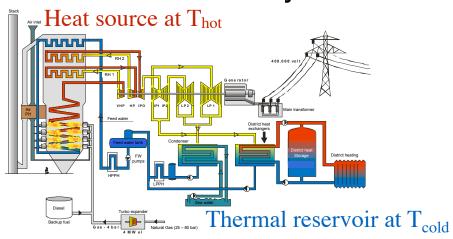


2016-2017


Fossil fuels and Combustion

Emanuela Peduzzi, François Maréchal Industrial Process and Energy Systems Engineering (IPESE) École Polytechnique Fédérale de Lausanne Heat source at T_{hot}

Thermal reservoir at T_{cold}

Steam Rankine Cycle

With current technologies, one can expect 55% of the best efficiencies calculated from thermodynamics

1st principle: Heat balance

$$\dot{E}^- = \dot{Q}^+ - \dot{Q}^-$$

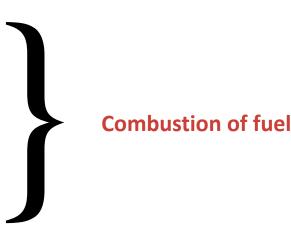
$$\eta_e = \frac{\dot{E}^-}{\dot{Q}^+}$$

2nd principle: Carnot If reversible process

$$\dot{E}_{max}^{-} = \dot{Q}^{+} * (1 - \frac{T_{cold}}{T_{hot}})$$

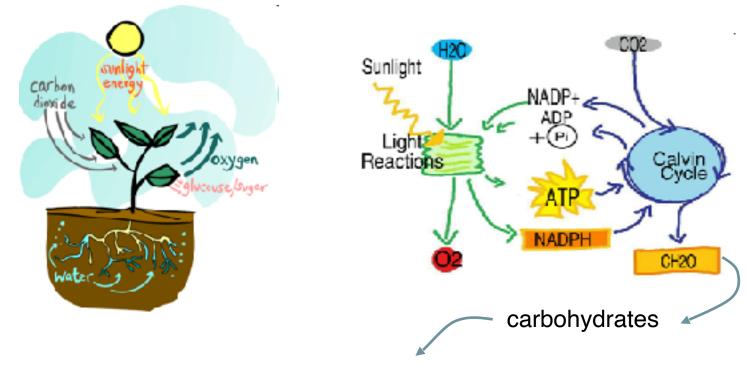
$$\theta_{Carnot} = \frac{\dot{E}_{max}^{-}}{\dot{Q}^{+}} = (1 - \frac{T_{cold}}{T_{hot}})$$

$$\dot{E}^{-} = \eta_{Carnot} * \theta_{Carnot} * \dot{Q}^{+}$$

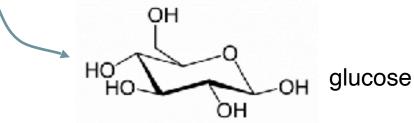

$$\eta_{Carnot} \approx 0.55$$

ENEWABI F ENERGY

EPFL What are the typical heat sources?

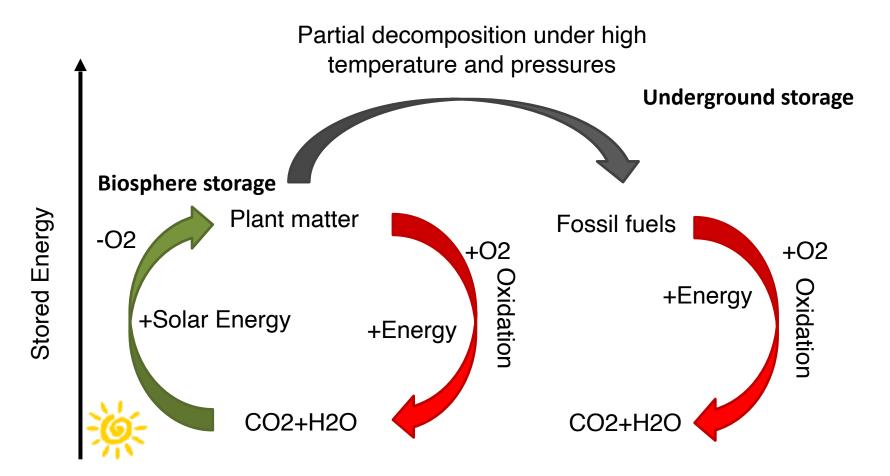

Combustion gases

- -Coal, fuel, gas combustion
- -Waste combustion
- -Biomass combustion
- -Gas turbines outlet gases
- Internal combustion engine
- Industrial Waste Heat
 - -Cement
 - -Steel industry
 - -Industrial sites
 - -Refineries
- Nuclear reaction
- Solar heat
- Geothermal heat


Combustion of fuel

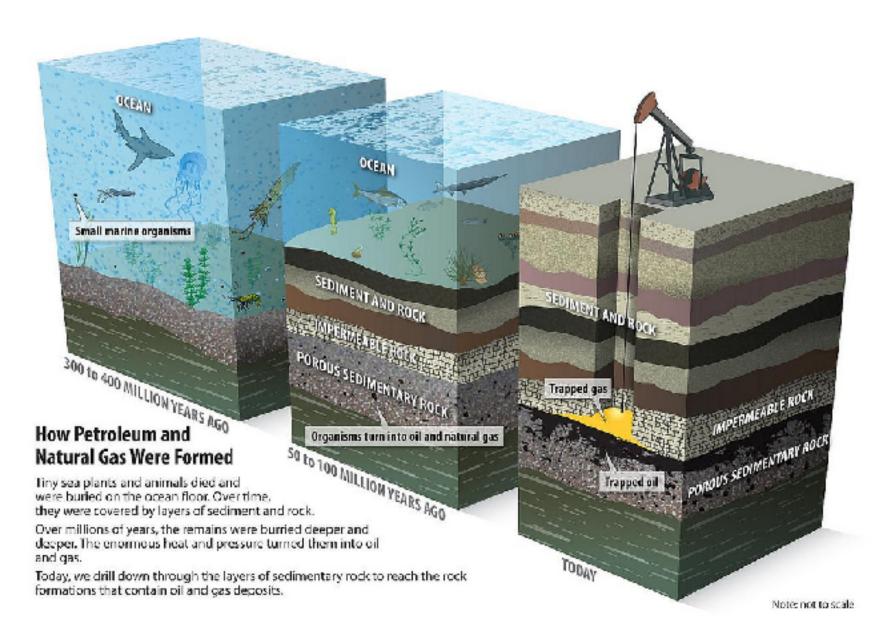
EPFL The origin of fuels in Nature – biomass – Photosynthesis

