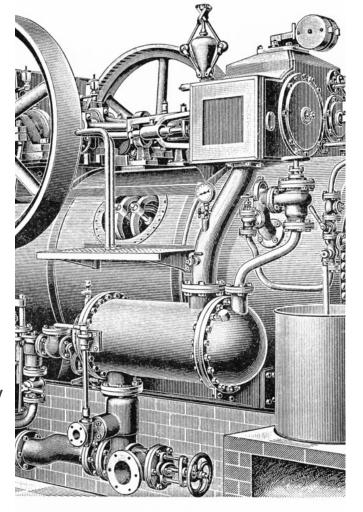


 École polytechnique fédérale de Lausanne

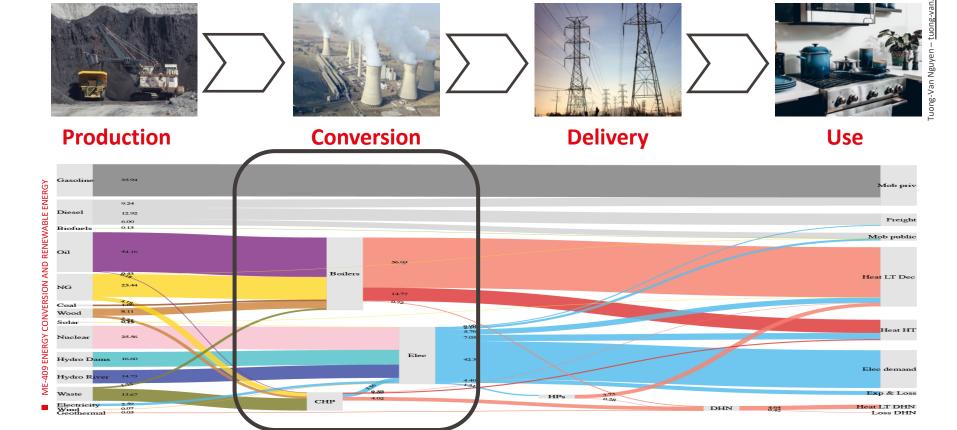

Schedule

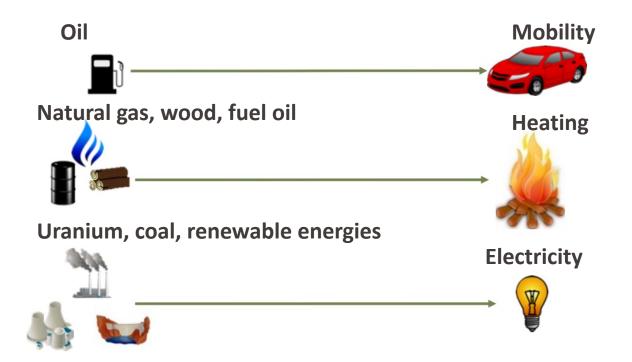
Week	Date	Topic ENERGY SYSTEM, MODELS, POLIC	CIES Lecturer
1	09/09	Introduction / What is an energy system?	FM / TVN
2	23/09	Energy system: status, challenges and efficiencies	TVN
3	30/09	Rankine cycles	TVN
4	07/10	Combustion / Brayton cycles	FM
5	14/10	Coal / CCS	FM
6	28/10	Nuclear / Cogeneration	TVN
7	04/11	Heat pumps / Geothermal	TVN
8	11/11	Solar	FM
9	18/11	Wind / Hydro	FM
10	25/11	Biomass	TVN
11	02/12	Storage	TVN
12	09/12	Fuel cells & Hydrogen	JVH
13	16/12	Energy strategy / Final wrap-up	GG / FM / TVN

Goals

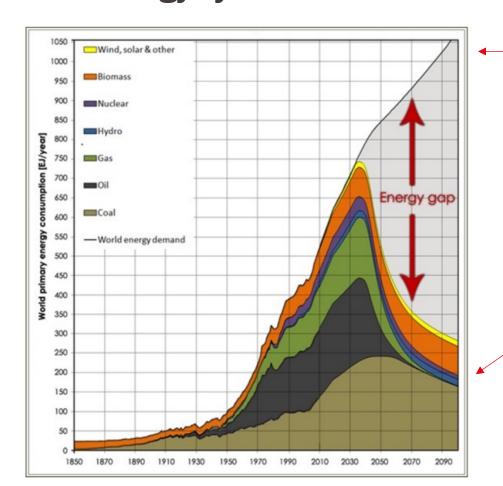
 Explain the status and challenges related to the energy transition and future energy systems

- Use different metrics to compare energy systems (costs, efficiencies, areas)
- Calculate the maximum efficiency an energy conversion system can reach



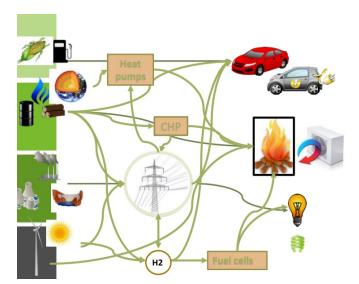

Recall from Lecture #1

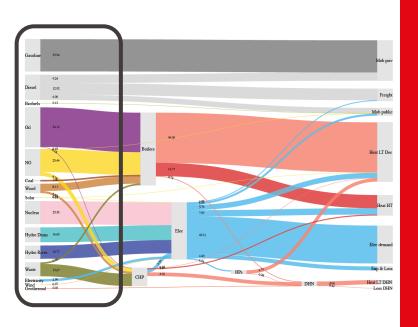
Energy systems


The energy system - *before*

- Until now, every resource has its own use!
- Possible if there is no resource limitation

The energy system - in the future?


