

École polytechnique fédérale de Lausanne

Lausanne – 21/11/2022

EPFL Outline

- Introduction
 - What is wind energy?
 - Wind energy today and future potential
 - The resource
- Physics of wind energy
 - Physics of wind energy: key equations
 - Betz limit
 - Forces: lift and drag
- Wind Turbines & energy systems
 - Types of wind turbines
 - Integration in the energy system
- Take home message

Introduction

EPFL What is wind energy?

- Wind can be defined as "air in motion":
 - 1. Differences in pressure (pressure gradient force), caused by uneven solar heating on the earth surface
 - 2. Rotation of the Earth: Coriolis force
 - 3. Friction close to the Earth surface

- Air passing through control volume V in dt:
- Mass flow through an area A:
- Kinetic energy contained in the air:

rgy contained in the air:
$$E_{k,air}=\frac{1}{2}m_{air}v_0^2=\frac{1}{2}\rho Av_0^3\mathrm{d}t$$

$$\dot{\Xi}_{k,air}=\frac{1}{2}m_{air}v_0^2=\frac{1}{2}\rho Av_0^3\mathrm{d}t$$

• Power:
$$\dot{E}_{k,air} = \frac{\mathrm{d}E_{k,air}}{\mathrm{d}t} = \frac{1}{2}\rho A v_0^3$$

• Force (drag):
$$F_{air} = \frac{\dot{E}_{k,air}}{v_0} = \frac{1}{2} \rho A v_0^2$$

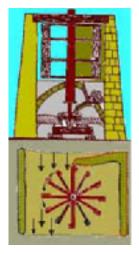
EPFL What is wind energy?

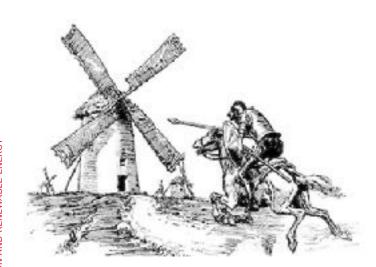
• Historically, wind has been used for:

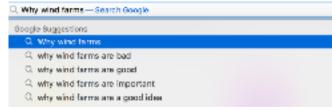
• ~3000BC: sailboats (Babylonians, Egyptians)

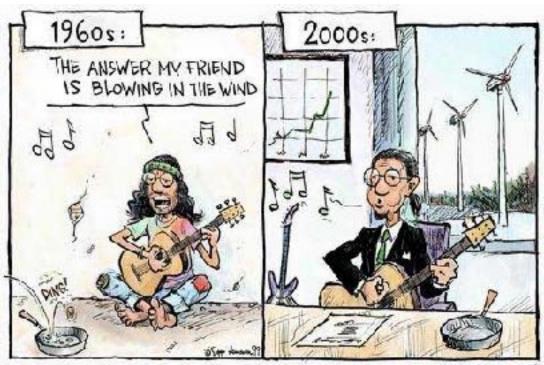
• ~2000BC: pumping water

• ~1000AD: milling (Europe)

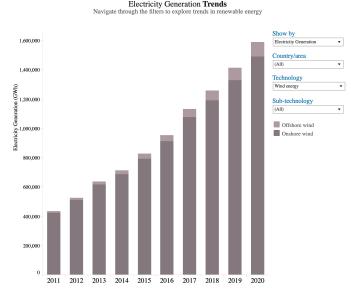

Mechanical work







EPFL What is wind energy?

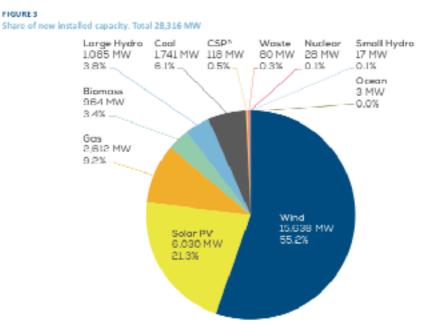


www.seppo.net

EPFL Wind energy today

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

- World Wind production: 1870 TWh/y (2021)
 - 6.5% of world electricity supply
- IIASA, practical potential (onshore): 20'000-100'000 TWh/y
- IEA: 18% of world electricity supply in 2050
- Potential depends on wind speed...



