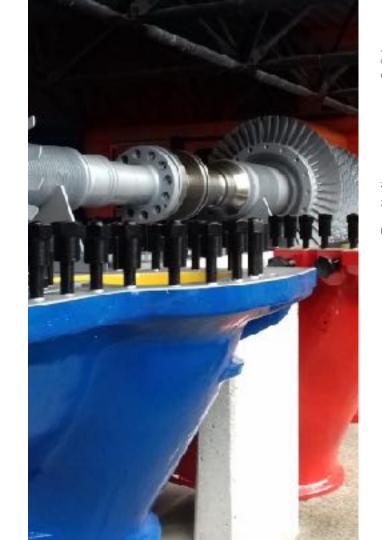


Ecole polytechnique fédérale

EPFL Outline

Gas Turbine

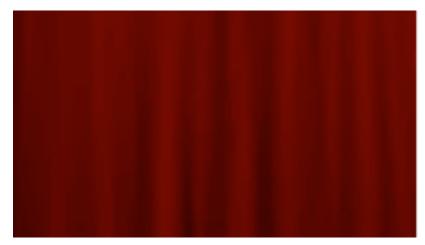

- Thermodynamic cycle
- Advanced Gas Turbines
- Classification

Combined Cycle Gas Turbine

- Working principle
- Main components
- Efficiency

GT and CCGT in the market

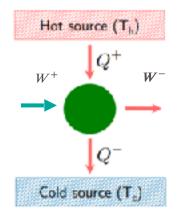
- Application
- Levelized Cost Of Electricity (LCOE)
- Take-home message

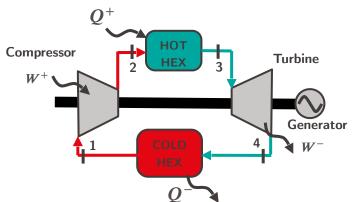

Introduction

Historical background
Thermodynamic overview
Basics and advanced

EPFL gas turbine

- ME building
- Most likely used in the years 1949-1959 in the Weinfelden power plant
- Used as musical instrument

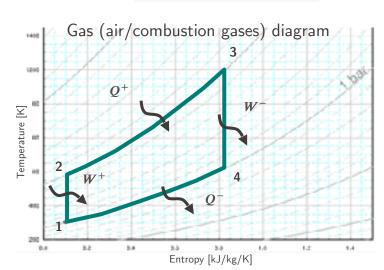


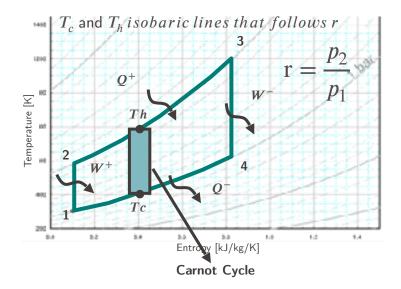


Gas turbine



Gas Turbine: Brayton Cycle Ideal closed gas-cycle


- (1-2) isentropic compression
- (2-3) isobaric heating
- (3-4) isentropic expansion
- (4-1) isobaric cooling


Rhode Island, United States

Died 17 December 1892 (aged 62)

Nationality American

Brayton Cycle Ideal closed gas-cycle

 η depends on : ONLY $m{r}$ and $m{\gamma}$, NOT T_c nor T_h

Efficiency:

$$\eta = \frac{W^- - W^+}{Q^+} = \frac{w^- - w^+}{q^+}$$

The cycle can be divided in infinitesimal ideal Carnot cycles, whose efficiency is known:

$$\eta = \frac{1}{q^+} \int_{2}^{3} de = \frac{1}{q^+} \int_{2}^{3} dq^+ \left(1 - \frac{T_c}{T_h}\right) \qquad \text{Carnot cycle efficiency}$$
 Isentropic process of ideal gas $pv^{\gamma} = const$. and $pv = nRT$

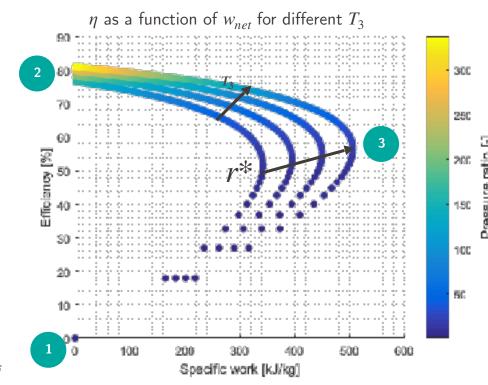
if
$$r = \frac{P_2}{P_1}$$
 then $\frac{T_c}{T_h} = r^{-\frac{\gamma-1}{\gamma}} = r^{-\theta}$
therefore $\eta = \frac{1}{q^+} \int_2^3 dq^+ (1 - r^{-\theta}) = 1 - r^{-\theta}$