As our economy **grows**, so does our energy consumption


We need to **reduce** our demand for fossil fuels to curb global warming **and ensure our energy security**

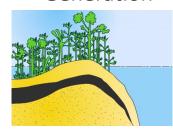
ong-Van Nguyen <u>-</u>tuong-van.nguyen@epfl.ch

4 key trends:

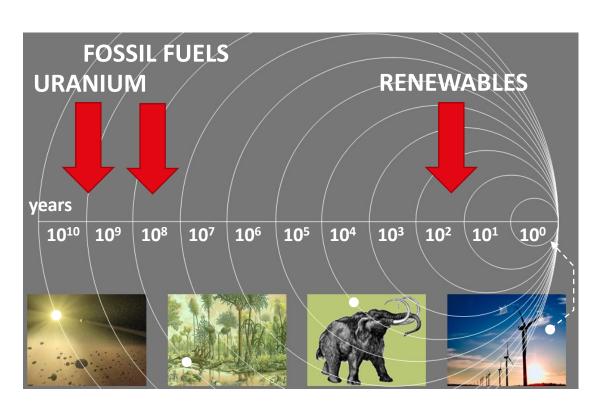
- Exploitation of new fossil resources
- Diversification of fossil fuel and material supplies
- Integration of renewable energies and electrification
- Reducing our demands, decoupling from growth

The "energy" challenge

Resources vs. Reserves
Renewables vs. non-renewables


Energy resources

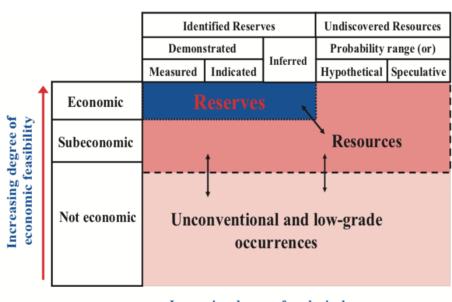
- Renewables vs. Non-renewables


Non-renewable

Consumption

<< Generation

100-400 mil years "Bank analogy"



- Reserves & Resources

• Reserves = can be recovered in the future

- Resources = detected, cannot yet be recovered profitably
- Unconventional = not economic or not feasibly recoverable

Increasing degree of geological assurance

Given the current global reserves and production rates, how many years still of coal, oil and gas?

- A. < 20 years
- B. 20-50 years
- **C.** 50-100 years
- D. > 100 years

- Fossil fuel reserves

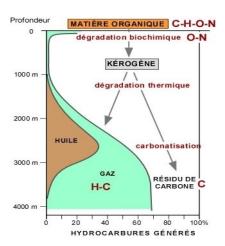
	Historical production through 2005	Production 2005	Cumulative extraction GEA scenarios 2005–2100	Reserves	Resources	Additional Occurrences
	[EJ]	[E1]	[EJ]	[EJ]	[E1]	[EJ]
Conventional oil	6 069	147.9	6 600–10 000	4 900–7 610	4 170–6 150	
Unconventional oil	513	20.2	2–470	3 750–5 600	11 280–14 800	> 40 000
Conventional gas	3 087	89.8	7 900–11 900	5 000–7 100	7 200–8 900	
Unconventional gas	113	9.6	180–8 500	20 100–67 100	40 200–121 900	> 1 000 000
Coal	6 712	123.8	3 300–16 500	17 300–21 000	291 000–435 000	
Conventional uranium(b)	1 218	24.7	4 530 30 500	2 400	7 400	
Unconventional uranium(c)	n.a.	-	1 520–28 500		4 100	> 2 600 000

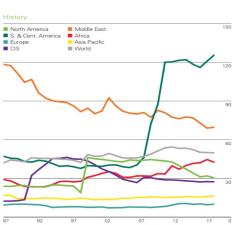
- (a) The data reflect the ranges found in the literature; the distinction between reserves and resources is based on current (exploration and production) technology and market conditions. Resource data are not cumulative and do not include reserves.
- (b) Reserves, resources, and occurrences of uranium are based on a once-through fuel cycle operation. Closed fuel cycles and breeding technology would increase the uranium reserve and resource dimensions 50–60 fold. Thorium-based fuel cycles would enlarge the fissile-resource base further.
- (c) Unconvential uranium occurrences include uranium dissolved in seawater

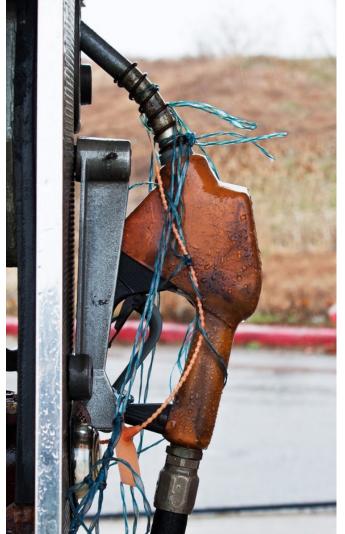
- Fossil fuel reserves

"The stone age did not end because the world ran out of stones, and the oil age will not end because we run out of oil"