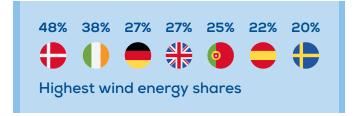

DIRENA Visit www.irena.org/Statistics for more information

FIGURE 3

EPFL Wind energy in Europe

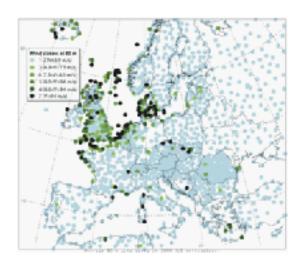
- Total wind capacity in EU: 220 GW_e (2020), of which 25 GW_e offshore
- +14 GW_e /year installed in 2010-2020
- 16% of electricity demand

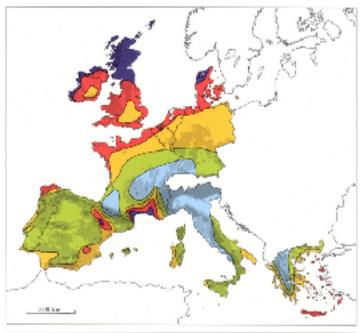
EPFL Wind energy Europe 2021-2025

FIGURE 13
New and total (cumulative) installations in Europe - WindEurope's Realistic Expectations Scenario

Onshore: 72% of new installations

Swiss Wind energy

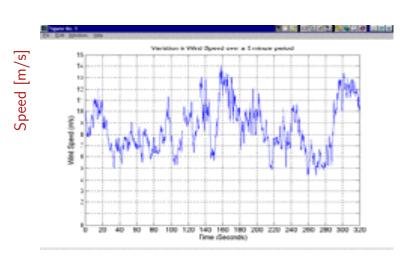

- Swiss final energy consumption: 207 TWh/y (2020)
- Swiss electricity consumption: 55.5 TWh₂/y (2020)
- Wind electricity production: 0.15 TWh_e/y (2020)
- →□ Only 41 turbines (86.5 MW_e) installed in CH
- → Target 2050 : 1.2 TWhe/y (2050)
 - ~ 250 Turbines (380 MWe)



EPFL The resource

$$\dot{E}_{k,air} = \frac{\mathrm{d}E_{k,air}}{\mathrm{d}t} = \frac{1}{2}\rho A v_0^3$$

• The main factor is the wind speed!


Shelicerel terrorial		Open placin ²		At a sea coast*		Open meth		This and ridge."	
Dr.	West of	20.0	Non-	MAT	Water P	DOM:	William St.	66.6-1	War-1
>4.0	> 250	> 5.5	> 560	> 84	> 5/6	1.80	> 800	> 31.0	> 1500
63-63	100-200	68-58	000-500	20-85	400-700	8.040	6004800	10041.8	130041800
45-63	100-100	55-65	200-200	8.0-7.0	200-000	7.000.0	430 (00)	5.0.10.0	709-1100
95-45	90-100	0.010.0	100 900	80.80	180,880	884.0	100.430	24-68	4405-708
< 3.5	< 40	< 4.5	< 160	A 5.6	< 15%	< 8.5	< 290	< 7.0	< 400

Source: Rise DTU National Laboratory, Danmark

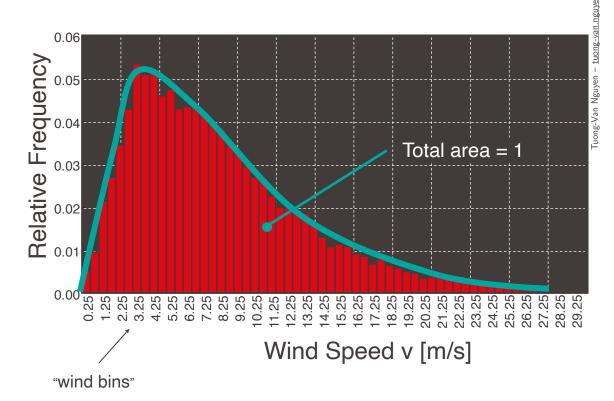
EPFL The resource

 To be able to predict the performance of a wind turbine at a particular site the developer must know the characteristics (speed and direction) of the resource at the location in question

- Speed variation and time scales:
 - 1. Yearly
 - 2. Seasonal
 - 3. Synoptic (= a passing weather system)
 - 4. Day
 - 5. Seconds (turbulence)
- Influences on:
 - Electricity production forecast (1&2)
 - Wind turbine design (all)

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

Introduction The resource

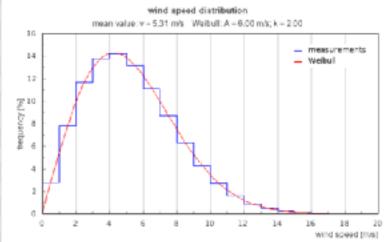

Wind speed distribution at a given site:

