
Problem 1. (Feature engineering, regression ) [13points]
A server is one of the main energy-consuming components of a data center. It has been found that
the variables CPU denoted by x1 ∈ R, and the memory load denoted by x2 ∈ R, are two of the
main contributing factors to the energy consumption of a server. You have made measurements of
the CPU xi1, memory loads xi2, and energy consumption yi, for i = 1, 2, . . . , 2000 instances and aim
to use linear regression to come up with a function that predicts a server’s energy consumption.
You randomly select 400 data samples for testing and the rest for training.

1. Standardize the features to zero mean and unit variance. (2 points)

Solution: For each j = 1, 2. given the mean µi =
1

1600

∑1600
i=1 xij and the standard deviation

σj =

√
1

1600

∑1600
i=1

(
xij − µj

)2
, we can standardize the feature by using the following formula:

x̃ij =
1

σj

(
xij − µj

)
,

2. You have found that increasing CPU and memory load have a multiplicative effect on energy
consumption. Hence, you define a new feature : ϕ(x1, x2) = x1x2. Write the equation for a
linear predictor in terms of the features x1, x2, ϕ(x1, x2). (1 point)

Solution: The linear predictor is:

ŷ = w1x1 + w2x2 + w3x1x2 + b =
[
b w1 w2 w3

] 
1
x1
x2

x1x2

 = w⊤z,

with w, z ∈ R4.

3. Write the regularized mean-square loss function for identifying the parameters of the model;
use λ ∈ R for regularization. (1 point)

Solution: The regularized mean-square loss function is:

MSE(w) =
1

1600

1600∑
i=1

(yi − w⊤zi)2 + λw⊤w

=
1

1600
(ytrain − Ztrainw)

⊤(ytrain − Ztrainw) + λw⊤w,

where ytrain ∈ R1600 and Ztrain ∈ R1600×4 are obtained by stacking the yi and the (zi)⊤

respectively.

4. Derive the gradient of the loss function with respect to the linear regression parameters. (2
points)

Solution: The gradient of the mean-square loss function is:

∂MSE

∂w
=

2

1600
Z⊤
train(Ztrainw − ytrain) + 2λw.
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5. Write the equation characterizing the optimal parameters (2 points).

Solution: To find the optimal parameters, we put the gradient of the mean-square loss function
equal to zero and we solve with respect to w:

w =
(
1600λI + Z⊤

trainZtrain

)−1
Z⊤
trainytrain.

6. Write the approach for finding the optimal parameters using gradient descent. (1 point)

7. Which is likely to decrease the training error: increasing or decreasing λ and why? (1 point)

Solution: To decrease the training error we need to decrease λ. We added the regularization
parameter λ to reduce overfitting, so we use it to reduce the accuracy prediction on the
training data and thus we increase the training error. By setting λ equal to zero we minimize
the training error.

8. Assume we choose the optimal λ using 5-fold cross-validation. Let ŷi denote the prediction
and yi denote the actual server energy consumption for a given data point. How would you
compute the mean validation error over the 5-folds? (2 points)

Solution: The mean validation error ϵ can be computed as the average of the error ϵf of each
of the five folds

ϵ =
1

5

5∑
f=1

ϵf =
1

5

5∑
f=1

∑
i∈If

1

Nf
(ŷi − yi)2,

where If gather the indices of the validation points in fold f and Nf is the cardinality of that
fold.

9. Based on the result of 5-fold cross validation on the 1600 data points in the training set shown
below, for which λ is the test error more likely to be similar to the validation error? (1 point)

model mean validation error variance of error

λ1 2.35 9.42
λ2 1.30 4.16
λ3 1.76 3.50

Solution: It is λ3, because it is the one with the lowest variance of error. A lower variance
indeed indicates that this model is more robust against different data points being used as
training points and hence more likely to perform similarly on some unseen data points.
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Problem 2. (PCA, Neural network) [16points]
You want to classify bird types based on their song (a motivation is that diverse bird species are
important for health of a forest). You have collected a sample of N = 400 bird songs, where each
song is a sequence of vibrations measured at 0.01 second intervals of time for a duration of 70
seconds. So, a data point is given by si ∈ R7000, i = 1, 2, . . . , 400. Your environmentalist friend has
labeled the bird type {A,B,C} for each si.