 $nCO_2+mH_2O + sunlight \rightarrow C_n(H_2O)_m+nO_2 \Delta H^0=+470 kJ/mol$

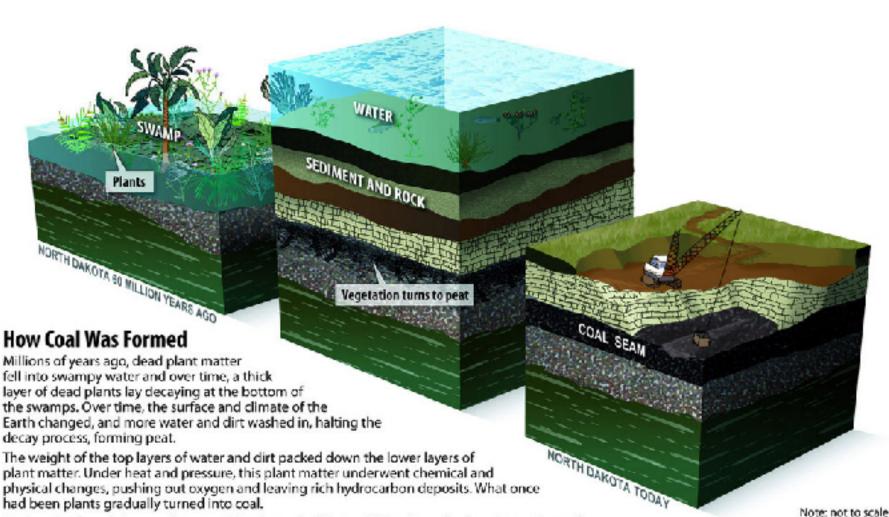

1961 Nobel Prize in Chemistry Calvin cycle, Calvin–Benson-Bassham (CBB) cycle

The efficiency of photosynthesis (kJ stored/kJ irradiation) is about 1%

(ATP) Adenosine-5'-triphosphate
(NADP+) Nicotinamide adenine dinucleotide phosphate


www.sheppardsoftware.com www.the-simple-homeschool.com

The energy stored in fossil fuels is the sun's energy captured Millions of years ago by plants


ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

EPFL The origin of fuels in Nature – petroleum and natural gas

http://ndstudies.gov/gr8/content/unit-i-paleocene-1200-ad/lesson-1-changing-landscapes/topic-2-geology/section-2-williston-basin

EPFL The origin of fuels in Nature – coal

http://ndstudies.gov/gr8/content/unit-i-paleocene-1200-ad/lesson-1-changing-

andscapes/topic-2-geology/section-2-williston-basin

Coal can be found deep underground (as shown in this graphic), or it can be found near the surface.

409 ENERGY CONVERSION AND RENEWABLE ENERGY

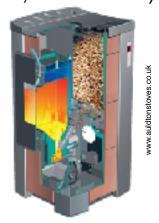
EPFL Combustion

Rapid **oxidation** of chemical compounds generating heat, or both light and heat; also, slow oxidation accompanied by relatively little heat and no light -

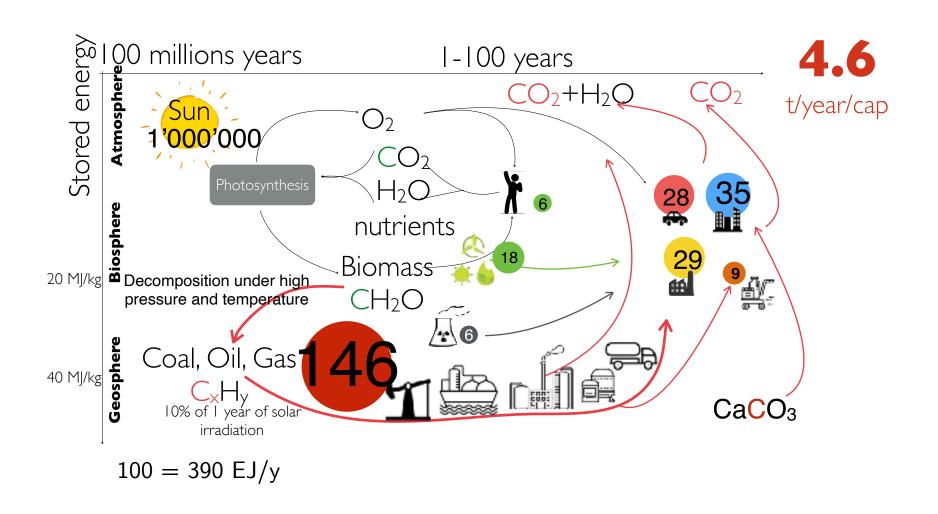
Combustion releases by oxidation reaction the chemical energy stored in the chemical bonds of the fuels

Known since more than 400.000 years

Fuel + Air => Combustion gases + Heat


Current applications:

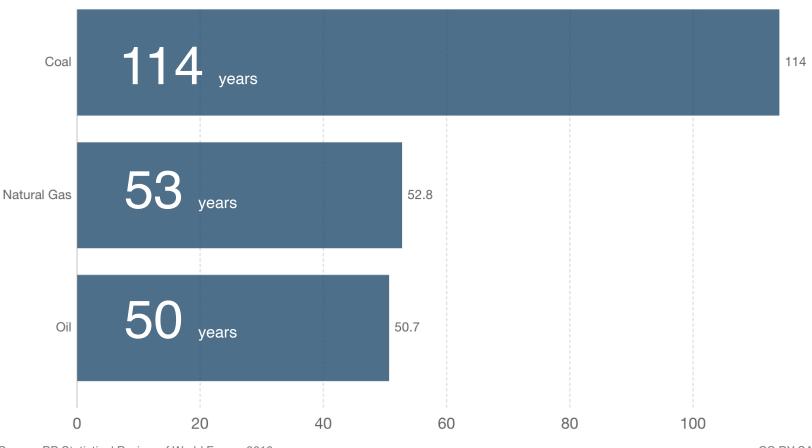
- Heating
- Electricity
- Cogeneration
- Mobility
- Military/Space (rockets, missiles, etc.)
- Hazards (fires, explosion, detonations)
- Catalytic combustion, Metal combustion, particle synthesis


boiler = combustion in a BOX (boiler)