Weibull probability density function:

$$f(v) = \left(\frac{k}{c}\right) \cdot \left(\frac{v}{c}\right)^{k-1} \cdot \exp\left[-\left(\frac{v}{c}\right)^{k}\right]$$

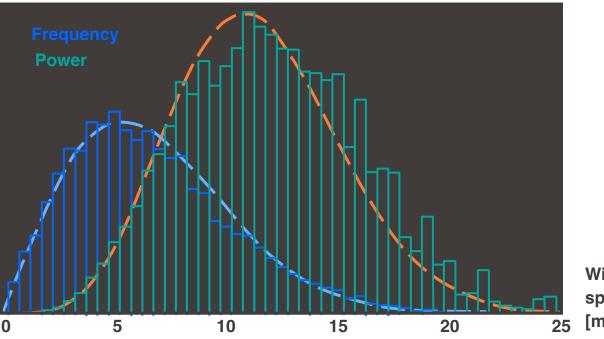
k: shape parameter

c: scale parameter


Introduction The resource

 Tool to calculate the PDF parameters:

https://wind-data.ch/ tools/weibull.php?lng=en


Class	Frequency in %
0 - 1 m/s	2.75
1 - 2 m/s	7.80
2 - 3 m/s	11.61
3 - 4 m/s	13.70
4 - 5 m/s	94.90
5 - 6 m/s	13.16
6 - 7 m/s	11.14
7 - 8 m/s	8.72
8 - 9 m/s	6.34
9 - 10 m/s	4.99
10 - 11 m/s	2.73
11 - 12 m/s	1.62
12 - 13 m/s	0.90
13 - 14 m/s	0.43
14 - 15 m/s	0.24
15 - 16 m/s	0.11
16 - 17 m/s	0.05
17 - 18 m/s	0.02
18 • 19 m/s	0.01
19 - 20 m/s	0.00
Sum	100.00

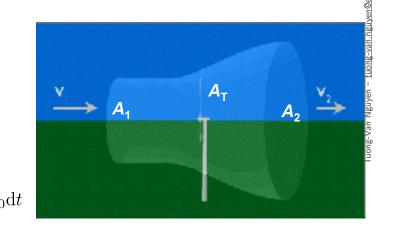
Introduction The resource

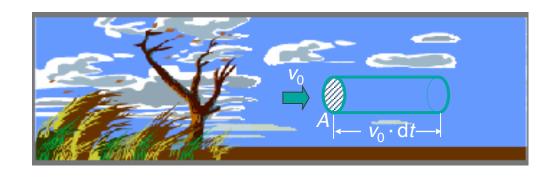
• Remember that the power is proportional to v^3 :

Wind speed [m/s]

Physics of wind energy

EPFL Physics of wind energy


- Additional elements we need:
 - Mass conservation
 - Bernoulli's principle


- Kinetic energy, power, force
 - Air passing through control volume V in dt: $m_{air} = \rho V = \rho A v_0 dt$
 - Mass flow through A: $\dot{m}_{air} = \rho A v_0$
 - Kinetic energy contained in the air:

$$E_{k,air} = \frac{1}{2} m_{air} v_0^2 = \frac{1}{2} \rho A v_0^3 dt$$

• Power:
$$\dot{E}_{k,air}=rac{\mathrm{d}E_{k,air}}{\mathrm{d}t}=rac{1}{2}
ho Av_0^3$$

• Force (drag):
$$F_{air} = \frac{\dot{E}_{k,air}}{v_0} = \frac{1}{2} \rho A v_0^2$$

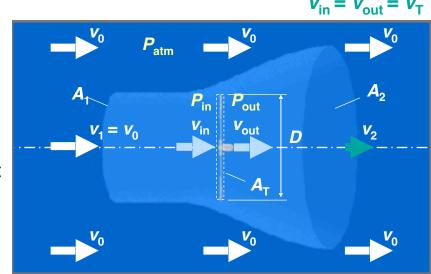
EPFL

Physics of wind energy

- Let's consider the "control volume" V: If the surface A_T is swept by the blades of an horizontal-axis wind turbine of diameter D, the disturbed air flux affects a volume (control volume) having a cross-section **significantly larger** than A_T
- **1. Force** acting on the turbine (v_0 = "free" wind speed; recalling that

$$\mathbf{F} \cdot \mathbf{d}t = m \mathbf{d}v = \rho \cdot A_{\mathsf{T}} \cdot v_{\mathsf{T}} \cdot \mathbf{d}t \cdot (v_1 - v_2) = \rho \cdot A_{\mathsf{T}} \cdot v_{\mathsf{T}} \cdot \mathbf{d}t \cdot (v_0 - v_2)$$