Gas Turbine Ideal closed gas-cycle

Specific work:

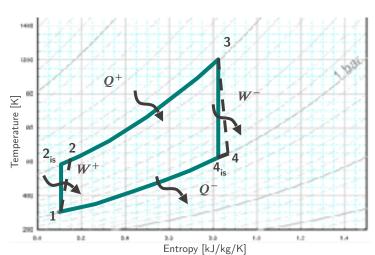
$$w_{net} = w^{-} - w^{+} = \eta \cdot q^{+} \text{ and } q^{+} = cp(T_3 - T_2)$$

with $r^{\theta} = \frac{T_2}{T_1}$, $q^{+} = cpT_1(\frac{T_3}{T_1} - \frac{T_2}{T_1})$ therefore

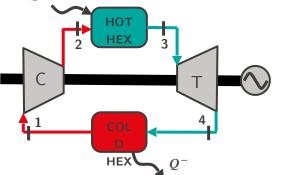

$$w_{net} = (1 - r^{-\theta}) \cdot cp \cdot T_1 \cdot (\frac{T_3}{T_1} - r^{\theta})$$

 w_{net} depends on: T_1 , T_3 , r, fluid properties (γ, c_p) .

1.
$$r = 1$$
 $w_{net} = 0$ $\eta = 0$


2.
$$r = \left(\frac{T_3}{T_1}\right)^{\frac{1}{\theta}}$$
 $w_{net} = 0$ $\eta = 1 - \frac{T_1}{T_3}$

3. max
$$w_{net} = > \frac{dw_{net}}{dr} = 0$$
 =>optimal pressure ratio : $r^* = (\frac{T_3}{T_1})^{\frac{1}{2\theta}}$


Gas Turbine

Closed gas cycle with real turbomachines

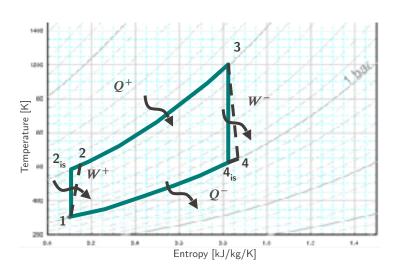
Assumptions:

- Perfect gas \rightarrow c_p , $c_v = const.$
- Ideal HEX \rightarrow dp=0
- Real turbomachines \rightarrow $\eta_{iso,C} < \eta_{iso,T} < 1$

$$\eta_{iso,T} = \frac{w_T}{w_{Tis}} = \frac{c_p(T_3 - T_4)}{c_p(T_3 - T_{4is})}$$

$$\eta_{iso,C} = \frac{w_{Cis}}{w_c} = \frac{c_p(T_{2is} - T_1)}{c_p(T_2 - T_1)}$$

$$w = w^{-} - w^{+} = c_{p}(T_{3} - T_{4is}) \cdot \eta_{iso,T} - \frac{c_{p}(T_{2is} - T_{1})}{\eta_{iso,C}}$$

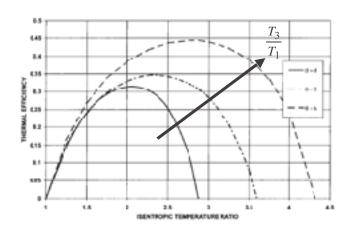

$$\eta = \frac{w}{q^{+}} = \left[c_{p} (T_{3} - T_{4is}) \cdot \eta_{iso,T} - \frac{c_{p} (T_{2is} - T_{1})}{\eta_{iso,C}} \right] / c_{p} (T_{3} - T_{2})$$

$$\eta = \frac{w}{q_{in}} = \eta_{ideal} \cdot \frac{\eta_{iso,T} - \frac{T_{2is}}{T_3} \cdot \frac{1}{\eta_{iso,C}}}{\left(1 - \frac{T_2}{T_3}\right)}$$

