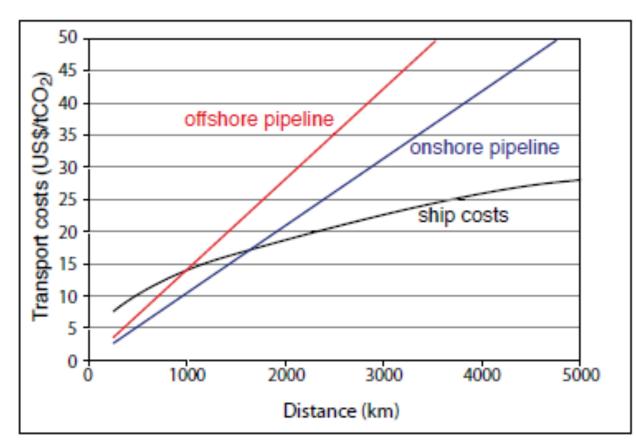


CO2 Capture, Sequestration and Re-Use Part II Sequestration or Re-Use

Prof. François Marechal

CO₂ transport and storage (CCS)


(source : IPCC CCS Report)

François Marechal

CO₂ transport

CO2 transport methods

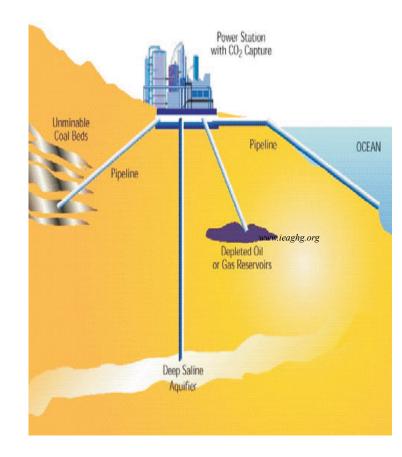

- Pipelines
 - <1500km (small distance)
 - CO2 8MPa
 - > 20 Mt CO2/year
- Ship
 - > 1500 km (large distance)
 - CO2 liq. 0.7MPa
 - ~6 Mt CO2/year
- Road & rail tankers
 - CO2 -20°C, 2MPa
 - Very small scale

IPCC2005 CCS report

• uneconomical for large-scale CO2 transportation

CO₂ storage

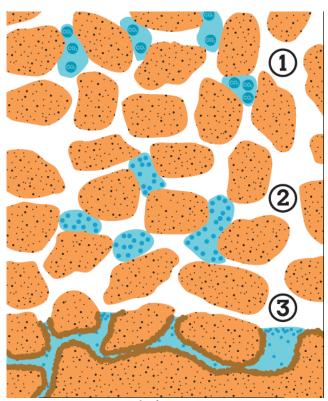
CO₂ storage : Geological storage


Geological storage

- Enhanced Oil/Gas Recovery (EOR/EGR)
 - CO2 is used to push gas out of gas/oil fields
 - In 2004 only 20% of the CO2 used for EOR is captured CO2 from energy conversion
 - Use of Water => produces toxics and radioactive elements
 - 3.15 t CO2 extracted (after combustion) per ton of CO2 sequestrated !
- Enhanced Coal Bed Methane recovery (ECBM)
 - CO2 substitutes the absorbed CH4 in deep coal mines and
 - is trapped into the pore matrix of the coal due to
 - the higher affinity of CO2 with coal than CH4
 - Twice as much CO2 as CH4 can be absorbed, so the balance is positive even if the CO2 released by CH4 combustion is accounted for

CO₂ storage

Geological storage


- Deep saline formations (storage in aquifers)
 - Dissolution in saline waters (not suitable for potable water)
 - CO2 chemically trapped by chemical reaction producing carbonates
- Storage in mines & chemical storage
 - CO2 reaction with naturally occurring minerals (magnesium silicate)to produce carbonates that could be stored permanently