1st law efficiency : 92% 2nd law efficiency : 16% (LHV, Theat=60°C)

EPFL

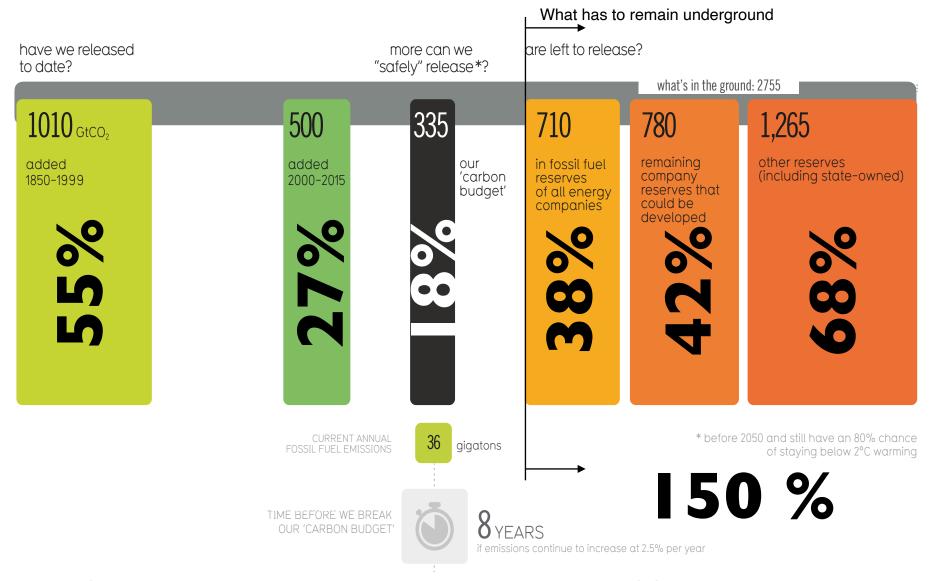
Fossil fuels supply up to 85% of the world energy consumption and 75 % of the electricity production


World balance 2013, adapted from http://sankey.iea.org

EPFL Fossil fuel reserves

Years of fossil fuel reserves left

Years of global coal, oil and natural gas left, reported as the reserves-to-product (R/P) ratio which measures the number of years of production left based on known reserves and annual production levels in 2015. Note that these values can change with time based on the discovery of new reserves, and changes in annual production

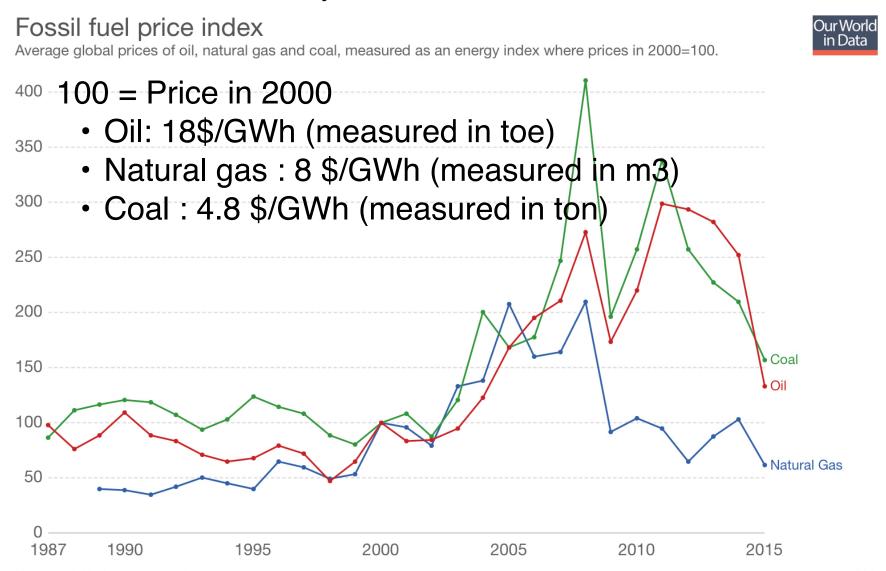

Source: BP Statistical Review of World Energy 2016

CC BY-SA

But the stone age has not ended due to the lack of stones ...

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

PFL The capacity of atmosphere to absorb CO2 is limited : our carbon budget


The fossil age will not end due to the lack of fossil resources ...

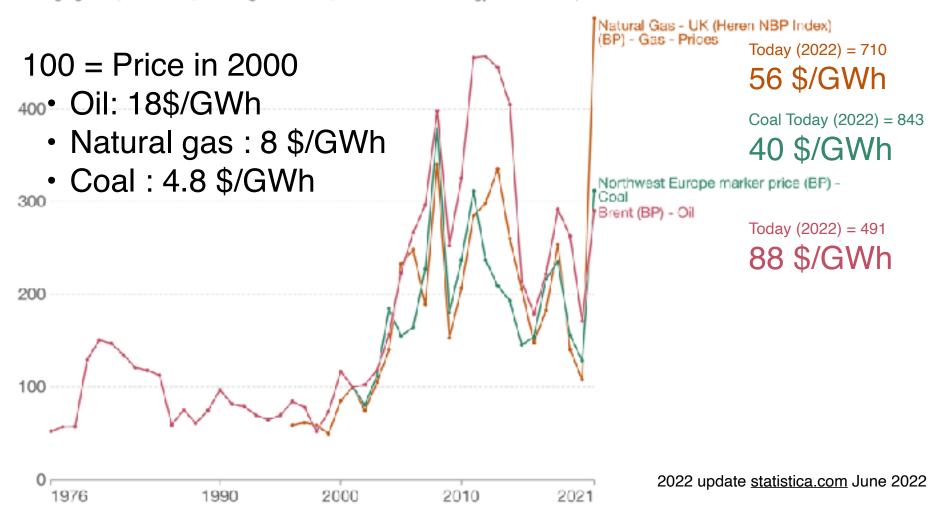
EPFL Fuel Characterization

- Availability
 - Storage tanks
 - Distribution grid
- Price (for industry CH 2017 (IEA))
 - Coal : 4 \$/GJ
 - Natural Gas: 17 \$/GJ
- Energy or Heating value (kJ/kg)
 - Lower (LHV)
 - Higher (HHV)
- Chemical composition (atoms)
- Oxygen requirements
- Adiabatic temperature of combustion

EPFL Fossil fuel cost : harvesting oil has a cost

800 bUSD invested each year for fossil resources extraction and distribution

CC BY-SA


Source: BP Statistical Review 2016

EPFL Prices change - order change

Fossil fuel price index, 1976 to 2021

Average global prices of oil, natural gas and coal, measured as an energy index where prices in 2001=100.