1

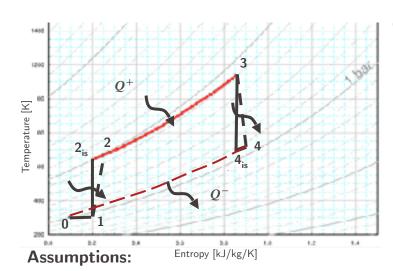
Gas Turbine

Closed gas cycle with real turbomachines

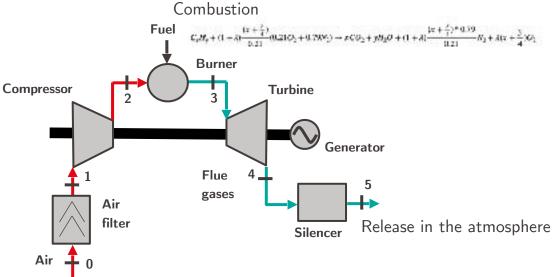


Assumptions:

- Perfect gas \rightarrow c_p , $c_v = const.$
- Ideal HEX \rightarrow dp=0
- Real turbomachines \rightarrow $\eta_{iso,T} < 1 \& \eta_{iso,C} < 1$

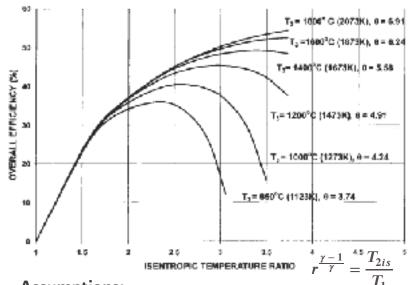

Remarks:

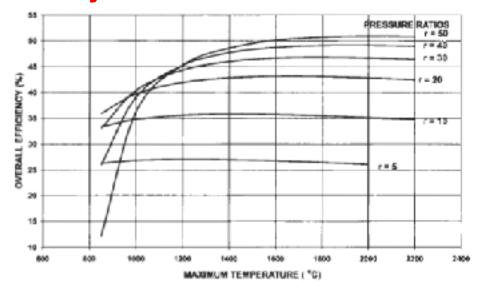
- Unlike the ideal cycle η does not constantly increase with r. There is a limit value for which $w^+ = w^-$ and $\eta = 0$
- Unlike the ideal cycle, η depends on T_3/T_1



$$r^{\frac{\gamma-1}{\gamma}} = \frac{T_{2is}}{T_1}$$

Gas Turbine Open real cycle


- Real gas \rightarrow c_p , $c_{v \neq}$ const.
- · Different gases in compression and expansion
- Real burner \rightarrow dp \neq 0
- Real turbomachines \rightarrow $\eta_{iso,T} < 1 \ \& \ \eta_{iso,C} < 1$



Assumptions:

- From external to internal combustion:
- **PROS**: NO HEX $\rightarrow \uparrow$ T_3 $\rightarrow \uparrow$ η -> blade cooling needed
- CONS: working fluid needs to carry an oxidant (typically air)
- Pressure drops in components (i.e. air filter, burner, silencer)

Gas Turbine: Open real cycle Turbine inlet temperature is a key

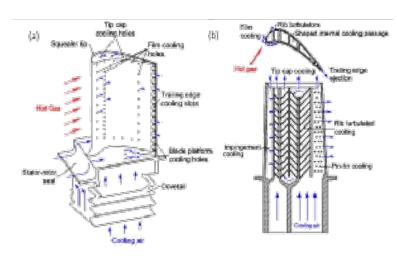
Assumptions:

- Polytropic efficiency for compressor and turbine $\eta_P=0.9$
- Pressure loss fraction in combustion 0.03
- Fuel (methane) and air supplied at 1 bar and 27 °C

Optimal pressure ratio increases when T3max increases

Gas Turbine

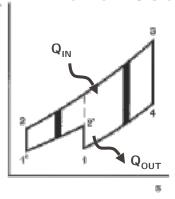
Blade cooling to protect the turbine and increase the Turbine inlet temperature

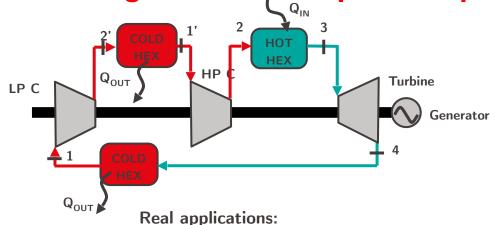

- Methodologies:
 - **IMPINGEMENT:** air at high velocity creates turbulences next to the blade wall $\rightarrow h_i$
 - FILM COOLING: air exits the blades through small holes and creates a film of cold air → h_i