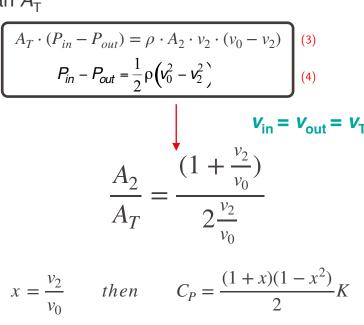
2. We have also that: $\mathbf{F} = A_T \cdot (P_{in} - P_{out})$


$$\sum A_{\mathsf{T}} \cdot (P_{\mathsf{in}} - P_{\mathsf{out}}) = \rho \cdot A_{\mathsf{T}} \cdot v_{\mathsf{T}} \cdot (v_0 - v_2)$$
(3)

3. And from Bernoulli's principle:

upstream:
$$P_{\text{in}} - P_{\text{atm}} = \rho \frac{v_2 - v_2}{2}$$

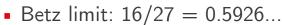
$$\text{downstream:} P_{\text{atm}} - P_{\text{out}} = \rho \frac{v_1 - v_2}{2}$$


$$\sum P_{in} - P_{out} = \frac{1}{2} \rho \left(v_0^2 - v_2^2 \right)^{(4)}$$

Physics of wind energy

- Let's consider the "control volume" V: If the surface A_{τ} is swept by the blades of an horizontal-axis wind turbine of diameter D, the disturbed air flux affects a volume (control volume) having a cross-section significantly larger than A_{T}
- Let's now look at the kinetic energy:

$$E_{T} = E_{kin,air}^{in} - E_{kin,air}^{out} = \frac{1}{2} m_{air} \left(v_{0}^{2} - v_{2}^{2} \right)$$
(4)
$$\dot{E}_{T} = \frac{1}{2} \dot{m}_{air} \left(v_{0}^{2} - v_{2}^{2} \right) = \frac{1}{2} \rho_{air} A_{T} v_{T} \left(v_{0}^{2} - v_{2}^{2} \right)$$
(2)
$$\dot{E}_{T} = \frac{1}{2} \rho_{air} A_{T} \frac{A_{2}}{A_{T}} v_{2} \left(v_{0}^{2} - v_{2}^{2} \right)$$
(multiply by v_{0}/v_{0})
$$\dot{E}_{T} = \frac{1}{2} \rho_{air} A_{T} v_{0}^{3} \frac{A_{2}}{A_{T}} v_{0}^{2} \left[1 - \left(\frac{v_{2}}{v_{0}} \right)^{2} \right] \dot{E}_{T} = C_{p} \dot{E}_{wind}$$
 if $x = \frac{v_{2}}{v_{0}}$ then $C_{P} = \frac{(1+x)(1-x^{2})}{2} K$
Power in the wind C_{P} : Power coefficient

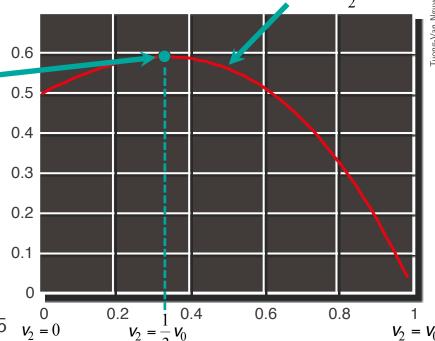


• Betz law gives us a theoretical limit for the efficiency (i.e. conversion of wind kinetic energy into mechanical power) – we can harness 59.3% of the energy in the wind.

• Effective (real) power coefficient:

$$C_p = \frac{\dot{E}_T}{\dot{E}_W} = \frac{\dot{E}_T}{\frac{1}{2}\rho_{air}A_T v_0^3}$$

