

Applied Mechanical Design

Fostering creativity

 École polytechnique fédérale de Lausanne Prof. J. Schiffmann
Inspired by
Prof. G. Fadel & P. Seitz

- Consists in finding a viable and promising concept
- Idea is to fill morphological matrix with several working principles for each function
- A working principle represents physical effect and its embodiment
- Find maximum number of working principles by creativity, searches and analysis of known systems → Ideation tools

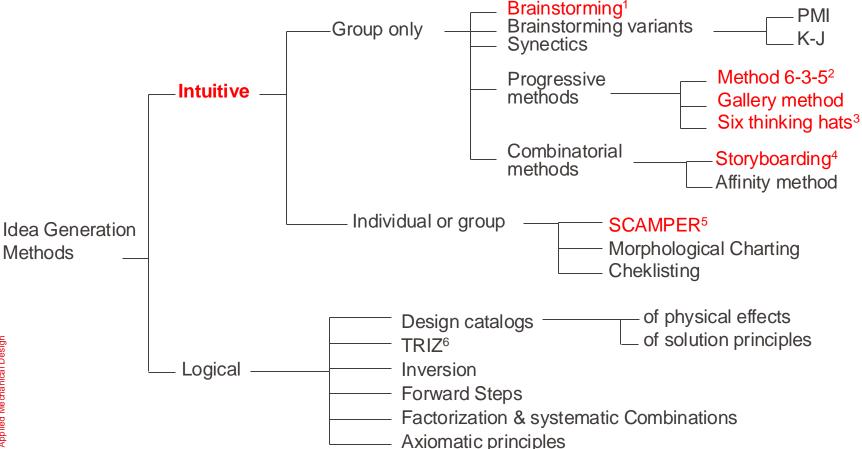
Ideation Techniques & Tools

- It is all about guided idea generation
- Techniques provide systematic framework for generating ideas
- Systematic procedures force designers to explore alternatives
- Implementation of structure and experience build confidence in success of results

- "Ideation" is generation of ideas
- "Creativity" is ability to generate new ideas and concepts that are useful
- "Innovation" is application of creative output

Creativity

- Can creativity be enhanced?
 - Yes, through practice
 - Yes, through tools
- Surrounding and mindset affect creativity
 - Environment
 - Concentration
 - Attitude
 - Independence of thought



https://designschool.canva.com/blog/creative-learning/

What we know about creativity

- Everyone, regardless of age, gender, education, possesses creative potential
- Creative performance is influenced by attitude, emotion, environment
- Some factors may present barriers that block creativity
- Creative ability can be taught, developed, and generally enhanced and encouraged

Applied Mechanical Design

Brainstorming¹

 Systematic, group-oriented technique for producing large number of ideas

- Rules & guidelines
 - No critique or judgment
 - · Wild ideas are encouraged
 - Modifying, combining, and improving upon the ideas of others is promoted

Quantity as opposed to quality of ideas is emphasized

Method 6-3-5²

- Methodology
 - Identify ideation task
 - Form group of six
 - Each participant writes down three solution keywords
 - Sheet with keywords are passed to neighbor, who records three further solutions or developments
 - Ideas are passed a total of five times
 - Often used after brainstorming session
 - Clocking and rigid ruling might inhibit creativity

Applied Mechanical Design

Gallery Method

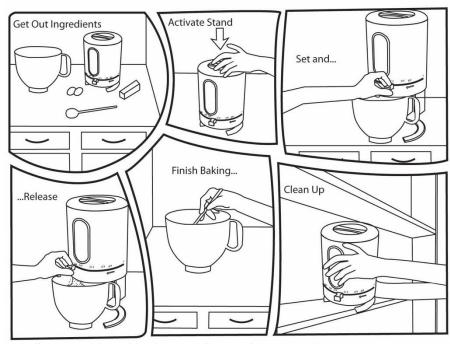
Methodology

- Identify ideation task
- Form group
- Individuals sketch solutions
- Group reviews all sketches exposed in a gallery
- Individuals further develop and refine ideas
- Group finalizes ideas and selects promising ones
- Extension to other methodologies
- Requires significant amount of time
- Graphical, ordered and iterative brainstorming