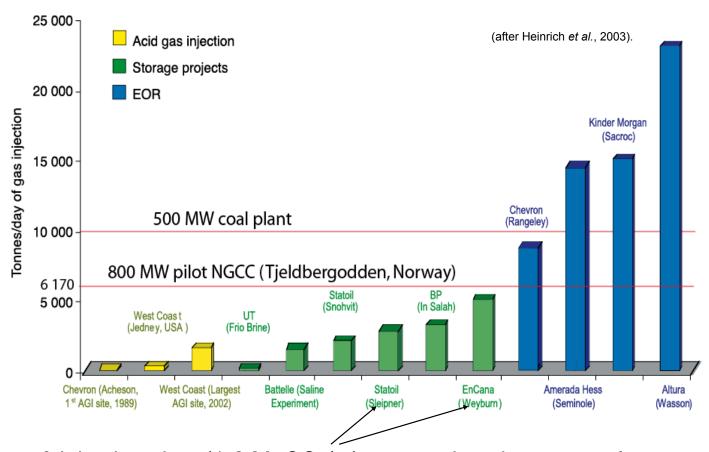
CO₂ storage

Trapping methods

- Residual trapping
 - Injected CO2 is trapped in the tiny pores of the rocks
- Dissolution trapping
 - Part of the CO2 dissolves into the surrounding water
- Mineral trapping
 - Heavy CO2-rich water sinks to the reservoir's bottom where over time it may react to form minerals (limestone, sandstone)

www.zeroemissionsplatform.eu

CO₂ storage capacity


Geological storage capacity

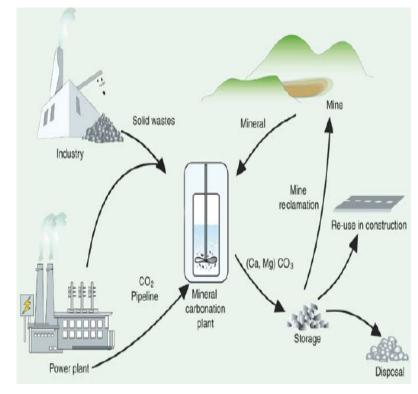
Option	Lower estimate GtCO ₂	Upper estimate GtCO ₂
Oil/Gas fields	675	900
Unminable coal beds	3-15	200
Deep saline formation	1000	10000

IPCC2005 CCS report

- Economic potential for CCS: 200-2000 GtCO2
- Largely sufficient geological storage capacity
- •Storage cost depends on:
 - Depth & permeability of storage formation
 - Number of wells needed for injection
 - Type of reservoir
 - Onshore/offshore
 - 0.5-8 \$/tCO2 + 0.1-0.3 \$/tCO2 monitoring
 - Including EOR 10-16\$/tCO2 net profit (depends on oil/gas prices)

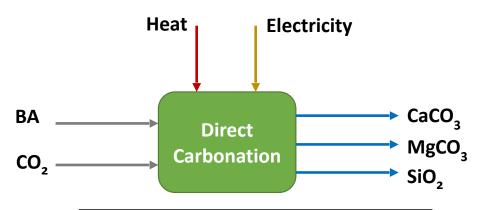
CCS: gas injection projects

3 injection sites (1-2 Mt CO_2/yr) are running since several years : Norway (1996), Canada (2000), Algeria (2004)


CO₂ storage by carbonation

Mineral Carbonation

• CO2 conversion to solid inorganic carbonates by chemical reaction


$$1t/CO_2 + [2-3t] \quad MO \to [3-4t] \quad MCO_3 + heat$$

- MO= Metal oxide (MgO, CaO) or Mg2SiO4, Mg3Si2O5(OH)4
- Magnesium carbonate (MgCO3) or calcium carbonate (CaCO3 limestone)
- =accelerated or assisted natural "weathering"
- Available silicate rocks are larger than needed to fix all fossilderived CO2, however limited to technically exploitable reserves
- Heat ≈ 60 kJ/mol CO2 (to compare with 400 kJ/mol CO2 for combustion)
- CCS system with carbonation 60-180% more energy input per kWh than reference plant without capture
- Cost: 50-100\$/tCO2 mineralized
- Considerable environmental
- impact mining & disposal