$$\max_{x} C_P(x) = \frac{(1+x)(1-x^2)}{2}$$

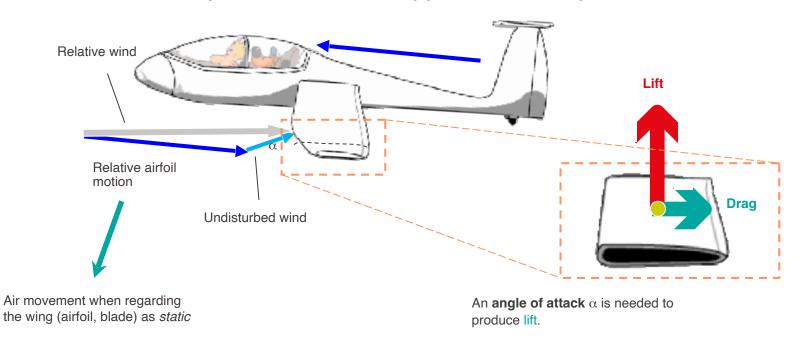


•
$$v_2 = v_0/3$$

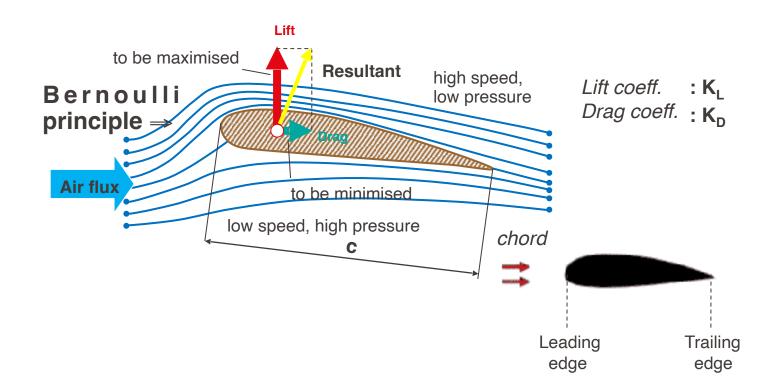
•
$$v_T = 2v_0/3$$

•
$$A_2 = 3A_1$$

•
$$A_T = 3A_1/2$$



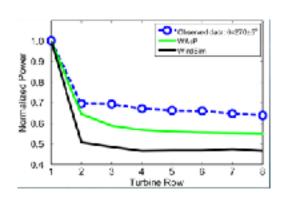
Practical values in real applications: 0.35-0.5



Physics of wind energy

• The forces acting on a turbine blade are lift and drag. Blades are shaped as airfoils: it is very similar to what happens on an airplane.

Physics of wind energy

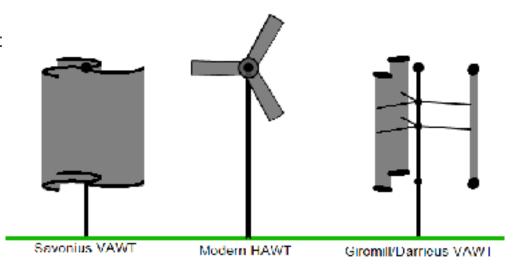

 The forces acting on a turbine blade are lift and drag. In the case of a vertical-axis wind turbine the ratio lift/drag needs to be maximized to increase the useful torque.

Torque T (useful Drag component) Relative wind v_{rel} Resultant (1) C Axial thrust (loading force) Wind v₀ Component due to the blade motion (relative to the plane of rotation) Direction of rotation ωr $K_1 \cdot (r/2) \cdot A \cdot v_{rel}^2$ Lift: Drag: $K_D \cdot (r/2) \cdot A \cdot v_{rel}^2$

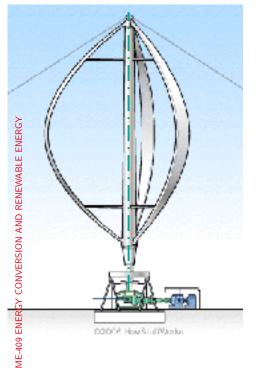
EPFL

Physics of wind energy

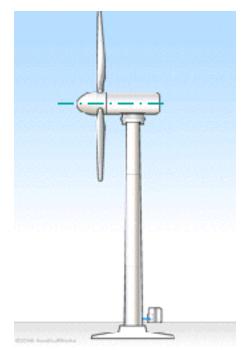
- Why do we get from 59.3% (Betz limit) to around 40% in the practice? Losses:
- 1. Wake loss: Wake is the plume-like region downwind of a wind turbine characterized by reduced wind speed and increased turbulence intensity.
 - → predicting performance is still challenging
- 2. Tip losses: the blade tips themselves also create ('horseshoe') vortices. Air 'overspill' between the high and low pressures below and above the blade.
- 3. Drag losses: the blades rotating through air experience a resistance (drag force).