1. OPEN LOOP:

- Air extracted from the compressor last stages is injected inside the small channels in the turbine blades and then mixed with the main flow
- Losses:
 - Irreversibilities due to mixing process
 - Velocity triangle perturbated by mixing process
 - Portion of air following a low efficiency cycle
 - Turbine work decreased due to decreased T ($v \rightarrow e_T = v \, dp$)

2. CLOSED LOOP:

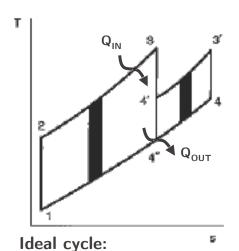

- Air after cooling the turbine is returned back to the combustion chamber
- Possibility of choosing a different cooling fluid (SH steam)
- Only impingement
- Losses:
 - Additional compressor needed to balance pressure losses
 - Problem of safety: if the secondary compressor fails the turbine melts
 - No losses due to mixing or lower efficiency cycle

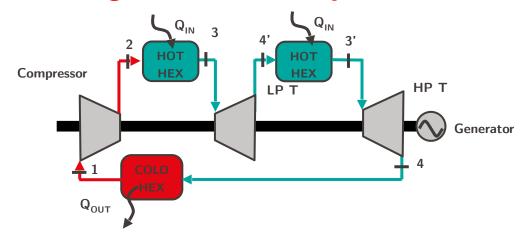


External (a) and internal (b) blade cooling schematic^[1]

EPFL Gas Turbine

Advanced cycles - Intercooling to reduce compression power


Ideal cycle:

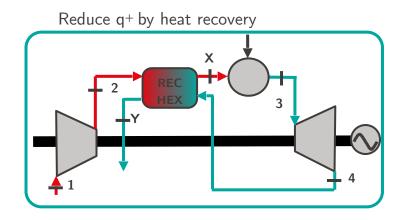

- The compression is split and intercooling introduced between a low pressure and a high pressure compressor
- Adding a cycle at lower efficiency: for the same r IC decreases η
- IC increases w because w_C decreases
- IC improves η if coupled with regeneration

- IC improves w and slightly η
- IC decreases the weight of irreversibilities due to real turbomachines
- IC allows higher T_3 for the same material (colder cooling flows)

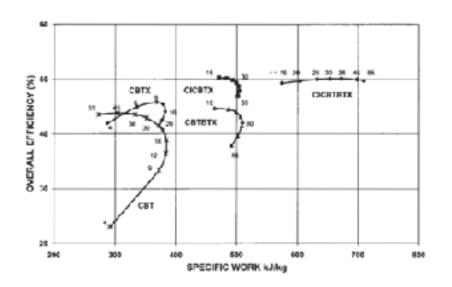
Gas Turbine

Advanced cycle - Reheating to maximise expansion efficiency

- The expansion is split and reheating is introduced between a low pressure and a high pressure turbine
- Adding a cycle at lower efficiency: for the same r RH decreases η
- RH increases e because w_T increases
- RH improves η if coupled with regeneration


Real applications:

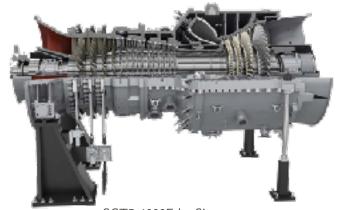
- increase w and slightly η
- decreases importance of irreversibilities due to real turbomachines


Gas Turbine

Advanced cycles regenerative cycle by heat recovery to optimise system efficiency

Gas Turbine

Advanced gas cycles T₃=1200 °C CICBTBTX CBTX CICETX CSTBT 20 = simple cycle = regenerative cycle = regenerative reheat cycle 10 = regenerative intercooled cycle CICDIDIN = regenerative intercooled reheat cycle Remarks: PRESSURE RATIO


- Optimum r depends on type: simple cycle $r \approx 45$, regenerative the lowest $r \approx 9$
- Regeneration does not affect e_{net} but improves η for same r, specially at low $r \rightarrow small$ applications
- Substantial increase of e_{net} with RH and IC
- RH and IC improve η if combined with regeneration