IPCC2005 CCS report

EPFL Wet Direct Carbonation Balance

Carbonation Reactor	Inlet	Outlet	Unit
SiO2	10.5	11.9	t/h
MgSiO4	1.17	1.13	t/h
CaSiO3	5.2	2.6	t/h
∑ Feedstocks (BA)	16.9	15.6	t/h
CO ₂	1.00	0	t/h
CaCO ₃	0	2.22	t/h
MgCO ₃	0	0.05	t/h
Heat pre-treatment (650°C)	161		kWh/tCO ₂
Heat reaction (80 -150°C)	106		kWh/tCO ₂
Electricity [1]	685		kWh/tCO ₂

Incineration Bottom Ash (BA) feedstock

- SiO₂: 62 wt.%
- MgSiO₄: 7 wt.%
- CaSiO₃: 31 wt. %

• Feedstock pre-treatment [1]

- Grinding, crushing, transport and magnetic separation
- Heat treatment/Activation

CO2 supply [1]

Separation and compression

References:

Engineering

The Mass balance reference is 1t/h of stored CO2

■ IPESE [1]: Ostavari, H. et al. Rock 'n' use of CO2: carbon footprint of carbon capture and utilization by mineralization. Sustainable Energy fuels, 2020, 4, 4482 Industrial Process and Energy Systems

Summary: CCS cost

CCS system components	Cost range	Remarks
Capture from a coal- or gas-fired power plant	15-75 US\$/tCO ₂ net captured	Net costs of captured CO ₂ , compared to the same plant without capture.
Capture from hydrogen and ammonia production or gas processing	5-55 US\$/tCO ₂ net captured	Applies to high-purity sources requiring simple drying and compression.
Capture from other industrial sources	25-115 US\$/tCO ₂ net captured	Range reflects use of a number of different technologies and fuels.
Transportation	1-8 US\$/tCO ₂ transported	Per 250 km pipeline or shipping for mass flow rates of 5 (high end) to 40 (low end) MtCO ₂ yr ⁻¹ .
Geological storage ^a	0.5-8 US\$/tCO2 net injected	Excluding potential revenues from EOR or ECBM.
Geological storage: monitoring and verification	0.1-0.3 US\$/tCO ₂ injected	This covers pre-injection, injection, and post-injection monitoring, and depends on the regulatory requirements.
Ocean storage	5-30 US\$/tCO ₂ net injected	Including offshore transportation of 100-500 km, excluding monitoring and verification.
Mineral carbonation	50-100 US\$/tCO ₂ net mineralized	Range for the best case studied. Includes additional energy use for carbonation.

• CO2 capture cost determines the CCS cost

IPCC2005 CCS report

Summary: Global CCS projects

According the Global CCS Institute

- 238 projects involving CO2 capture, transport and/or storage are active or planned worldwide
 - 9 are already operational
 - 2 are under construction
 - 69 are at planning stages (CO2 capture- transport-storage chain is demonstrated)

http://www.zeroemissionsplatform.eu/projects/global-

EU CCS projects

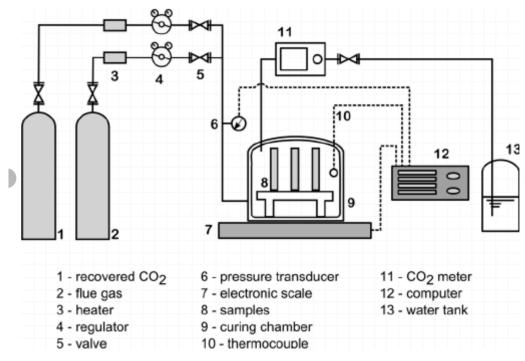
Courtesy of the IEAGHG

CO₂ utilisation

CO2 can be used as a product

Table 7.2 Industrial applications of CO₂ (only products or applications at the Mtonne-scale): yearly market, amount of CO₂ used, its source, and product lifetime (Aresta and Tommasi, 1997; Hallman and Steinberg, 1999; Pelc et al., 2005). The figures in the table are associated with a large uncertainty.