Wind turbines & energy systems


Wind turbines

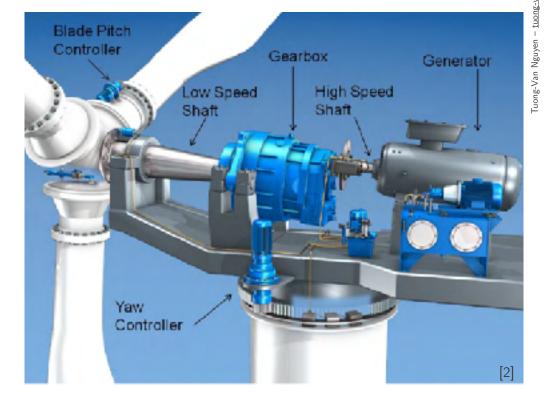
- Types of wind turbines
- Key components
- Design parameters (HAWT):
- Operating ranges
- Growing in size
- Wind farms



Types of wind turbines

Key classification: vertical vs. horizontal axis

VAWT: Vertical axis wind turbines. Can be drag (Savonius rotor) or lift based (Darrieus rotor)

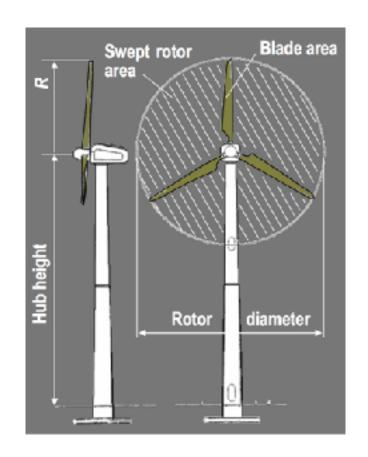


HAWT: Horizontal axis wind turbines. Most used and efficient configurations, normally with 1-3 blades.

Key components

Key components of a horizontal axis wind turbine.

- The drivetrain consists of a gearbox connected to the rotor by a low-speed shaft
- The generator converts mechanical work to electricity...
- Mechanical brakes needed to completely stop the turbine


ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

Design parameters of HAWT

Key parameters of a HAWT:

- Number of blades
- Rated power
- Hub height (directly proportional to diameter)
- Swept area
- Solidity = blade area / swept area
 - High: high starting torque, low speed of rotation ω
 - Low: low starting torque, high speed of rotation ω

Design parameters of HAWT

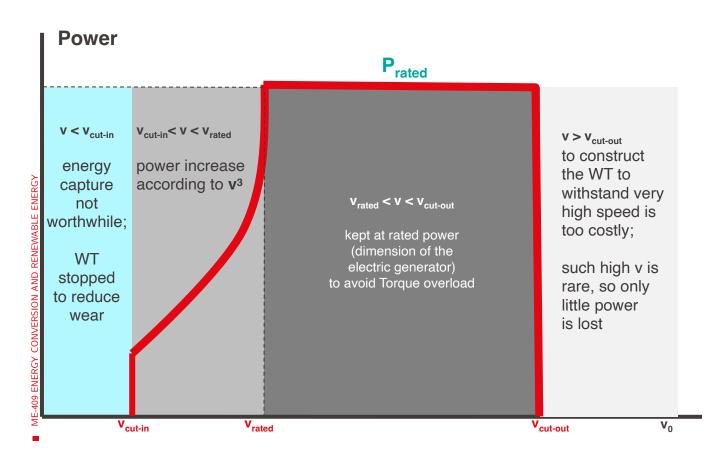
- Number of blades: it does not influence the power. In theory, the most efficient design comes with infinite number of infinitely narrow blades
- Real design criteria: aesthetics, structural, financial

1 blade

2 blades

- Same power
- Low torque
- High RPM
- More noise
- Cheap
- +6% efficiency vs 1-blade^[2]

3 blades


- Same power
- Higher torque
- Lower RPM
- Less noise
- +3% efficiency vs 2-blades^[2]

Multiple blades

- Same power
- High torque
- Low RPM
- No noise
- Expensive rotor
 - Negligible better efficiency^[2]

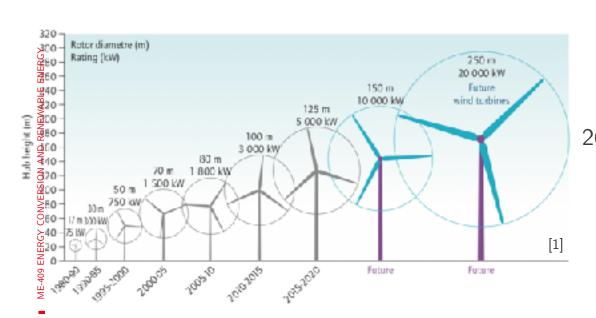
Operating ranges

Aerodynamic power limiting regulation by:

- 1. Variable pitch
- 2. Yaw
- 3. Stall

WT can be run at:

- One fixed ω
- Two fixed ω
- Variable ω


Variable speed:

- + 7% energy
- + less power fluctuations
- higher cost
- less reliability

Growing in size

$$\dot{E}_{k,air} = \frac{\mathrm{d}E_{k,air}}{\mathrm{d}t} = \frac{1}{2}\rho A v_0^3$$