- Don Huberts, Shell

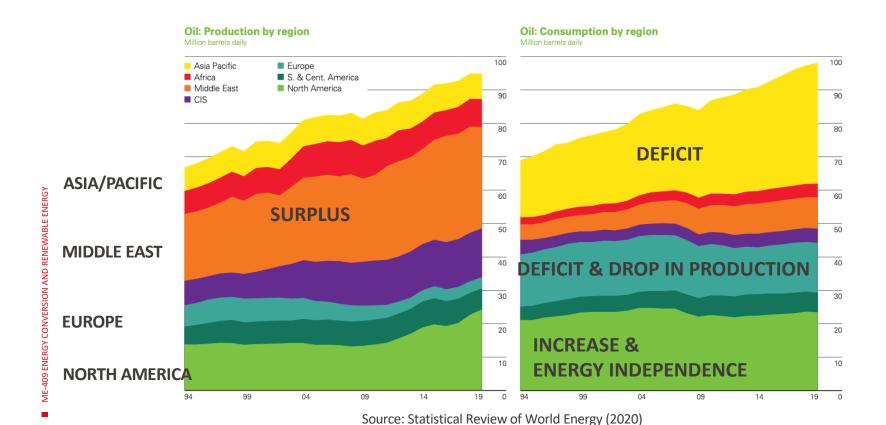


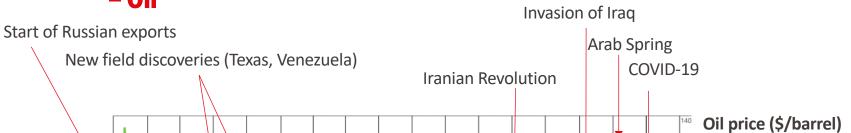


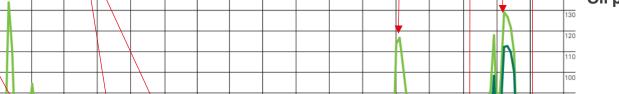

Energy resources

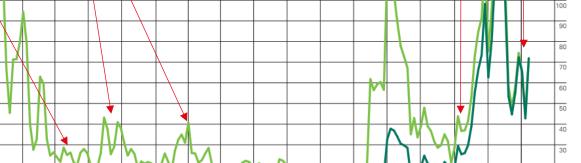
– Oil

- Reserve/production ratio ≈ 50 years
- "Peak debate" (2040?)
- Fossilized organic materials







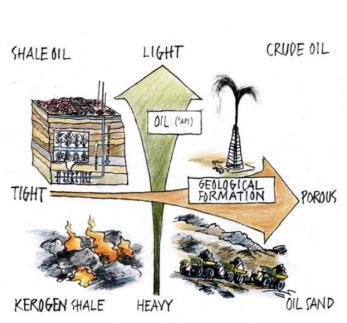

- 0il

– Oil

1930-39

■ \$ 2021 (deflated using the Consumer Price Index for the US)

1861-1944 US average.

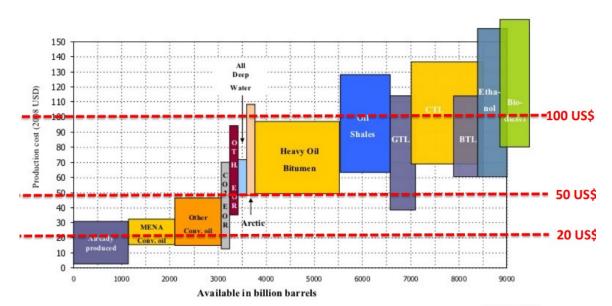

2000-09

1984-2021 Brent dated. Source: Statistical Review of World Energy (2022) \$2021 (deflated using the Consumer Price Index for the US).

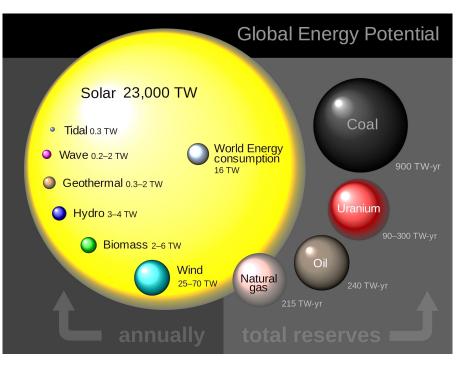
20 10

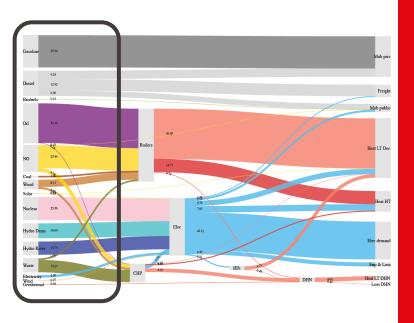
^{\$} money of the day

- Non-conventional oil resources
- More difficult operating conditions and greater environmental/economic risks
- Currently not economically interesting to extract?



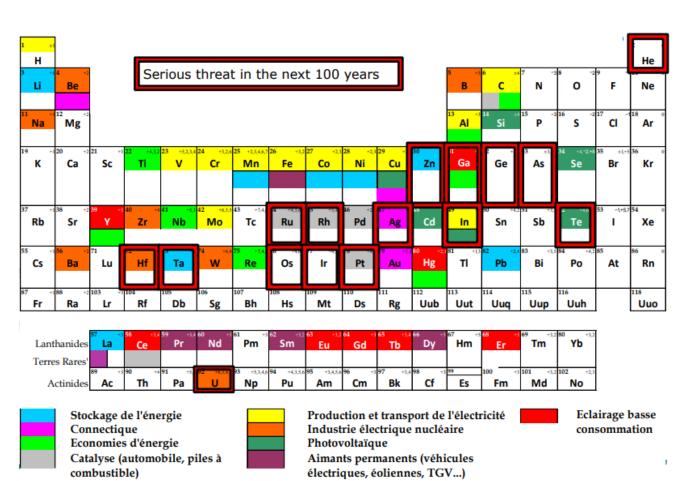
ng-Van Nguyen <u>- tuong-van.nguyen@eptl.</u>


Energy resources


- Non-conventional oil resources
- The higher the **price of oil...**
 - The more competitive renewable resources are
 - As well as non-conventional resources (as in the USA)!

- Comparison
- We have by far enough resources fossil fuel depletion is not an issue

The "material" challenge


Material requirements
Supply chains

Which of these energy resources require rare earths?

- A. Fossil (gas, coal)
- B. Wind
- C. Solar
- D. Nuclear

Materials requirements

Materials requirements

Rare earths (17 elements)

- Not necessarily rare
- Supply risk
- Increasing use

e.g. Neodymium, Dysprosium (synchronous generators - offshore wind power)

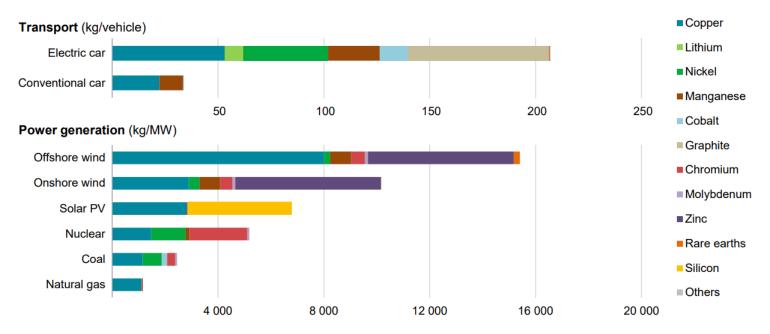
Rare metals

Low abundance metals

e.g. Indium (PV CIGS)