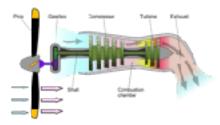
Gas Turbine Classification

- Heavy duty
- Aviation/propulsion
- Aeroderivative
- Small and microturbines

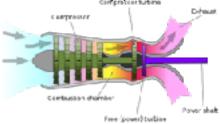
Gas Turbine Heavy duty

- Usually designed for max work (e.g. $r \approx 15 \div 20$)
- Operation: base load, long/medium operating time
- Designed with no weight/space restrictions (heavy frame)
- Advantages: long life-time, medium/high efficiency (30 48 %)
- Often combined with a steam cycle in a CCGT (in this case $r\approx 15\div 20$ is optimal for turbine work and plant efficiency

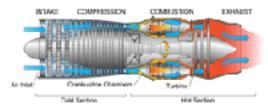
Performance:


- $E_{net} = 329 \text{ MW(e)}$
- $\eta = 41\%$
- $r \approx 20$
- T3 =1200-1300 °C, $T_4 = 600$ °C

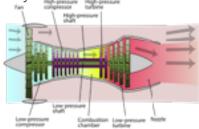
Gas Turbine Aviation/propulsion


Turboprop

The turbine drives the compressor and the propeller. Civil airplanes

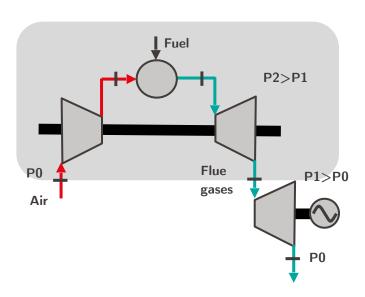

Turboshaft

Similar to turboprop with the difference that the engine drives a transmission and not the propeller directly. Helicopters and auxiliary power units.

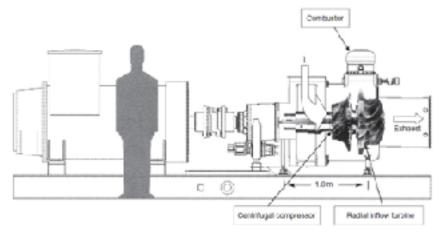

Turbojet

Gas turbine and propelling nozzle. Replaced by turboprops and turbofan, still employed in cruise missiles due to high exhaust speed, small frontal area and simple design.

Turbofan


It is a turbojet that drives a ducted fan to improve the thrust. Military and civil aircrafts

Gas Turbine


Aeroderivative

- Origin in the aerospace industry afterwards adapted to electricity generation
- Propelling nozzle is removed and a power turbine added
- Advantages: quickly start-up, shut down and load changes
- Operation: peak load, low operating time
- Marine industry to reduce weight

Gas Turbine Small and microturbine

- Small: < 5 MW Micro: <350 kW
- No blade cooling → limited turbine inlet T → lower efficiency (18-23 %)
- Often single-stage centrifugal compressor and radial-inflow turbine (low efficiency)

A radial-inflow turbine

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

Gas turbine efficiencies

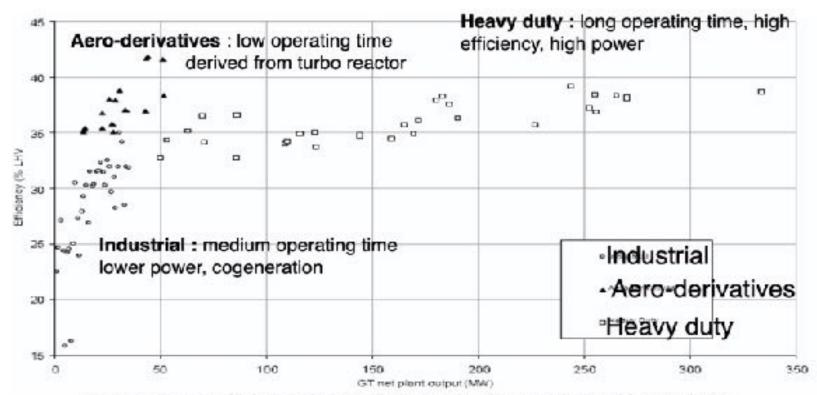
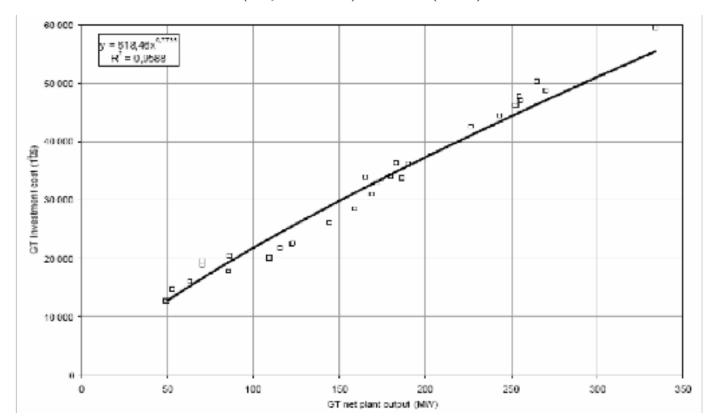
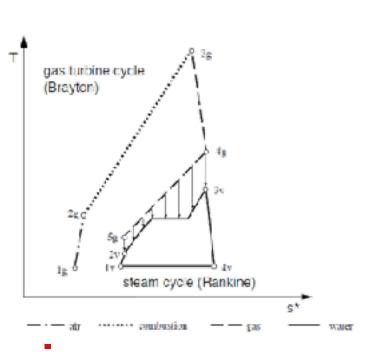