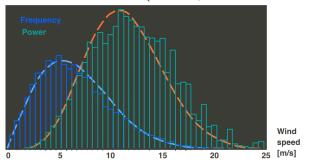
■ The power is proportional to A $\rightarrow \Box$ D²

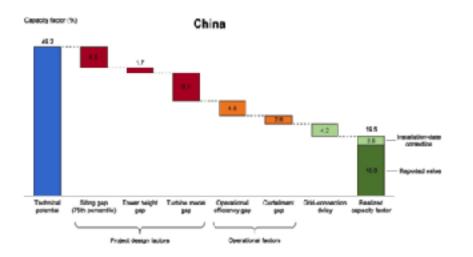
 tuong-van.nguyen@epfl.ch Tuong-Van Nguyen

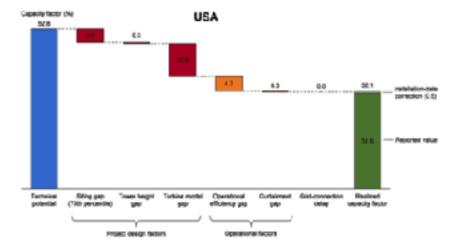
Wind farms

- Wind turbines are commonly used in wind farms:
 - Usually 10-30 turbines
 - Spacing: 7-8*Diameters
 - 1 grid transformer for the whole site
 - Timing: construction (1y); operation (20y); decommissioning (0.5y)

- 80 turbines
- 160 MW_e
- Offshore:
 - Higher capacity factors
 - Higher and more regular wind speed (120 m/s)
 - More noise (lower solidity)

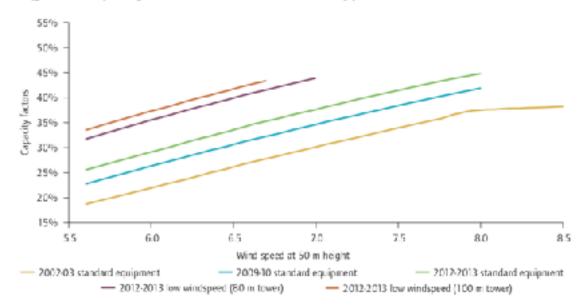





Capacity factor

$$CapacityFactor = \frac{\int_{year} \dot{E}(t)dt}{\dot{E}_{rated} \cdot 8760}$$

Location is critical (wind speed distribution)

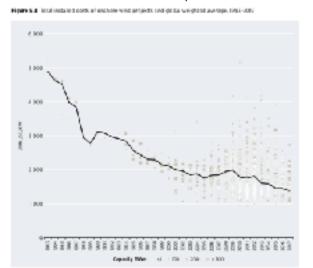

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

EPFL

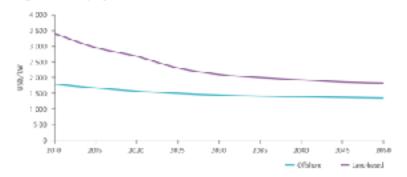
Capacity factors

- Capacity factor c_f, typical values:
 - Onshore: 26% (2013) $\rightarrow \square$ 31% (2050)
 - Offshore: 36% (2013) $\rightarrow \square$ 42% (2050)
 - In Switzerland: 19% (today) →□ 23% (future)

Figure 3: Capacity factors of selected turbine types

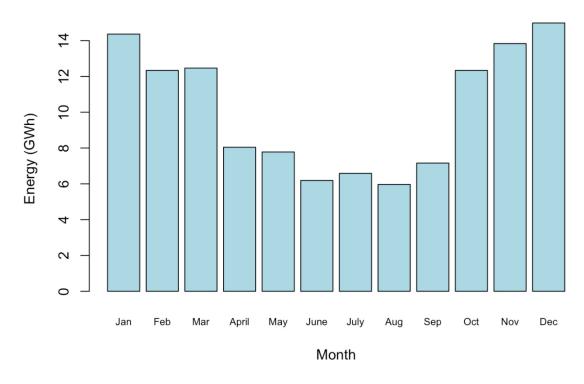

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

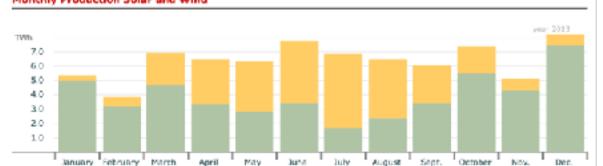
EPFL Costs


- Cost is decreasing!
 - IEA projection for 2035: 1600 USD₂₀₁₂/KW_e
 - 2017 data by Wind Europe:
 - 22.3 B€ announced investments
 - 11.5 GW
 - **→**□ 1939 €/kW_a