Chemical product class or application	Yearly market (Mt yr ⁻¹)	Amount of CO ₂ used per Mt product (MtCO ₂)	Source of CO ₂	Lifetime ^b
Urea	90	65	Industrial	Six months
Methanol (additive to CO)	24	<8	Industrial	Six months
Inorganic carbonates	8	3	Industrial, Natural ^a	Decades to centuries
Organic carbonates	2.6	0.2	Industrial, Natural ^a	Decades to centuries
Polyurethanes	10	<10	Industrial, Natural ^a	Decades to centuries
Technological	10	10	Industrial, Natural ^a	Days to years
Food	8	8	Industrial, Natural ^a	Months to years

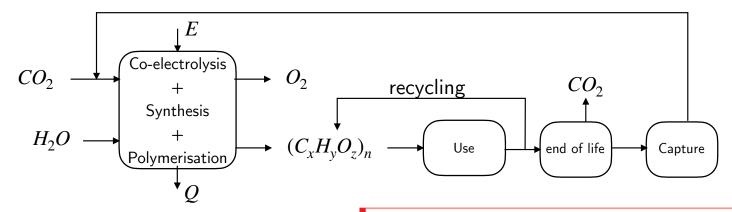

^a Natural sources include both geological wells and fermentation.

It is important that the CO2 used as carbon is not going to release fossil C in the atmosphere at an other time e.g. short term plastic usage

IPCC Special Report on Carbon dioxide Capture and Storage
Chapter 7: Mineral carbonation and industrial uses of carbon dioxide

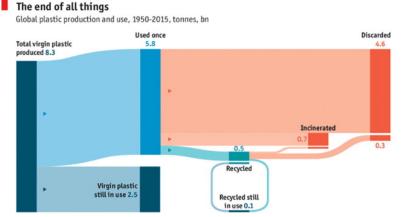
^b The fraction of used CO₂ that is still stored after the indicated period of time drops to zero.

EPFL Cement curing


Carbonation curing schematic for using either pressurized recovered CO 2 or pressurized flue gas.

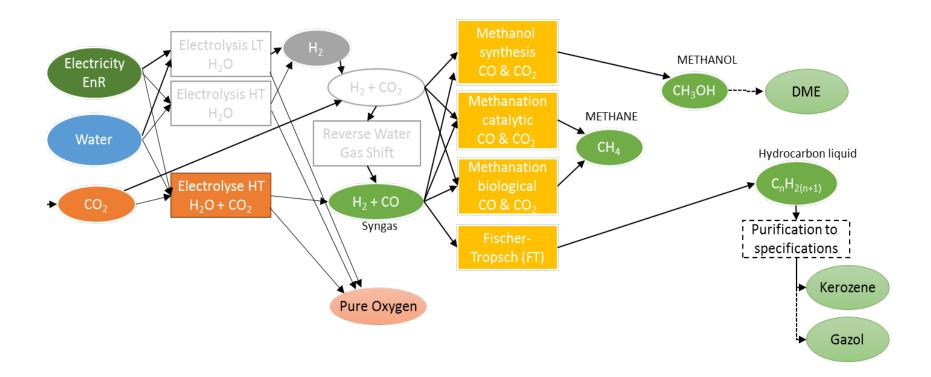
Pe	r unit (CO2 sequestrated	CO ₂ emitted	CO ₂ avoided
	디	Cu-OPC	1.4	3.35
	onation	Cu-WOA	1.23	3.35
	ons	Cu-ISS	2	3.35
2	ırb	Cu-WCA	1.45	3.35
١ .	$\ddot{\circ}$	Ex-WOA	0.56	3.35

use as construction materials (substitution)


EPFL Plastics

- 55 kg/cap/year produced from the waste of fuel production
 - 75 % single use (2.7 kg CO2/kg polymer = 111 kg/cap/year)
 - 25 % long term use (2.0 kg CO2/kg polymer = 27.5 kg/cap/year sequestrated)

Plastic world production: 55 kg plastics/capita/year



CO₂ utilization : E-Fuels

Conversion of captured CO₂: as a source of Carbon Power-to-chemicals/stored energy