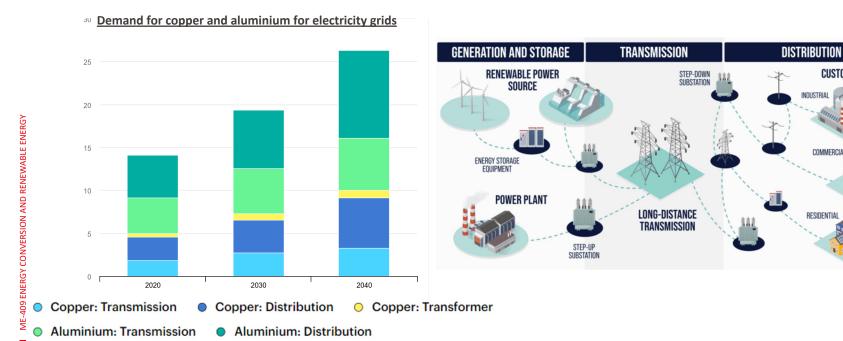
Critical materials

Strategic sourcing


Ex: Silicon (PV), Copper (PV/wind/geothermal), Silver (PV), Tellurium (PV)

Tuong-Van Nguyen <u>- tuong-van.nguyen@epfl.ch</u>

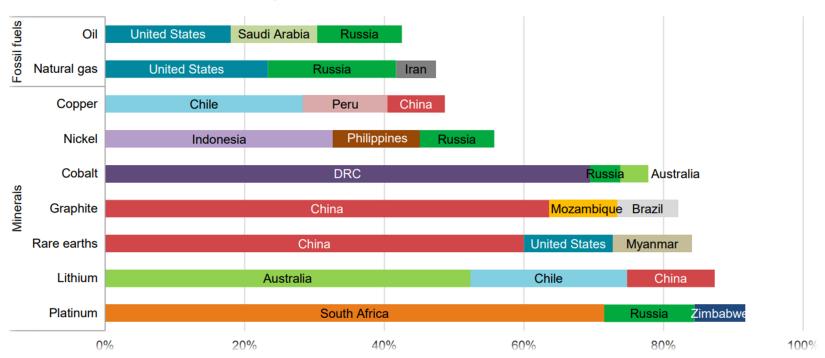
Materials requirements


- Developing wind power, solar energy and electric vehicles
- On the other hand few impacts caused by hydroelectricity and bioenergy

Source: International Energy Agency - The role of critical minerals in clean energy transitions (2020)

Cases: aluminium and copper

- Extensive use of copper in all solutions
- Demand often underestimated, as grid development is often not taken into account

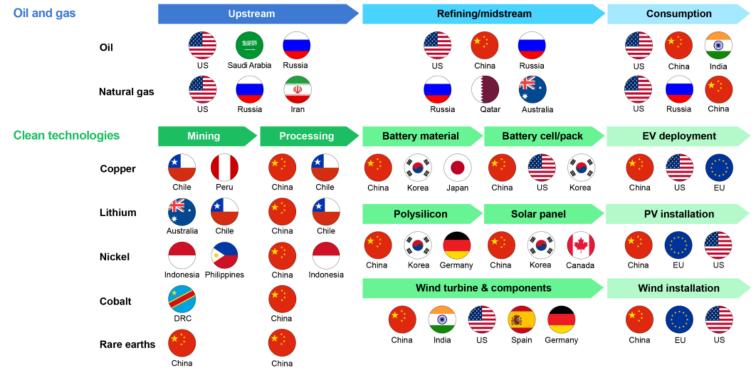

ıong-Van Nguyen <u>- tuong-van.nguyen@</u>

CUSTOMERS

Tuong-Van Nguyen <u>- tuong-van.nguyen@epfl.ch</u>

Supply & processing chains

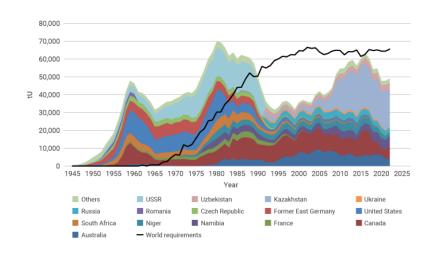
Share of top three producing countries in total production for selected minerals and fossil fuels, 2019


Source: International Energy Agency - The role of critical minerals in clean energy transitions (2020)

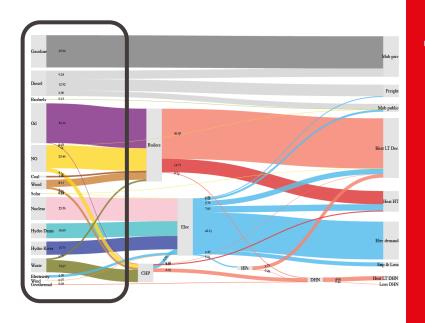
• More geographically concentrated reserves of materials!

Supply & transformation chains

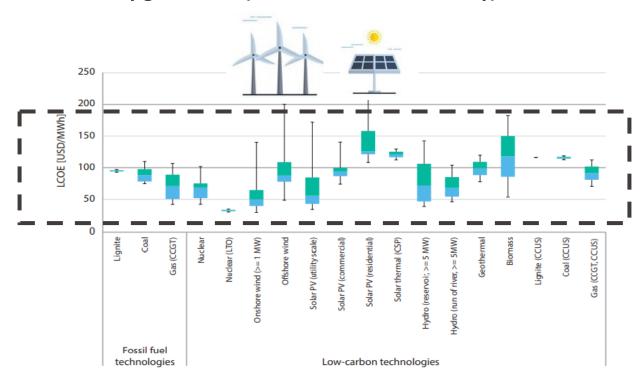
Less diversified chains - China is a key player for rare earths and manufacturing!



