)

- Components
 - Electronics
 - Bluetooth (3.-)
 - Trackpad (2.-)
 - Processing (4.-)
 - Bundle (2.-)
 - Batteries (1.-)
- Subcontractors
 - Plastic injection molding (3.-)
 - Buttons (2.-)
 - PCB (w/ components) (3.-)
- Material
 - None
- Investments
 - None or Assembly
- Workforce
 - Assembly (3.-)
- Logistics (storage, transport)

Total Cost = 23.- CHF

- Total Cost: 23.-
- R&D: 6.-
- Marketing: 6.-
- Sales: 6.-
- Overhead : 6.-
- Profit: 6.-
- Total Price: 53.-

Actual Price = 59.- CHF

Conclusion

- The best product is never the best possible technical system
- It's very tricky to approximate a price precisely
- Be objective, don't start with presuppositions
- Compare with what exists already
- Cost is one of your concerns