EPFL Chemical composition of a fuel

Atoms

1 molecule
$$-- C_vH_wS_xO_yN_z$$

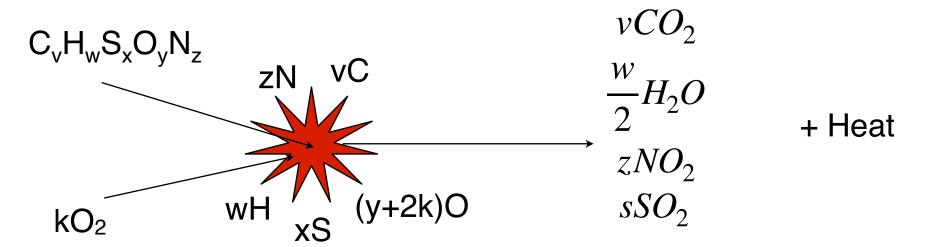
Stoechiometric coefficient : v atoms/molecule

1 kmol of a compound corresponds to 6,022·10²⁶ molecules or atoms (Na = number of Avogadro, universal constant).

Element/Atoms	Symbol	Molar mass in kg/kmol
Carbon	С	12.0112
Hydrogen	Н	1.008
Nitrogen	N	14.0067
Oxygen	Ο	15.9994
Sulfur	S	32.046

Molecule => Mass : kg/kmol

$$\tilde{M}_f = v \cdot \tilde{M}_C + w \cdot \tilde{M}_H + x \cdot \tilde{M}_S + y \cdot \tilde{M}_O + z \cdot \tilde{M}_N$$


EPFL Fuels are mixtures – chemical composition

example Natural gas - Grid

C	Compound	Formula	% vol	← pV=nRT
<u>N</u>	<u>/lethane</u>	<u>CH₄</u>	<u>89.16</u>	
Ε	thane	C_2H_6	3.42	Valuma aamaa
P	Propane	C_3H_8	0.93	Volume compose equivalent t
n	-butane	C_4H_{10}	0.14	Molar compos
1-	-butane	C_4H_{10}	0.2	moiai compoc
n	-pentane	C_5H_{12}	0.09	Mercaptans:
1-	-pentane	C_5H_{12}	0.07	ppb levels to serve "odorizer"
٨	litrogen	N_2	5.13	
C	Carbon dioxide	CO_2	0.86	

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

EPFL Combustion is an oxidation reaction

$$vC + vO_2 = vCO_2$$
$$wH + \frac{w}{4}O_2 = \frac{w}{2}H_2O$$
$$zN + zO_2 = zNO_2$$

$$xS + xO_2 = xSO_2$$

Minimum Oxygen needed Stoechiometric oxygen

$$k = v + \frac{w}{4} + z + x - \frac{y}{2}$$

In combustion, the oxygen is breaking the chemical bounds between atoms in the fuel molecule Atoms are conserved but form new molecules with higher oxidation level.

Note that combustion needs an energy of activation (spark!)

EPFL The oxidant : air

The air is composed of **78,09%**-vol. nitrogen (N₂), **20,95** %-vol. oxygen (O₂), 0,93 %-vol. argon (Ar) and 0,04 %-vol. CO₂, neon (Ne), helium (He), CH₄ and other gases. However, it is in practice sufficient to consider a composition of **79,05%-vol.** N₂ and **20,95** %-vol. d'O₂. In this case, the molar ratio if nitrogen over oxygen is equal to **3,773** kmol N₂/kmol O₂

Example
$$CH_4 + 2(O_2 + 3.773N_2) \rightarrow CO_2 + 2H_2O + 7.546N_2$$

$$v_f C_v H_w S_x O_y N_z + v_{O_2} (O_2 + 3.773 N_2) \rightarrow v_{CO_2} C O_2 + v_{H_2O} H_2 O + v_{SO_2} S O_2 + v_{N_2} N_2$$

Amount of N₂

$$\frac{v_{N_2}}{v_f} = \frac{z}{2} + 3.773 \frac{v_{O_2}}{v_f}$$
 en $\frac{\text{kmol N}_2}{\text{kmol C}_v H_w S_x O_y N_z}$

Volume increase ratio

$$f_{v} = \frac{v_{CO_{2}} + v_{H_{2}O} + v_{SO_{2}} + v_{N_{2}}}{v_{f} + 4.773 \cdot v_{O_{2}}}$$

E-409 ENERGY CONVERSION AND RENEWABLE ENER

EPFL Air is used as the oxidant : combustion gases composition

$$C_vH_wS_xO_yN_z$$
 fuel air

$$\left(\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}\right) * (1 + \lambda_a) * (0.21O_2 + 0.79N_2)$$

$vC + vO_2 = vCO_2$

$$wH + \frac{w}{4}O_2 = \frac{w}{2}H_2O$$

$$zN + zO_2 = zNO_2$$

$$xS + xO_2 = xSO_2$$

λ_a : air excess

All the expressions are molar expressions

1 kmol of a compound corresponds to 6,022·10²⁶ molecules or atoms (number of Avogadro, universal constant).

fumes/ combustion gases

$$\left(\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}\right) * (1 + \lambda_a) * (0.79N_2) + \left(\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}\right) * (\lambda_a) * (0.21O_2) + vCO_2 + \frac{w}{2}H_2O + zNO_2 + xSO_2$$

Oxygen is delivered by air from the atmosphere, to be sure that a molecule of oxygen meets the atoms of the broken fuel, one typically adds an excess of oxygen and therefore an excess of air.