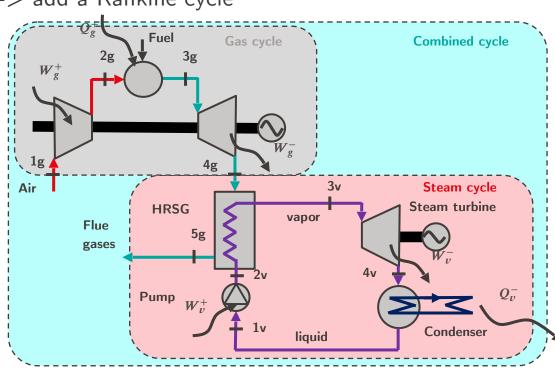
Fig. 3.4. Current efficiency of gas turbines (Source: Gas Turbine World, 1996-2001)

Tuong-Van Nguyen – <u>tuong-van.nguyen@epfl.ch</u>

EPFL Gas turbine costs

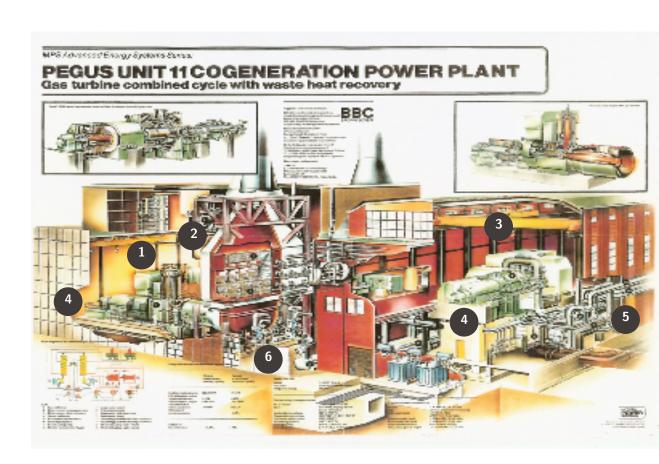
Investment cost (k\$ year : 2000)= 618.48 (MWe)^{0.7}




CCGT

Combined cycle gas turbine

Combined cycle Gas turbine Concept


 Flue gases exit the Gas Turbine at high temperature (~600 °C) → energy wasted to the environment -> add a Rankine cycle

CCGTComponents

- 1. Gas Turbine
- 2. Heat Recovery Steam Generator
- 3. Steam turbine
- 4. Electric generator
- 5. Condenser (heat rejection)
- 6. Pump

Combined Cycle Gas Turbine

Efficiency steam cycle (Rankine)

Overall CCGT cycle efficiency

$$\eta_{CCGT} = \frac{W_g^- + W_s^-}{Q_g^+} = \eta_g + \eta_s * \left(1 - \eta_g\right) * \eta_{HRSG} \qquad \text{Heat recovery steam generator } \eta_{HRSG} = \frac{Q_s^+}{Q_g^-}$$

Heat released by combustion:

$$\dot{Q}^+ = \dot{m}_{fuel} \cdot LHV_{fuel}$$

Heat available in the combustion gases:

$$Q_g^- = Q_g^+ - W_g^- = m_g \cdot c_{p,g} \cdot \left(T_{4,g} - T_{amb} \right)$$