EPFL

Six Thinking Hats³

- Discussion in group with given roles
- All aspects / views of a problem are taken into account
- Efficient discourse on complex problem
- Role play may suppress individual creativity

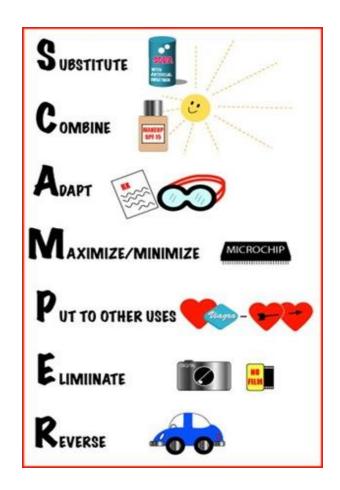

Negative

Six Thinking Hats³

- White: Analytical thinking. Focus on facts, available information and data base. Objective assessment. Pursue constructive approaches and solutions
- <u>Red</u>: Intuition and emotional thinking. Focus on feelings and personal opinions. Little need for logic and rational justifications
- <u>Black</u>: Critical thinking, judgment, caution, constructive skepticism. Strictly logical, pointing out why a proposal does not fit the facts, experience or conditions; what could go wrong; what is the worst-case scenario, etc.
- <u>Yellow</u>: Optimistic thinking. Envisaging of what could be achieved; positive speculation about the best-case scenario, benefits, value-creation, etc.
- <u>Green</u>: Creative, associative thinking. Introducing novel and provocative ideas; creative, constructive, alternative and unorthodox approaches
- <u>Blue</u>: Keeps process overview, puts ideas into order, moderates discussion

Storyboarding⁴

- Extensively used in film industry
- Popularized by W. Disney
- Used in defense and aerospace industry
- Suited for identifying use cases of product
- May be used to identify hidden specifications
- Documentation is part of creative process



http://web.mit.edu/2.009/www/resources/illustrator/crash-course/storyboard.html

EPFL

SCAMPER⁵

- Collection of useful techniques to unblock creative thinking
- Helps in shifting perspective
- A collection of successful creativity tools
- No systematics to cover full solution space

SCAMPER⁵

Substitute

 Components or sub-systems, objects/process/problem with others. Materials, people, time, use environment...

Combine

 Combine parts, by mixing functionality, materials, features, components, services to create synergies

Adapt

 Change functions, use parts of other component, vary characteristics and use, exchange sub-systems, vary haptics, adapt acoustics, exchange colors...

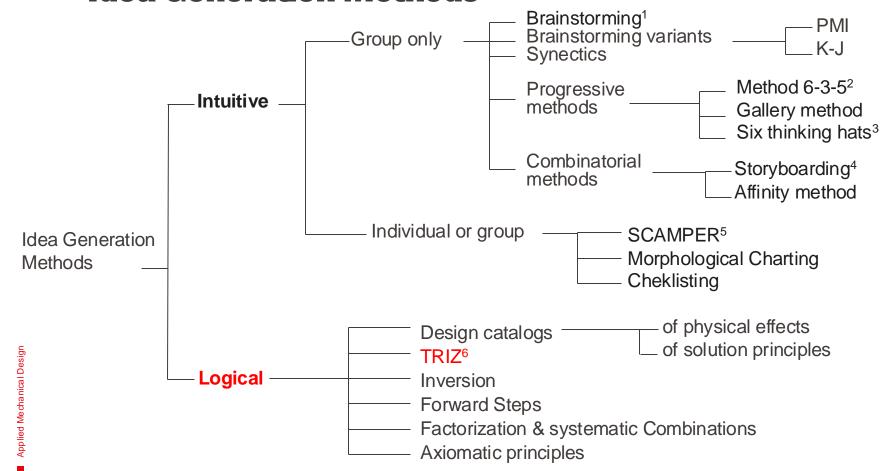
SCAMPER⁵

Maximize / minimize

 Change size, distort geometrical aspects, exaggerate properties or features of objects / processes / services / problems...

Put to other use

• Find other uses of current solution, identify different relationships with intended users or markets, to whom could your solution / product / process also of value...


Eliminate

 Remove parts from current solution, reduce functionality to the minimum, simplify use...