The combustion gases therefore are the mix of the combustion gases, the unreacted oxygen and the nitrogen from the air used.

EPFL Heat of combustion

$$C_vH_wS_xO_yN_z$$
 fuel air

$$\left(\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}\right) * (1 + \lambda_a) * (0.21O_2 + 0.79N_2)$$

$$vC + vO_2 = vCO_2$$

$$wH + \frac{w}{4}O_2 = \frac{w}{2}H_2O$$

$$zN + zO_2 = zNO_2$$

$$xS + xO_2 = xSO_2$$

Enthalpy of formation of the fuel molecule is used to reconstruct the combustion gases molecules

The balance is the heat of reaction (kJ/kg)

The remaining heat of reaction is used to heat the combustion gases to T_{ad} the adiabatic temperature of combustion that will release the heat when being cooled down to ambiant conditions by heat exchange

fumes @Tad

$$(\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}) * (1 + \lambda_a) * (0.79N_2) + (\frac{v + \frac{w}{4} + z + x - \frac{y}{2}}{0.21}) * (\lambda_a) * (0.21O_2) + (vCO_2 + \frac{w}{2}H_2O + zNO_2 + xSO_2)$$

The adiabatic temperature is never existing because it assumes that the heat of formation only heats the combustion gases which means that no heat is leaving the system boundaries (adiabatic system). In reality, heat transfer using radiative and convective heat exchange occurs simultaneously to the combustion reactions reducing therefore the temperature at which the reactions take place.

© ME-409 ENERGY CONVERSION AND RENEWAE

EPFL Heating value

 Amount of heat recovered by cooling the hot gases from the adiabatic temperature of combustion to the reference conditions (25°C, 1 atm), considering that both air and fuel are taken in reference conditions.

$$LHV_{fuel} = \int_{T_0}^{T_{ad}^o} \frac{\dot{m}_{cg}^o}{\dot{m}_{fuel}} cp_{cg}^o(T) dT = \int_{T_0}^{T_{ad}} \frac{\dot{m}_{cg}}{\dot{m}_{fuel}} cp_{cg}(T) dT$$

$$\frac{\dot{\tilde{m_{cg}}}}{\dot{m_{fuel}}}cp_{cg} \approx \frac{LHV_{fuel}}{T_{ad} - T_{0}}$$

T_{ad}: **Adiabatic Temperature of Combustion**: temperature reached by the fumes heated by the release of the heat of reaction

EPFL Heating value

- Higher Heating Value : HHV (kJ/kg) or PCS
 - Amount of energy obtained by cooling to 25°C at standard conditions (1 atm) the fumes obtained by the combustion of one unit of fuel with stoichiometric air (air excess = 0) both taken at 25°C and 1 atm.
 - With higher heating value, the water produced during the combustion is condensed, i.e. released in the liquid form.
- Lower Heating Value : LHV (kJ/kg) or PCI
 - assumes that the water formed in the combustion will not condense
 - LHV = HHV (heat from the condensation of the water formed during the combustion at 25°C)

$$\begin{split} LHV &= HHV - \Delta H_{vap}^0 \Delta m_{H_2O_{comb}^*} \\ \Delta H_{vap}^0 &= 44332 (kJ/kmol_{H_2O}), T = 25^\circ C, P = 1bar \\ \Delta m_{H_2O_{comb}^*} [kmol_{H_2O}/kg] \quad \text{water produced by combustion} \end{split}$$

EPFL Heating values = Energy of formation of molecules

							• . • .				
Fuel	State						LHV [kJ/kmol]	HHV [kJ/kmol]	LHV [kJ/kg]	HHV [kJ/kg]	
graphite	solide	C	+	O ₂	↔	CO ₂	393 500	393 500	32 760	32 760	
oxyde de carbone	gaz	CO	+	O ₂	\leftrightarrow	CO ₂	283 000	283 000	10 100	10 100	
hydrogène	gaz	H ₂	+	O ₂	↔	H ₂ O	241 800	285 900	120 000	141 800	
soufre	solide	S	+	O ₂	↔	SO ₂	296 600	296 600	9 250	9 250	
méthane	gaz	CH ₄	+	2 O ₂	÷	CO ₂ + 2 H ₂ O	802 300	890 400	50 000	55 500	
acéthylène	gaz	C ₂ H ₂	+	O ₂	\leftrightarrow	2 CO ₂ + H ₂ O	1 256 000	1 300 000	48 200	49 900	
éthylène	gaz	C ₂ H ₄	+	3 O2	↔	2 CO ₂ + 2 H ₂ O	1 323 000	1 411 000	47 200	50 300	
éthane	gaz	C ₂ H ₆	+	$\frac{7}{2}$ O ₂	↔	2 CO ₂ + 3 H ₂ O	1 428 000	1 560 000	47 500	51 900	
heptane	liquide	C ₇ H ₁₆	+	11 O ₂	←	7 CO ₂ + 8 H ₂ O	4 465 000	4 817 000	44 600	48 100	
octane	liquide	C ₈ H ₁₈	+	$\frac{25}{2}$ O ₂	↔	8 CO ₂ + 9 H ₂ O	5 074 000	5 471 000	44 400	47 900	
méthanol	liquide	СН ₃ ОН	+	O ₂	↔	CO2 + 2 H ₂ O	638 400	726 600	19 900	22 700	
éthanol	liquide	C ₂ H ₅ OH	+	3 O ₂	÷	2 CO2 + 3 H ₂ O	1 234 800	1 367 100	26 800	29 700	

EPFL Heating values of typical fuels (mixture of molecules)

	Tad ı	m02	LHV	
	K	kg air/kg	kJ/kg	
Gaz naturel	2270	13,879	39680	Natural gas
Belgique	2290	15,693	44945	Belgium year 2000
Mer du Nord	2292	16,735	47900	Nord sea
Gaz de charbon	2373	8,557	27270	Coal gas
Essence	2431	15,003	47798	gasoline
Vaporizing oil	2389	15	46105	vaporising oil
Diesel	2426	14,583	45867	Diesel
Kérozène	2429	14,826	46924	Kerosene
Fuel léger	2425	14,454	45316	Light fuel oil
Fuel lourd	2423	14,264	44500	Heavy fuel oil
Anthracite	1819	11,53	33220	Anthracite coal
Bitume	1954	10,21	31520	Bitume
Lignite	2111	7,23	25450	Coal lignite