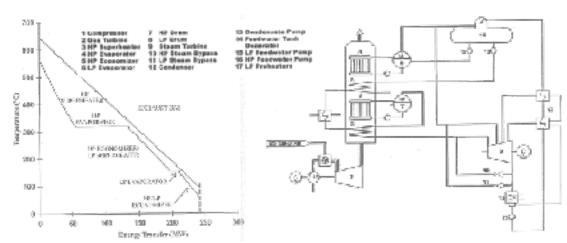
Heat recovered by the heat recovery steam generator:

$$Q_s^+ = Q_g^- - Q_{g,amb}$$

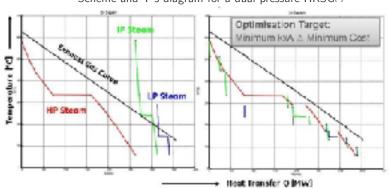
Heat released in the environment:

$$Q_{g,amb} = m_g \cdot c_{p,g} \cdot \left(T_{5,g} - T_{amb} \right)$$

Conversion efficiencies

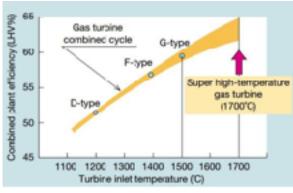

. Gas Turbine
$$\eta_g = \frac{W_g^-}{O_r^+}$$

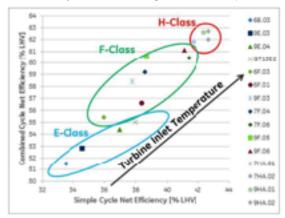
Heat recovery steam generator
$$\,\eta_{HRSG}^{}=rac{Q_s^{+}}{Q_g^{-}}$$


Steam Cycle
$$\eta_{\scriptscriptstyle S}=\frac{W_{\scriptscriptstyle S}^-}{Q_{\scriptscriptstyle S}^+}=\frac{W_{\scriptscriptstyle S}^-}{Q_{\scriptscriptstyle g}^+\Big(1-\eta_{\scriptscriptstyle g}\Big)*\eta_{HSRG}}$$

CCGT: Steam cycle

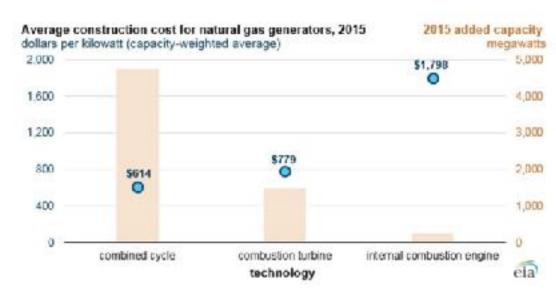
- Multi-pressure steam turbine to use the heat of the flue gasses to the lowest possible temperature
- Today 3 to 4 pressure levels


Scheme and T-s diagram for a dual pressure HRSG[1]


HRSG sequence optimization^[2]

EPFL CCGT Efficiency

- Combined cycle is a state of the art technology
 - 64 % is the new efficiency benchmark
- Means to improve the efficiency:
 - Enhancements in the GT cycle: pressure ratio, turbine inlet temperature, improved combustion, advanced materials
 - Advanced cooling technologies (i.e. external blade cooling with steam)
 - Reduced losses in rotating equipment
 - Advanced materials and process design for the HRSG Heat Recovery Steam Generator, including optimization
 - Supercritical steam / multi-pressure (3-4) steam cycles
 - Advanced plant configuration (i.e. intercooling, regenerative GT, etc.)

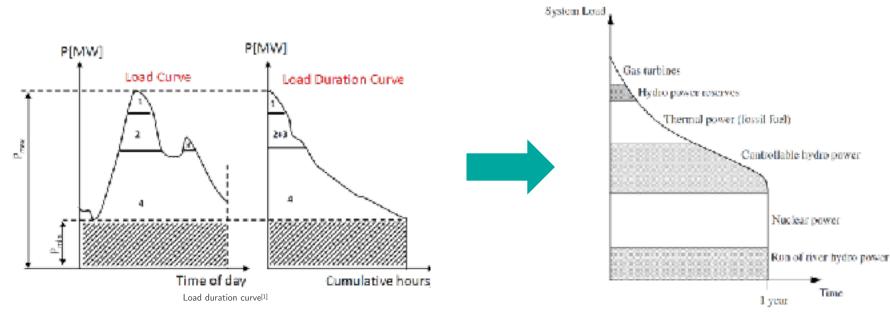

GTCC efficiency as a function of the gas turbine inlet temperature[1]