Source: International Energy Agency - The role of critical minerals in clean energy transitions (2020)


Supply & transformation chains

- Similar situation for conventional nuclear fuels
- Major uranium-producing countries: Kazakhstan, Canada and Australia
- Major enrichment countries: Russia (Rosatom), France/Germany/USA (Orano & Urenco), China

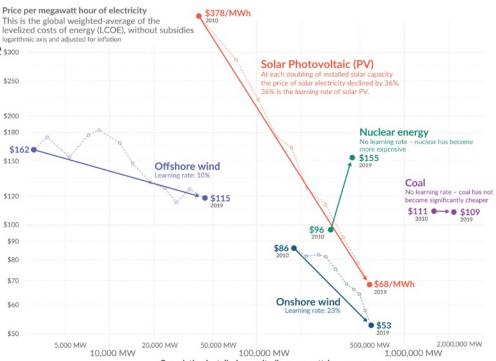

Source: OECD-NEA, IAEA, World Nuclear Association

The "cost" challenge

Costs of low-carbon technologies (LCOE)

Cost of electricity generation (Levelised Cost of Electricity)

Note: Values at 7% discount rate. Box plots indicate maximum, median and minimum values. The boxes indicate the central 50% of values, i.e. the second and the third quartile.


Costs of low-carbon technologies (LCOE)

Electricity from renewables became cheaper as we increased capacity – electricity from nuclear and coal did not

Our World in Data

 These costs depend on the installed capacity and the type same of energy.

 Some renewable energies have only recently become competitive!

Cumulative installed capacity (in megawatts) logarithmic axis

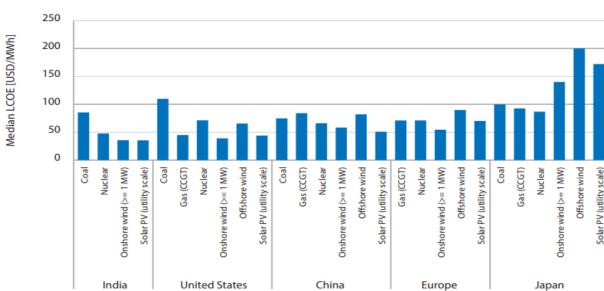
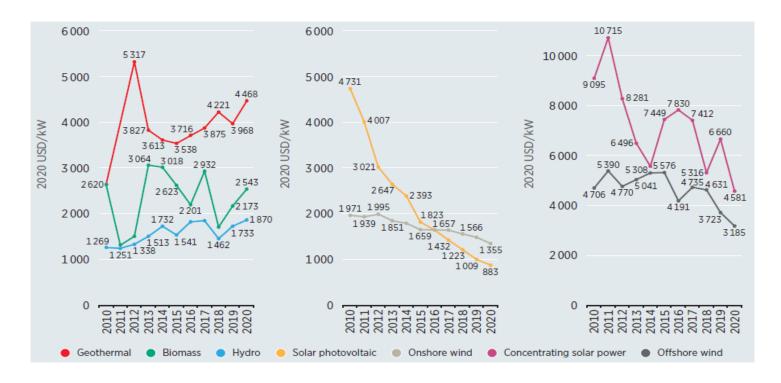
Source: IRENA 2020 for all data on renewable sources; Lazard for the price of electricity from nuclear and coal – IAEA for nuclear capacity and Global Energy Monitor for coal capacity. Gas is not shown because the price between gas peaker and combined cycles differs significantly, and global data on the capacity of each of these sources is not available. The price of electricity from gas has fallen over this decade, but over the longer run it is not following a learning curve.

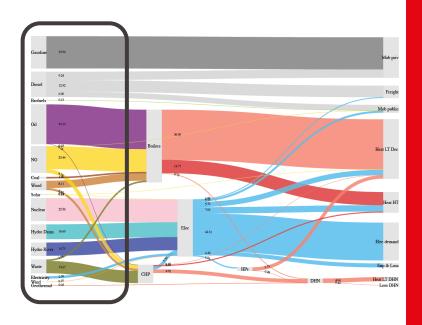
OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the author Max Roser

Costs of low-carbon technologies (LCOE)

- In 2020, renewables were competitive in Europe, but not in Japan!
- Example: median cost of producing electricity in India, USA, China and Europe


Figure ES2: Median technology costs by region

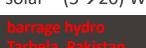
Note: Values at 7% discount rate.

Costs of low-carbon technologies (investment)

• Investment costs : PV, hydro and onshore wind least expensive to invest in

The "energy and power density" challenge

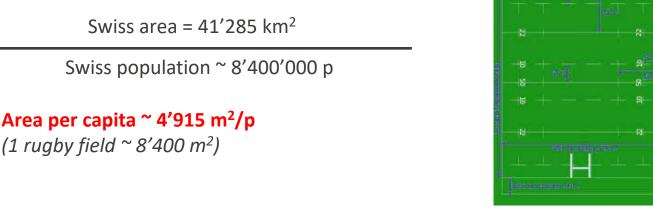
If Swizerland was to satisfy all its energy needs with only solar energy, how much surface would be required?


- A. 10-20% of the Swiss total area
- B. 40-60%
- C. 80-100%
- D. More than 100% (energy needs to be imported!)

Renewables require large areas

bioethanol \sim (0.05 \rightarrow 0.15) W/m²

wind \sim (2 \rightarrow 10) W/m² hydro \sim (10 \rightarrow 15) W/m² solar \sim (5 \rightarrow 20) W/m²

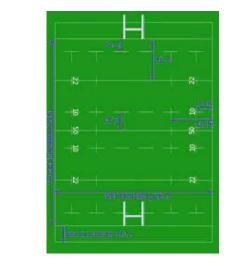


A Swiss citizen would need...

Average power use of a Swiss citizen = 3.2 kW/p

- → Area per capita ~ 4′915 m²/p
- → (1 rugby field ~ 8'400 m²)

A Swiss citizen would need...


Average power use of a Swiss citizen = 3.2 kW/p

bioethanol 3.2kW/p 0.5W/m² = 6'400 m²/p

Swiss area = $41'285 \text{ km}^2$

- → Area per capita ~ 4′915 m²/p
- → (1 rugby field ~ 8'400 m²)

A Swiss citizen would need...