EPFL Estimating Heating Values

Solid fuels

Higher heating value from final composition (% mass)

$$HHV = 35.17c_C + 116.26c_H - 11.10c_O + 10.47c_S + 6.28c_N \quad [MJ/kg_{dry}]$$
$$c_i [\% mass]$$

– Lower heating value :

$$LHV_{dry} = HHV - \frac{\tilde{m}_{H_2O}}{2} \Delta h_{vap}$$
$$\Delta h_{vap} = 2441[kJ/kg]$$

Humidity (ar : as received ; db dry basis)

$$LHV_{ar} = LHV_{db} \cdot \left(1 - \frac{MC}{100}\right) - \frac{MC}{100} \cdot \Delta H_{vap}$$
 MJ/kg MC Moisture content on a wet basis (kg/kg in %)

The heat of reaction is first used to evaporate the humidity, this decreases the heat available in the combustion gases and therefore the adiabatic temperature of combustion. This heat can only be recovered at low temperature when condensing the water that is in the combustion gases.

A reduction of the adiabatic temperature of combustion may prevent the activation energy to be reached and therefore the combustion will be stopped or high quality fuel needs to be used,

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

EPFL BIOMASS: Typical heating value

substance	humidity1	dity ¹ composition							LHV _{dry}	
name	ID in [4]		C	H	O	N	S	ash		
		%wt			%	wt			MJ/kg _{dry}	MJ/kg_{dry}
municipal solid waste	1518	39	31.0	1.0	21.6	1.1	0.8	44.5	9.7	9.3
wet sewage sludge	2810	73	27.0	3.8	17.2	3.2	0.9	47.8	12.3	10.7
freshwater biomass	2319	84	54.6	6.7	23.4	6.7	0.4	8.2	24.9	23.3
fruit/vegetable waste	2811	7	46.5	6.1	38.5	0.7	0.5	7.7	19.2	17.8
cattle manure	1885	13	13.0	1.5	10.1	1.5	0.3	73.6	5.3	4.1
pig manure	1366	92	35.4	4.5	21.5	2.8		35.8	15.2	13.7
poultry manure	1872	4	35.9	5.0	27.4	3.6	0.8	27.4	15.7	14.2
sugarbeet	417	77	44.5	5.9	42.8	1.8	0.1	4.8	17.9	16.5
bagasse	894	10	48.6	5.9	42.8	0.2		2.4	19.2	17.9
grass	568	40	48.0	5.5	41.1	0.5	0.1	4.8	18.7	17.5
vine shoots	1253		46.9	5.9	44.2	0.8		2.2	18.4	17.1
straw	2129	14	47.7	5.9	41.0	0.7	0.2	4.5	19.1	17.7
wood	own data	50	50.7	5.7	42.7	0.2		0.7	19.8	18.5
lignin	2000	75	62.1	5.9	31.1	0.2	0.1	0.6	25.3	24.0
rapeseed	2156	5	58.7	8.6	23.5	3.7		5.5	28.3	26.3

^[4] Phyllis, database for biomass and waste. Energy research center of the Netherlands, http://ecn.nl/phyllis.

EPFL Fuels and CO2 emissions

Fuel	Liquid density	Specific carbon content	Spec Energy o			rific CO ₂ emis	Specific CO ₂ emission (amount of energy basis)			
	kg/l	kg _C /kg _{fuel}	kWh/kg _{fuel}	Btu/lb _{fuel}	Kg _{CO2} /kg _{fuel}	Kg _{CO2} /gal _{fuel}	lb _{CO2} /gal _{fuel}	kg _{CO2} /kWh	kg _{CO2} /GJ	Ib _{CO2} /mill Btu
Methane (natural gas)		0.75	15.4	23900	2.75			0.18	49.6	115
Propane	0.510	0.82	13.8	21300	2.99	5.78	12.7	0.22	60.4	140
Butane	0.564	0.83	13.6	21100	3.03	6.47	14.3	0.22	61.7	144
LPG (wt of C3=C4)	0.537	0.82	13.7	21200	3.01	6.12	13.5	0.22	61.0	142
Gasoline	0.737	0.90	12.9	19900	3.30	9.20	20.3	0.26	71	165.3
Kerosene (Jet)	0.821	0.82	12.0	18500	3.00	9.33	20.6	0.25	70	162.5
Diesel	0.846	0.86	12.7	19605	3.15	10.1	22.3	0.25	69	160.8
Heavy fuel oil (No.6/Bunker C)	0.980	0.85	11.6	18000	3.11	11.6	25.5	0.27	75	173.3
Petroleum coke		0.89	9.4	14500	3.26	14.7	32.4	0.35	97	225.1
Coal:									0.0	227.3
Anthracite		0.92	9.0	14000	3.37			0.37	104	229.5
Bituminous		0.65	8.4	13000	2.38			0.28	79	231.7
Subbituminous		0.4	6.8	10500	1.47			0.22	60	233.9
Lignite		0.3	3.9	6000	1.10			0.28	79	236.1
Coke		0.77	7.2	11200	2.82			0.39	108	251.5
Peat (dry)1)		0.52	4.7	7300	1.91			0.40	112	260.7
Ethanol fuel (E100) ²⁾	0.789	0.52	8.3	12800	1.91	5.71	12.6	0.23	64	149.6
Methanol fuel (M100) ²⁾	0.791	0.37	5.5	8500	1.37	4.11	9.1	0.25	70	162.2
Biodiesel (B100) ²⁾	0.880	0.78	11.3	17400	2.85	9.48	20.9	0.25	70	162.8
Wood 1) 2)		0.50	4.5	7000	1.83			0.41	113	263.1
Bio energy ²⁾								0 2)		

https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html

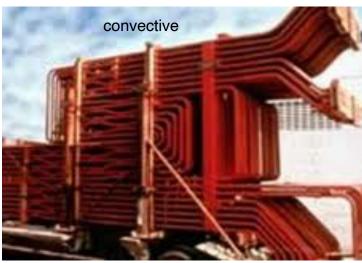

EPFL Using the heat of combustion : heat exchange

Boilers

$$\dot{Q}_b = \dot{Q}_{rad} + \dot{Q}_{conv} = \dot{m}_{cg} \int_{T_{ch}}^{T_{ad}} cp_{cg} dT - \dot{Q}_{loss}$$