Declared efficiency of some GTCC available in GE Power Portfolio 2017^[2]

EPFL CCGT investment

Cost (k\$ 2020) = $3800(MWe)^{0.7}$ 400 MWe = 614 \$/kWe 2020 : up to 64 % LHV efficiency

https://www.eia.gov/todayinenergy/detail.php?id=31912



GT and CCGT in the market

GT and CCGT in the electrical market

- Gas turbine can be started within minutes and ramped up and down quickly
- Designed for base load applications, today suffering for RES dispatching priority.

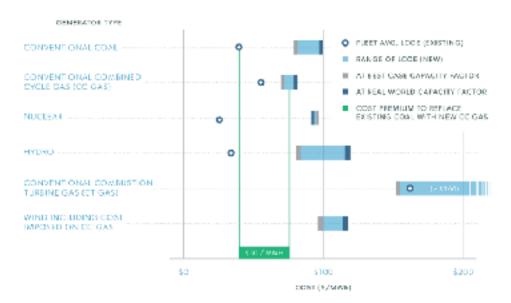
Duration curve showing the use of different kinds of power plants^[2]

GT and CCGT in the market

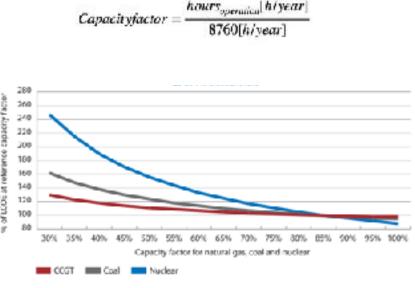
Levelized Cost of Electricity (LCOE)

Efficiency*cost of fuel

Fossil dependence


$$LCOE = \frac{\tau C_{inv} + C_{maint} + C_{op}}{E^{-}t_{op}} = \underbrace{\frac{i(i+1)^{n}}{(i+1)^{n}-1}C_{inv} + C_{maint} + (\dot{m}_{foot}^{-}LHV_{fuci})c_{op,fuci} + \dot{m}_{CO_{2}}^{-}c_{CO_{2}})t_{op}}_{E^{-}t_{op}}$$

- LCOE: [€/MWh_e]
- τ [-]: annualization factor
- C_{inv} [€]: total investment cost
- C_{maint} [€/y]: yearly Operation&Mainteance (O&M) cost, excluding fuel cost
- C_{on} [€/y]: yearly operating cost
- E- [MW_e]: installed electricity production capacity
- t_{op} [h/y]: hours of full load operation equivalent in 1 year
- $\mathbf{c_p}$ [-] := $\mathbf{t_{op}}/8760$: yearly capacity factor


- i [-]: discount rate
- n [years]: technology lifetime
- m_{fuel} [kg/h]: nominal flow rate of fuel input
- LHV_{fuel} [kWh_{fuel}/kg]: lower heating value of fuel
- c_{op,fuel} [€ /kWh_{fuel}]: fuel cost
- m_{CO2} [kg/h]: CO2 emissions
- c_{CO2}[€/kg_{CO2}]: CO₂ tax

GT and CCGT in the market LCOE

LEVELIZED COST OF ELECTRICITY



Levelized cost of electricity for different technologies

LCOE of coal, natural gas and nuclear as a function of capacity factor

Take-home message

− tuong-van.nguyen@epfl.ch

Tuong-Van Nguyen

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY


GAS TURBINE:

EPFL Take-home message

- Based on the Joule-Brayton cycle
- In real applications: open cycle with irreversibilities in turbomachines and pressure drops
- Efficiency ~42 %
- Efficiency improved by optimal pressure ratio, increase T_3 (blade cooling technologies), advanced cycle configuration (regeneration, intercooling, reheating)
- Different types: from heavy duty for base load to aeroderivative for peak loads
- Due to the high flexibility mainly exploited for peak loads

COMBINED CYCLE:

- Combination of a gas turbine and a steam cycle where the heat from the flue gases is recovered to generate steam
- The link between the gas turbine and the steam cycle is the HRSG, key plant component
- Efficiency up to 64 %
- Efficiency improved by enhanced GT, advanced materials and plant configuration, supercritical steam cycle
- Technology born for big power plants, base load and long operating time, now suffering due to RES volatility

