ME-410 Mechanical Product Design & Development

Prof. Dr. Jamie Paik Reconfigurable Robotics Laboratory EPFL, Switzerland

Last week: Clear problem statements

Problem

- is it a real problem?
- Is it realistic problem?
- does it need to be automated? does it need to be sensed/ actuated? (folding chair)

State of the art

- What exists? What's missing?
- Does a solution exist? Is it too simple? Why does it not exist?

Solutions

 Could the developed technology transfer for other applications? (weight lifting belt vs posture correction, adjusting hiking boots vs workout pads?)

Last week: Metrics

- How easy is it to create a benchmark for measuring problem conditions (visor hat, snood, shoelace)
- Create solution that can be measured.
- If there were to be a 2nd, 3rd version of the design, what would be optimized (why not materials, costs, weight?... What is a robust design?)

Next week: presentation format

- 1 presenter / group should change every week
- Everyone should know what is presented
- Use the given format on moodle
- Put the group members names on the first slide (shows who the authors are)

Next week: decisions!

- Choose your product
- what problem does it solve? Why has it not been solved yet? Is it a real problem?
- Can you make a realistic / believable demo in next 10 weeks?
- Careful that you have a distinctive actuator and sensor solution
- If you are going to give haptic feedback, careful it gives a force feedback (> 100gf).

Next week: decisions!

- Choose your product
- Don't forget the power supply demo / reality
 - Suggestion: instead of everyday outside activities consider therapie / diagonistics?
- How easy is it to create a benchmark for measuring the problematic conditions and its improvements?
 - Solution: maybe not be the same scenario, but the similar motion?
- Create solution that can be measured.
 - Suggestion : ask how you can quantify "comfortable" "easy" etc
- If there were to be a 2nd, 3rd version of the design, what would be optimized toward a robust (that is independent of materials, costs, weight?... What is a robust design?)

NEXT WEEK: Actuator and sensor solutions

- Slide 1: Choose your product what problem does it solve?
 Why has it not been solved yet? How does it work?
- Slide 2: 3 different combinations of solutions (motor & sensor choices)
- Slide 3: What will you measure? and how will it impact your functionality?
 - Not off/ on (i.e. need to be modulated with a force feedback)
 - Could the values be measured? (can you measure comfort? Easiness? Intuition? If not, what can be measured?)