Heat exchange

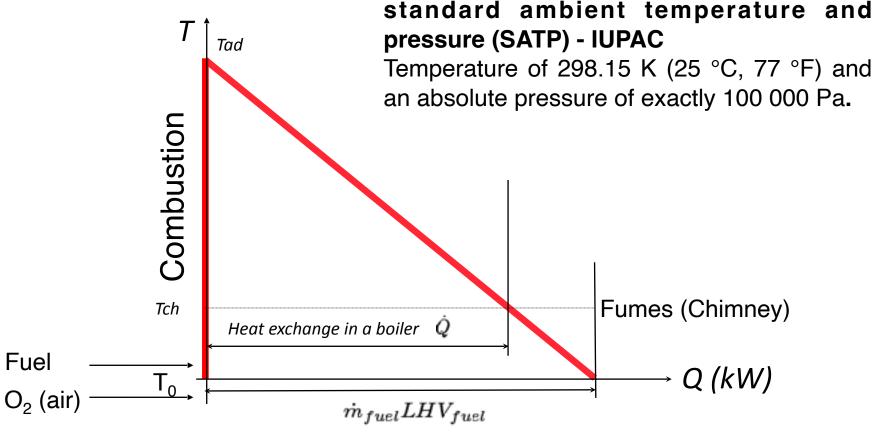
Burners


Radiative exchange (T > 850 C)

$$\dot{Q}_{rad} = GS(T_{gas}^4 - T_{water}^4)$$

Convective exchange

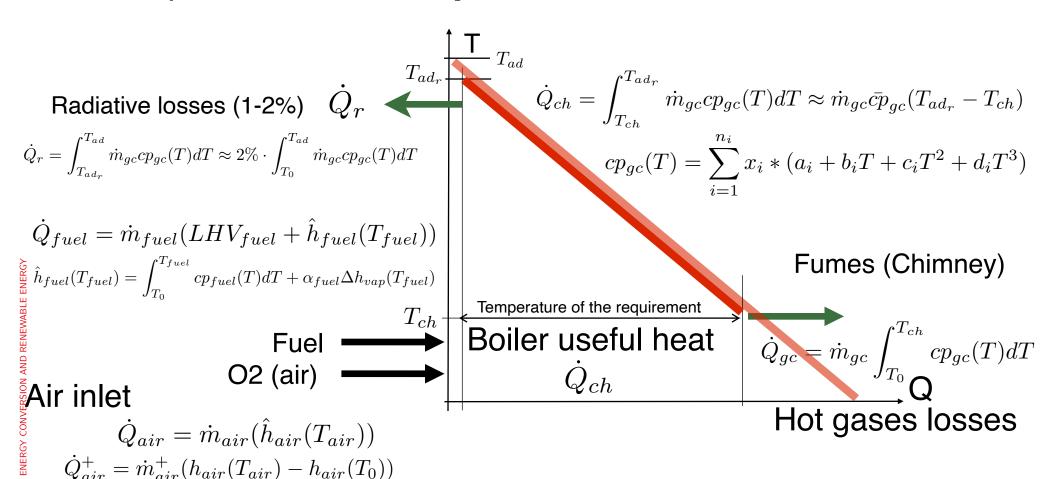
$$\dot{Q}_{conv} = UA\Delta T_{lm}$$



Heat of combustion is exchanged via heat exchangers to a fluid that is heated (e.g., steam). There are two mechanisms for the heat transfer: the radiative at high temperature and the convective at low temperature. After the heat exchange, the combustion gases leave the boiler in the chimney.

http://www.industrial-lima.com.pe/web/images/stories/sobrecalentador.jpg http://www.cleaverbrooks.com/templates_products/

EPFL Heat recovery



$$\dot{Q} = \int_{T_{ch}}^{T_{ad}} \dot{m}_{cg} c p_{cg}(T) dT \approx \dot{m}_{cg} \bar{c} p_{cg}(T_{ad} - T_{ch})$$

$$_{kW \,=\, \frac{kJ}{s} \,=\, \frac{kg}{s} \,*\, \frac{kJ}{kgK} \,*\, K}$$

Boiler efficiency calculation

Useful heat depends on the temperature of the heat requirement

$$\dot{Q}_{ch} = \dot{Q}_{fuel} + \dot{Q}_{air} - (\dot{Q}_r + \dot{Q}_{gc})$$

In a boiler fuel and air can be at another temperature or conditions than the standard conditions

EPFL Boiler efficiency

Boiler Losses
$$\dot{Q}_p = \dot{Q}_r + \dot{Q}_{gc}$$

Heat loss at the stack
$$\dot{Q}_{gc}=\dot{m}_{gc}\int_{T_{ad_T}}^{T_{ch}}cp_{gc}(T)dT$$
 Radiative losses $\dot{Q}_r=\int_{T_{ad_T}}^{T_{ad}}\dot{m}_{gc}cp_{gc}(T)dT \approx 2\%\cdot\int_{T_0}^{T_{ad}}\dot{m}_{gc}cp_{gc}(T)dT$

Useful heat
$$\dot{Q}_{ch} = \dot{Q}_{fuel} + \dot{Q}_{air} - (\dot{Q}_r + \dot{Q}_{gc})$$

 $\dot{Q}_{fuel} = \dot{m}_{fuel}(LHV_{fuel} + \dot{h}_{fuel}(T_{fuel}))$ Energy from the fuel

Heat from the air $\dot{Q}_{air}^{+} = \dot{m}_{air}^{+} (h_{air}(T_{air}) - h_{air}(T_{0}))$

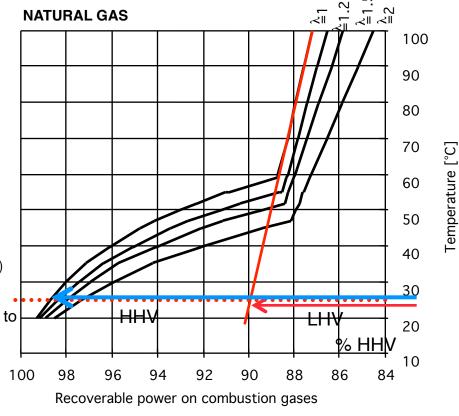
Boiler efficiency: typical values are from 85% to 90%

$$\eta_{ch} = \frac{\dot{Q}_{ch}}{\dot{Q}_{fuel} + \dot{Q}_{air}} = 1 - \frac{\dot{Q}_{p}}{\dot{Q}_{fuel} + \dot{Q}_{air}}$$

EPFL Water condensation

When temperature decreases, there is a point where water starts condensing.