Average power use of a Swiss citizen = 3.2 kW/p

windmills 3.2kW/p

 $2.2W/m^2$

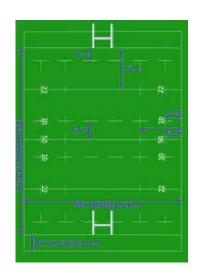
=

~1'455m²/p

Swiss area = $41'285 \text{ km}^2$

- → Area per capita ~ 4'915 m²/p
- → (1 rugby field ~ 8'400 m²)

A Swiss citizen would need...


Average power use of a Swiss citizen = 3.2 kW/p

Solar PV 3.2kW/p 5W/m² = 640 m²/p

Swiss area = $41'285 \text{ km}^2$

- → Area per capita ~ 4′915 m²/p
- → (1 rugby field ~ 8'400 m²)

A Swiss citizen would need...

Average power use of a Swiss citizen = 3.2 kW/p

bioethanol 3.2kW/p 0.5W/m²

6'400 m²/p

windmills 3.2kW/p

2.2W/m²

~1'455m²/p

Solar PV

3.2kW/p 5W/m²

=

 $640 \text{ m}^2/\text{p}$

Concentrated solar

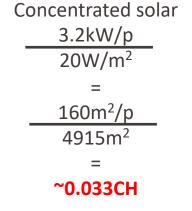
3.2kW/p

20W/m²

160 m²/p

Swiss area = $41'285 \text{ km}^2$

- → Area per capita ~ 4′915 m²/p
- → (1 rugby field ~ 8'400 m²)



A Swiss citizen would need...

Average power use of a Swiss citizen = 3.2 kW/p

bioethanol
3.2kW/p
0.5W/m ²
=
6400m ² /p
4915m ²
=
~1.3×CH

windmills 3.2kW/p
2.2W/m ²
=
~1455m²/p
4915m ²
=
~0.30×CH

Switzerland has an installed capacity of 300 MW (electric) of natural gas plants, producing at full load only 27% of the time (8'760 hours). 1 kWh of electricity from natural gas \Leftrightarrow 420 g CO₂/kWh.

- How many MW of PV panels are required to replace them (capacity factor of 15%)?
- How much surface (solar 5 W/m²) is needed ?
- How much CO_2 is saved per year ? 1 kWh of electricity from solar PV \Leftrightarrow 18 g CO_2 /kWh.

https://app.wooclap.com/ME409/questionnaires/66f11364f18a641fcd19053d

The "efficiency" challenge

Energy conversion

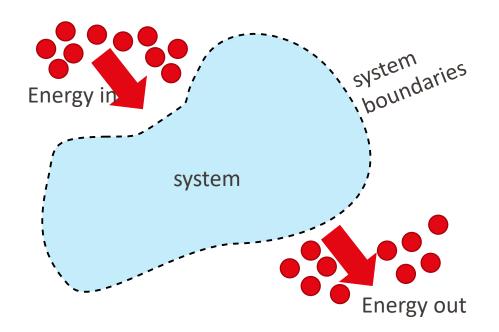
- The concept of energy efficiency: what you want / what you consume
- Example of a **power plant** :
 - What we want = power, electricity
 - What we consume = nuclear fuel, coal, natural gas
- Example of a **heating system**:
 - What we want = heat
 - What we consume = wood, gas, oil

Which of the following electricity production technologies present the highest energy efficiency?

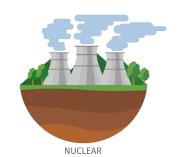
- A. Gas-fired plants
- B. Solar photovoltaics
- C. Hydroelectric dams
- D. Nuclear power plants

Energy conversion

- Thermodynamics
 - = transformations of energy
- Industrial revolution : empirical foundations + observations


- Four main principles
 - Can energy be created from nothing?
 - Do all forms of energy have the same "value"
 ? How much electricity can we produce at best?

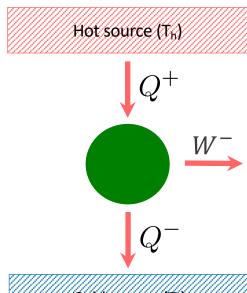
9 ENERGY CONVERSION AND RENEWARI E ENERGY


First principle

- **Energy conservation**
- Applying thermodynamics to energy systems...
- You can't win. Energy is **conserved**, neither created nor destroyed.

First principle

- Energy for heat and mechanical engines



$$\eta_I = \frac{W^-}{\mathbf{Q^+}} = \frac{\text{Power output}}{\text{Nuclear fuel energy}}$$

$$\eta_I = \frac{W^-}{W^+} = \frac{\text{Power output}}{\text{Wind kinetic energy}}$$

$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Power output}}{\text{Coal chemical energy}}$$

Cold source (T_c)

Image by macrovector on Freepik:

https://www.freepik.com/free-vector/generation-energy-types-power-plant-icons-vector-set-renewable-alternative-solar-tidal-wind-geotermal-biomass-wave-illustration 10601053.htm#query=power%20plant&position=3&from view=search

Examples:

The Mühleberg nuclear power plant, the Bouchain gas power plant

Nominal **thermal output** of reactor: 1097 MW(th)

Gross electrical output: 372 MW(e)

Auxiliary electrical consumption (pumps, etc.): 17 MW(e)

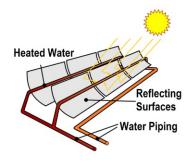
Required area (infrastructure, mining, plant): 1.55 km²

$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Net power output}}{\text{Nuclear fuel energy}}$$

Nominal thermal output of reactor: 1140 MW(th)

Net electrical output: 701 MW(e)

Required area (infrastructure, mining, plant): 1.46 km²


$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Net power output}}{\text{Gas consumption}}$$

First principle

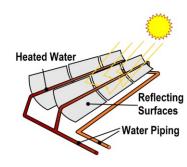
- First-law efficiency for heat production technologies

$$\eta_I = \frac{Q^-}{W^+} = \frac{\text{Heat output}}{\text{Electricity input}}$$

$$\eta_I = rac{Q^-}{{m Q^+}} = rac{ ext{Heat output}}{ ext{Solar radiation}}$$

Examples:

Electric heaters and solar collectors



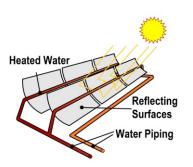
For a basic electric heater with a footprint area

Nominal thermal output: 12 kW (th)

Nominal electricity consumption: 13 kW

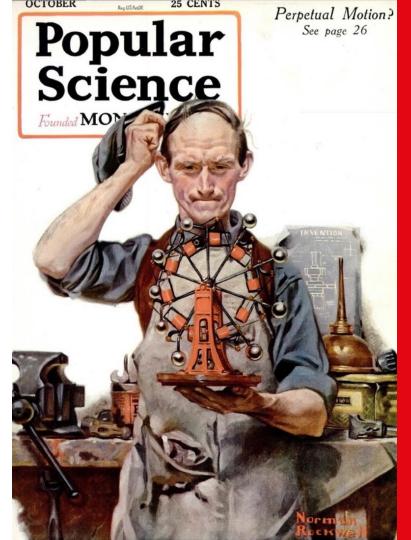
•
$$\eta_I = \frac{\mathrm{Q}^-}{W^+} = \frac{\mathrm{Heat\ output}}{\mathrm{Electricity\ input}}$$

For a solar thermal collector with a footprint area of 20 m²


Nominal heat output: 14 kW (th)

Solar radiation: 20 kW

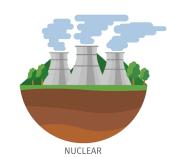
•
$$\eta_I = \frac{\mathrm{Q}^-}{\mathrm{Q}^+} = \frac{\mathrm{Heat\ output}}{\mathrm{Solar\ radiation}}$$


GROUP QUESTION (2 ppl., 5-10 mins)

Determine, for the 4 examples given before, their energy efficiencies (%) AND power densities (W/m²).

Please answer at this link:

https://app.wooclap.com/ME409/questio nnaires/66f11364f18a641fcd19053d



Can we produce as much work as we get heat?

How valuable is heat compared to electricity?

Comparison of energy efficiencies

$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Power output}}{\text{Nuclear fuel energy}} \approx 30-35\%$$

$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Power output}}{\text{Gas chemical energy}} \approx 35-60\%$$

COAL

$$\eta_I = \frac{W^-}{Q^+} = \frac{\text{Power output}}{\text{Coal chemical energy}} \approx 35-40\%$$

Image by macrovector on Freepik:

https://www.freepik.com/free-vector/generation-energy-types-power-plant-icons-vector-set-renewable-alternative-solar-tidal-wind-geotermal-biomass-wave-illustration 10601053.htm#query=power%20plant&position=3&from view=search

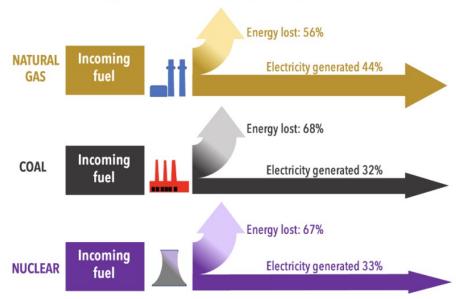
Comparison of energy efficiencies

$$\eta_I = \frac{Q^-}{Q^+} = \frac{\text{Heat output}}{\text{Solar radiation}} \approx 70-80\%$$

$$\eta_I = \frac{W^-}{W^+} = \frac{\text{Power output}}{\text{Water potential and kinetic energy}} \approx 80-90\%$$

$$\eta_I = \frac{W^-}{W^+} = \frac{\text{Power output}}{\text{Wind kinetic energy}} \approx 20-40\%$$

Image by macrovector on Freepik:


Comparison of energy efficiencies

- Difficult to compare different energy conversion plants
- Heat-to-electricity devices have lower energy efficiencies

- How can these efficiencies be improved?
- How can we best compare energy conversion plants?

Traditional sources of electricity lose most of their energy as waste heat

Data from U.S. electricity generation, thermal plants - average operating efficiencies in 2020

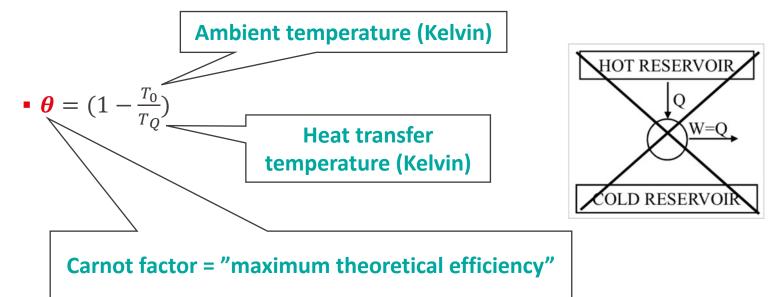


Data from the Energy Information Administration Image by Karin Kirk for Yale Climate Connections

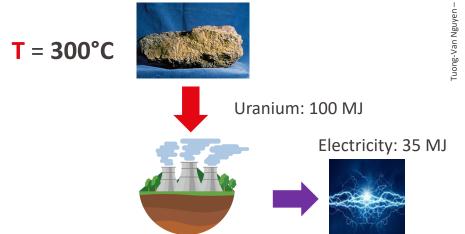
ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

Second principle

- An explanation for these differences
- Impossible to get as much power out as heat in from a given power plant
- Entropy generation ⇔ 100% efficiency is not achievable
- So... what is the maximum reachable efficiency?


Electricity out

Waste heat out


- Carnot efficiency θ
- Not all heat can be converted into electricity (heat has a lower «value»)
- On the contrary, all electricity can be converted into heat (high «value»)
- The limit is Carnot.