Reverse

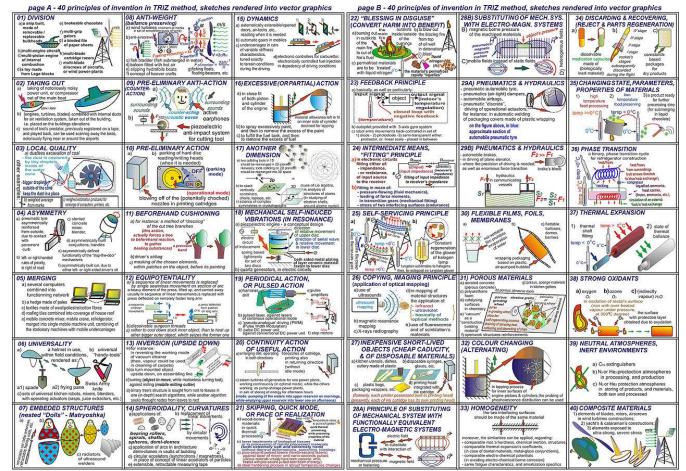
 Turn problem upside-down, move it inside-out, find contrary uses, inverse sequences...

Idea Generation Methods

TRIZ

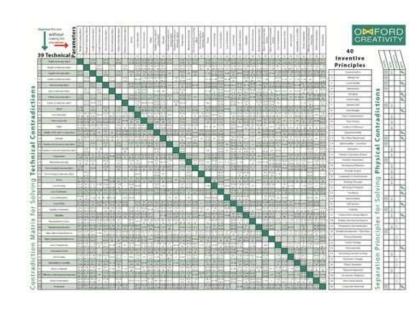
- Theory of inventive problem solving
- Introduced by G. Altshuller
- Objective is algorithmic approach to invention

Researchgate.net

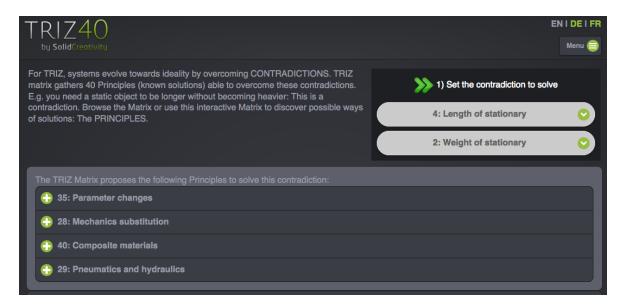


- Research produced following findings
 - Problems and their solutions are repeated across industries and science
 - Patterns of technological evolution are repeated across industries and science
 - Most innovations are transpositions of known solutions into other fields
 - Same solutions often overcome similar dilemma or contradiction.
- Analysis of patterns therefore lead to systematic innovation processes
 - 40 principles of invention

TRIZ


40 principles of invention

 Analysis of contradictions and their solution principles allows to establish contradiction matrix and associate solution principles


- Methodology
 - Abstraction of issue to be solved
 - Identify contradiction(s)
 - Conflict between two effects
 - Conflict between properties
 - Introduce contradiction pairs into matrix

Example

- Static object needs to be longer without impacting its mass
- http://www.triz40.com/TRIZ_GB.php

Some Comments on Ideation Tools

- There is no such thing as a best tool
- Outcome is dependent on individuals and team dynamics
- Test different tools and identify most suitable for your environment
- Combine different methodologies to maximize output
- The different methodologies need training

References

- 1. A. F. Osborn, *Applied Imagination*. Charles Scriber's Sons, New York 1953
- 2. B. Rohrbach, *Kreativ nach Regeln Methode 635, eine neue Technik zum Lösen von Problemen*. Absatzwirtschaft 12, 73-76, Heft 19, 1969
- 3. E. de Bono, Six Thinking Hats: An Essential Approach to Business Management. Little, Brown, & Company 1985
- 4. W. S. Starkey, *The Beginnings of STOP Storyboarding and the Modular Proposal*. APMP Proposal Management, 2000
- 5. B. Eberle, *Help! In solving problems creatively at home and school.* Carthage: Good Apple, 1984
- 6. http://www.triz40.com/TRIZ_GB.php
 http://www.triz40.com/aff Principles TRIZ.php