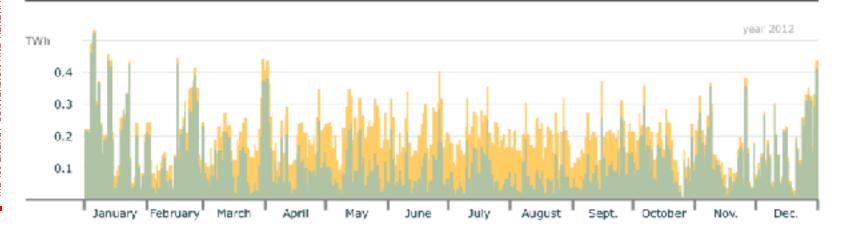
12 ovoltaic: GHI = 950-1300 kWh/(m²a), LR = 15%, average market developmen ind Onshore: FLH of 1800 to 3200 h/a, LR = 5%, average market development nergy: FLH of 4000 to 7000 h/a PV large scale rooftop systems (30 - 1000 kW_p) incl. battery storage 2 kW_p : 1 kWh PV utility-scale (> 1 MW_e) incl. battery storage 3 kW_o: 2 kWh

• LCOE in 2023: 35-80 €/MWh onshore, 70-120 €/MWh offshore




EPFL

Monthly profiles



Monthly wind energy in Switzerland, 2018 [3]

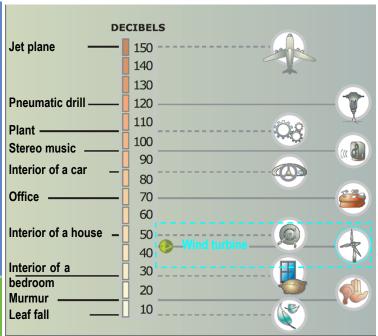
- Different time scales:
 - Hourly
 - Daily
 - Weekly
 - Seasonal
- Can complement solar!

Daily production Solar and Wind

ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

. - uong-Van Nguyen – <u>tuong-van.nguye</u>

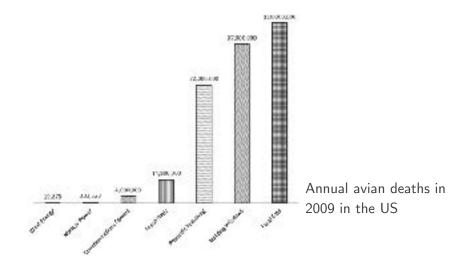
- Machinery maintenance accidents
- Blade failures
- Falling ice
- Paragliders and small aircraft crashing into support structures
- Turbine's brake fails → the turbine can spin freely until it disintegrates
- Turbine blades may fall off due to manufacturing flaws
- Lightning strikes → rotor blade damage and fires



A turbine on fire after an oil leak

Perceived risks: noise

• Other perceived problems are: visual impact, noise and killing birds



ME-409 ENERGY CONVERSION AND RENEWABLE ENERGY

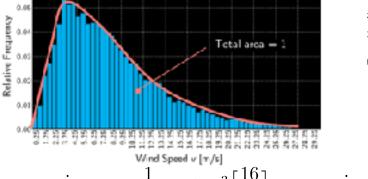
Risks and impacts: Killing birds

Other perceived problems are: visual impact, noise and killing birds

Some controversy about

- Orders of magnitude are clear
- Relatively small danger for birds
- Climate change likely to be a more severe risk for birds

Take-home message


- Key concepts
 - Wind is growing fast →□ key player for climate change

$$\dot{E}_{k,air} = \frac{\mathrm{d}E_{k,air}}{\mathrm{d}t} = \frac{1}{2}\rho A v_0^3$$

- Resource: power goes with v³, location dependent (Weibull PDF)
- Betz limit: theoretical limit is 59.3% efficiency
- Forces: maximise lift/drag

- Classified in vertical vs horizontal axes
- Growing is size
- Wind farms

$$\dot{E}_{T,max} = \frac{1}{2} \rho_{air} A_T v_0^3 \left[\frac{16}{27} \right] = 0.593 \dot{E}_{Wind}$$

- Wind in the energy system
 - Costs are quickly reducing →□ wind is competitive!
 - Capacity factors: 25-30% onshore, 35-40% offshore
 - Wind can be a good complement of solar

$$CapacityFactor = \frac{\int_{year} \dot{E}(t)dt}{\dot{E}_{rated} \cdot 8760}$$