- Carnot efficiency θ


• $\theta = \left(1 - \frac{T_0}{T_Q}\right)$ High T_Q = high value of heat

$$\bullet \theta = \left(1 - \frac{15 + 273.15}{300 + 273.15}\right)$$

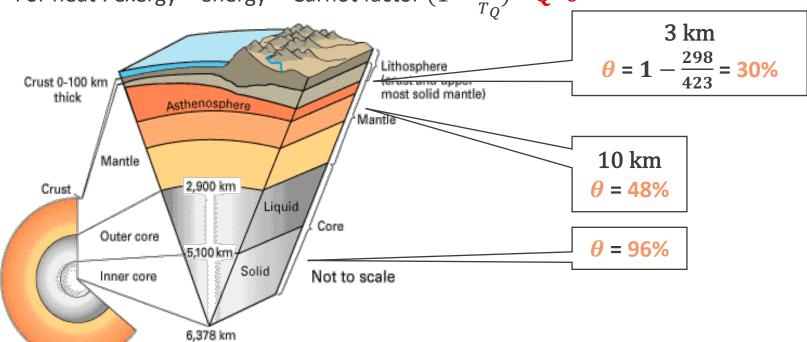
NUCLEAR

T = **15°C**

- The concept of eXergy

Exergy – the "useful work potential" = how much electrical or mechanical work can be produced from a given energy source in ideal conditions?

- For mechanical and electrical flows : exergy = energy = W
- For fuels : exergy ≈ higher heating value (HHV)
- For heat : exergy = energy × Carnot factor $(1 \frac{T_0}{T_Q}) = \mathbf{Q} \times \mathbf{\theta}$


To scale

Second principle

- The concept of eXergy

Exergy – an indication of the value of different energy forms

For heat : exergy = energy × Carnot factor $(1 - \frac{T_0}{T_0}) = \mathbf{Q} \times \mathbf{\theta}$

- Second-law efficiency η_{II}
- Second-law efficiency η_{II}

$$\eta_{II} = \frac{\text{what you get}}{\text{what you would get in the ideal case}}$$

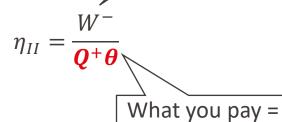
• High second-law efficiencies = *small margin of improvement*

ME-409 ENERGY CONVERSION AND RENEWABLE EI

Uranium ____

100 MJ

35 MJ



- Second-law efficiency - examples η_{II}

• Second-law efficiency for heat engines η_{II}

"Value of heat" = Carnot factor

fuel energy

• Second-law efficiency for heat production from electricity η_{II}

$$\eta_{II} = \frac{Q^- \theta}{W^+}$$

Example 1: the Mühleberg nuclear power plant

For a power plant producing only **electricity**

Nominal **thermal output** of reactor: 1097 MW(th)

Gross electrical output: 372 MW(e)

Auxiliary electrical consumption (pumps, etc.): 17

MW(e)

Reactor temperature: 300°C

River temperature: 11°C

$$\boldsymbol{\theta} = \left(1 - \frac{T_0}{T_Q}\right)$$

$$\eta_{II} = \frac{W^-}{\boldsymbol{Q}^+ \boldsymbol{\theta}}$$

GROUP QUESTION (2 ppl., 5-10 mins)

Determine, for the 2 examples given before (gas power plant and electric heater), their maximum (Carnot) AND second-law efficiencies.

Please answer at this link:

Example 2 : The Bouchain gas power plant (FR)

Nominal thermal output of reactor: 1140 MW(th)

Net electrical output: 701 MW(e)

Gas combustion temperature: 1590°C

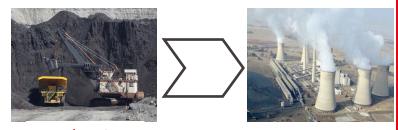
Ambient temperature: 15°C

$$\eta_I = \frac{W^-}{\mathbf{Q^+}} = \frac{\text{Power output}}{\text{Gas consumption}}$$

$$\boldsymbol{\theta} = \left(1 - \frac{T_0}{T_Q}\right)$$

$$\eta_{II} = \frac{W^-}{\mathbf{Q^+}\boldsymbol{\theta}}$$

EPFL Example 3 : A basic electrical heater



For a heat production technology

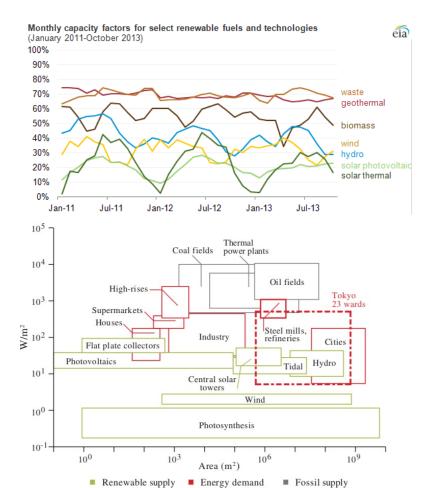
- Nominal thermal output: 12 kW (th)
- Nominal electricity consumption: 13 kW
- Heater temperature : 45°C
- Ambient temperature : 15°C

$$oldsymbol{ heta} = \left(1 - rac{T_0}{T_Q}
ight)$$
 $\eta_{II} = rac{oldsymbol{Q}^-oldsymbol{ heta}}{oldsymbol{W}^+}$

Production

Conversion

Delivery


Use

Conclusion

Take-home message

Take-home message

- First-law efficiency: simple and widely used energy metric.
- Carnot factor: measure of the maximum efficiency that can be reached, or value of heat
- Second-law efficiency: how ideal is my system? Can it be improved?

Important formulas

Calculate:

• First-law efficiency η_T

• Carnot factor θ

$$\eta_I = \frac{W^-}{Q^+}$$
 $\boldsymbol{\theta} = \left(1 - \frac{T_0}{T_O}\right)$

Second-law efficiency η_{II}

$$\eta_{II} = \frac{W^-}{Q^+ \theta}$$

Image by macrovector on Freepik:

https://www.freepik.com/free-vector/generation-energy-types-power-plant-icons-vector-set-renewable-alternative-solar-tidal-wind-geotermalbiomass-wave-illustration_10601053.htm#query=power%20plant&position=3&from_view=search