Electricity has to be from renewable energy resources

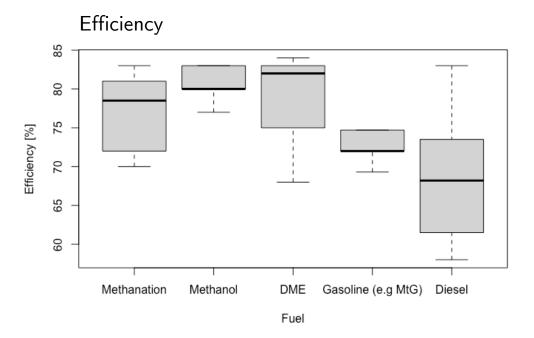
CO2 reuse: Power2Gas concepts

Electrolysis: $H_2O + E = > H_2 + 1/2 O_2$ (e.g. Proton exchange membrane systems eff $\approx 60\%$)

- + Methanation (Sabatier Reaction)
- Typical Temperature : 250°C-400°C
- Catalyst : Ni

Exothermic

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O + energy$$
 $\Delta H = -165.0kJ/mol$


- Biological catalysis⁽¹⁾
 - -Typical Temperature: 40-70°C
 - -Catalyst: thermophilic methanogen Methanothermobacter thermautotrophicus
 - -www.electrochea.com
- Co-Electrolysis (SOEC) + Methanation or Fisher-Tropsh
 - -Typical Temperature: 800°C

$$CO_2 + 2H_2O + energy \rightarrow CH_4 + 2O_2$$

(1) Matthew R. Martin, et al. "A Single-Culture Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester Biogas by CO2-to-CH4 Conversion with H2," Archaea, vol. 2013, Article ID 157529, 11 pages, 2013.

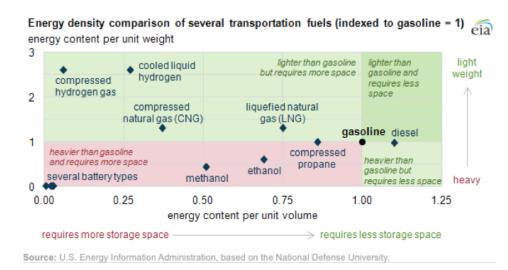
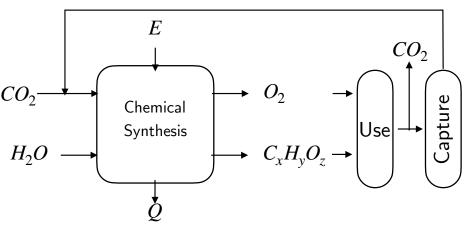
(2) Diethelm, S., herle, J. V., Montinaro, D. and Bucheli, O. (2013), Electrolysis and Co-Electrolysis Performance of SOE Short Stacks. Fuel Cells, 13: 631–637. doi: 10.1002/fuce.201200178

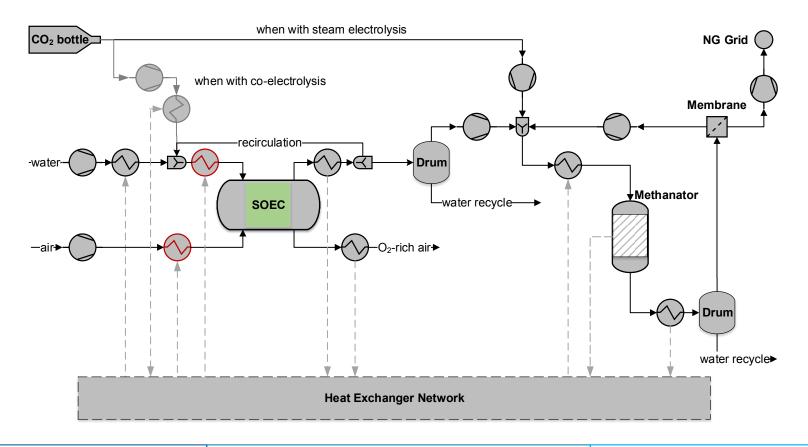
EPFL Fuels production: Power2X

Life cycle efficiency

Per unit CO2 captured		CO ₂ emitted	CO ₂ avoided	KPI_{CO2}	
	S	Methane	0.31	1.39	-1.08
	Fuels	Methanol	0.23	1.49	-1.26
	표	DME	0.22	1.51	-1.29
	Syn	Diesel	0.22	1.20	-1
	S	Gasoline	0.20	1.20	-0.96