Water partial pressure :


$$T_{sat}(\frac{v_{H_2O} * P}{\sum_{i=1}^{n_s} v_i})$$

Saturation temperature is the temperature at which the partial pressure of water is equal to the saturation pressure

$$x^{sat} = \frac{P^{sat}}{P}$$

$$P^{sat}[atm] = 0.001315 \cdot 10^{(8.07131 - \frac{1730.63}{233.426 + T[^{\circ}C]})}$$

The heat that can be recovered by condensing the water is equal to
$$\dot{Q}_{H_2O}=327.6(374-T)^{0.3425}[kJ/kg]$$

In the combustion gases, the water does not occupy the whole space, therefore it sees a pressure (the partial pressure) that is different from the total pressure. xThe partial pressure is calculated knowing the molar concentration of the water in the mixture.

The water will condense if its partial pressure is below the saturation pressure for the temperature of the mixture.

The water condenses when it sees a cold part with a temperature lower than its saturation temperature in the heat exchanger or outside

As the gas contains CO2, the produced water is acidic and therefore creates corrosion. Low temperature heat exchangers in condensing boilers have to be protected from corrosion by using special materials. Due to the corresponding cost increase, condensations is typically avoided.

The temperature of condensation is lower than 100 °C which means that the combustion gases have to see tubes with temperatures lower than the saturation Etemperature. The liquid is forming on the tubes meaning that the temperature of the combustion gas flow will not be saturated in water.

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

EPFL Pollutants that can be produced in addition

Sulphur: kinetic control

$$0.95 * sS + 0.95 * sO_2 = 0.95 * sSO_2$$

$$0.05 * sS + 0.05 * \left(\frac{3}{2}\right) sO_2 = 0.05 * s * SO_3$$

$$0.05 * s * SO_3 + 0.05 * s * H_2O = 0.05 * s * H_2SO_4$$

Affinities with water (production of H2SO4 in the liquid phase) is increasing the saturation temperature of water in the presence of sulphur in the gas phase => higher chimney temperatures are needed to avoid highly corrosive gases (+70°C) This is penalising the efficiency of the boiler.

 $NO_x = NO, N_2O, NO_2$ Nitrogen is coming from the fuel or from the air the oxidation of N2 occurs at high temperature (>1500°C) and is frozen (do not go back to N2 + O2) at lower temperatures

Unburnt = unburnt fuel (CO, tars) when the combustion is no complete or goes to fast Ashes and dust for solid fuels (wood, coal, waste) which contains minerals in this composition

EPFL Importance of Tstack

UHV = useful heating value

$$UHV[kJ/kg_{fuel}] = \int_{T_{ad}}^{T_{stack}} m_{cg}[kg_{cg}/kgfuel] \cdot cp_{cg}[kJ/kg_{cg}/C] \cdot dT$$

	Tad	mO2	⊤stack	_HV	UHV	
	K	kg air/kg	K	kJ/kg	kJ/kg	
Gaz naturel	2270	13,879	374	39680	38163	Natural gas
Belgique	2290	15,693	374	44945	43225	Belgium year 2000
Mer du Nord	2292	16,735	374	47900	46047	Nord sea
Gaz de charbon	2373	8,557	376	27270	26246	Coal gas
Essence	2431	15,003	438	47798	44665	gasoline
Vaporizing oil	2389	15	438	46105	43023	vaporising oil
Diesel	2426	14,583	439	45867	42838	Diesel
Kérozène	2429	14,826	438	46924	43850	Kerosene
Fuel léger	2425	14,454	440	45316	42303	Light fuel oil
Fuel lourd	2423	14,264	441	44500	41507	Heavy fuel oil
Anthracite	1819	11,53	434	33220	30256	Anthracite coal
Bitume	1954	10,21	435	31520	28929	Bitume
Lignite	2111	7,23	438	25450	23488	Coal lignite

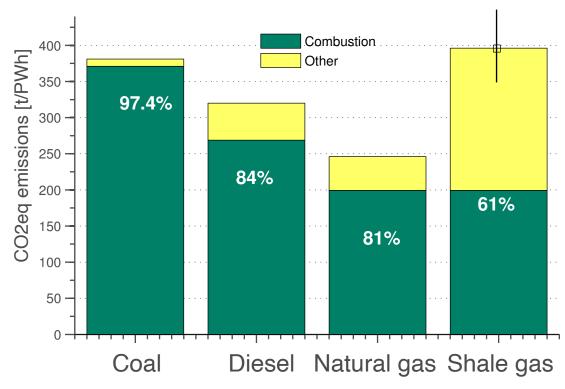
EPFL Environmental impact of the use of combustion

Importance of the life cycle

Extraction

Conditionning

Transport


Refining

Distribution

Combustion

©2 eq : is a measure of the global warming potential of the emissions over the overall conversion chain up to combustion. The global warming potential is considering not only the CO2 emissions but also other emissions like CH4 (that has a GWP of 20 CO2 eq), NOx and other gases in the complete life cycle chain.

SY CONVERSION AND RENEWABLE ENERGY

EPFL Life cycle assessment : emissions before the use

15 to 40% of the CO2 emissions have been made to prepare the fossil fuels

		Natural gas	Wood	Gasoline	Diesel
	kg/Nm3	0.7	240	0.8	0.8
LHV	MJ/kg	50	17.8	44.4	43.4
	GJ/Nm3	0.0359	5.3-9.6	35.5	34.7
CO2	g CO2/MJ	49.3	0	67	72
supply eq CO2	g CO2/MJ	11.6	1.4-1.8 (production) 0.19 (20 MW) -1.1(320 MW) 1.6 - 2.9	16.7	13.4
	g CO2/MJ	60.9	1.6-2.9	83.7	85.4
		19%	-	20%	16%
Cost	cts/kWh	10	3 - 7.5	18.6	19.2
industry	cts/kWh	3.4			