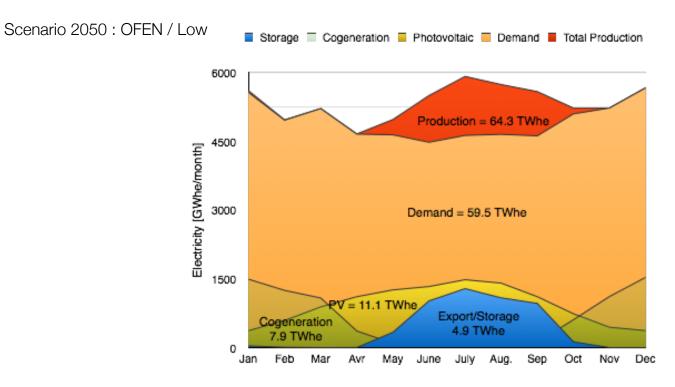
Based on El. Swiss mix


Figure 2.1: Energy density of various fuels (source: eia [39])

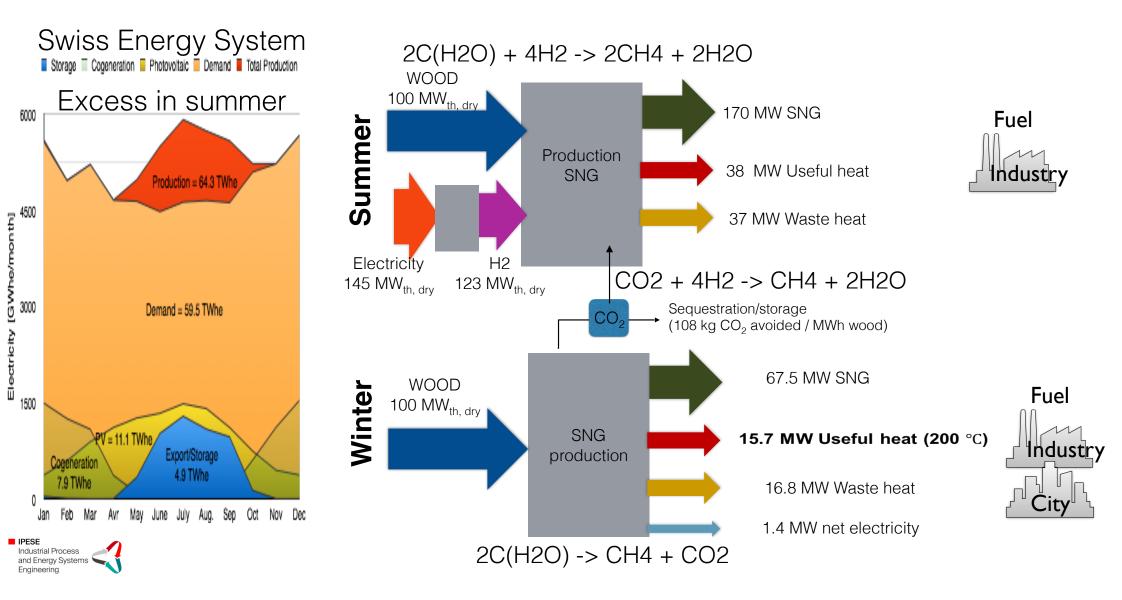
Electrolysis and Co-Electrolysis

Efficiency reaches 80% of HHV



2019

François Marechal


Electricity storage

Who is going to use the extra amount in the Summer?

http://www.energyscope.ch

EPFL Combined heat, fuel and storage from biomass