As a first step, you apply a convolution on the signal (your idea is that convolution can act like
a filter and capture certain frequency of the signal.)

1. Consider a segment of si, as ui = (11, 3, 5, 7, 2, 13, 17, 29, 23, 19) ∈ R10 and the filter h =
(−1, 0, 1) ∈ R3 . Write the convolution of filter h with signal ui, namely, vi = ui ⋆ h ∈ R10

(Do zero-padding to the signal.) (2 points).

Solution: To get an output in R10, we apply zero-padding to get ũi ∈ R12. The padded signal
is ũi = (0, 11, 3, 5, 7, 2, 13, 17, 29, 23, 19, 0) ∈ R12. The convolution outcome is

ci = (ũi ⋆ h)m =

2∑
n=0

ũim+n hn = (3,−6, 4,−3, 6, 15, 16, 6,−10,−23) ∈ R10

.

2. Let sj , sj
′
be two songs, where sj has higher variations (a bird type with high frequency tone)

than sj
′
. After applying h to sj and sj

′
, which signal is more likely to have larger magnitude?

(1 point)

Solution: The magnitude of the convolution result cj tends to be greater than that of cj
′
.

After the convolution above you obtain an extended signal xi ∈ R14000, which is the stacked vec-
tor of an audio recording and its convolutions. Given the high dimension of the feature vector, you
consider principal component analysis. Let C = X⊤X ∈ R14000×14000 denote the data covariance
matrix (assume you have already done data normalization).

3. How many eigenvalues does C have? What is the dimension of an eigenvector of C? (1 point)

Solution: C has 14000 eigenvalues. The dimension of eigenvectors of C is 14000× 1.

4. You find that 6 of the eigenvalues are much larger than the rest of the eigenvalues. How many
principal components you would choose, and what would they each correspond to? (1 point)

Solution: I would choose 6 principle components, which correspond to

(a) the eigenvectors associated with the 6 largest eigenvalues.

(b) the 6 directions with the greatest variance in the dataset.

5. Now, let Θ denote the projection matrix. (a) What is its dimension and what are its columns?
(b) Write the step for finding the lower dimensional data matrix A ∈ R400×6. (1 point)

Solution: (a) The projection matrix Θ ∈ R14000×6, the columns are the eigenvectors above.
(b) The lower dimensional matrix can be obtained with A = XΘ.
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6. How would you evaluate the effectiveness of PCA above? (1 point)

Solution. Look at reconstruction error ∥AΘ⊤ −X∥.

Now, you consider a neural network (NN) to perform the classification given data matrix A.
Consider a fully connected NN with 4 nodes and ReLU activation function in the first layer and 3
nodes in the second (output) layer with no activation function for this layer.

7. Draw the neural network (2 points). How many parameters need to be identified during the
training of the network? (1 point)

Solution:

We need

• First layer: 6× 4 = 24 weights and 4 biases.

• Second layer: 4× 3 = 12 weights and 3 biases.

In total, 43 parameters need to be identified during the training of the network.

8. Write the NN predictor by lettingW [j], b[j] denote the weights and biases of the layers j = 1, 2.
(2 points)

Solution: Suppose a ∈ R6 is a reduced dimensional data. The NN predictor can be written

as fw : R6 → R3, with fw(a) = W [2]⊤ g
(
W [1]⊤a+ b[1]

)
+ b[2], where g(x) := max(0, x) is

the ReLU activation function.

9. Note that the output of the network is z ∈ R3. To perform classification, write the logistic
loss (cross-entropy loss) function. Hint: for classification, we need to use the softmax function
to convert the output to a probability distribution over the classes. (2 points)

Solution: There are two different representations of the solution that use different notations
of the class. Both solutions receive full marks.
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(1) One-hot class encoding

First, let’s encode the label of the data points using one-hot encoding:

• yi =
[
1, 0, 0

]⊤
represents the data point i belongs to class A.

• yi =
[
0, 1, 0

]⊤
represents the data point i belongs to class B.

• yi =
[
0, 0, 1

]⊤
represents the data point i belongs to class C.

Then, we use the softmax function to convert the NN output z =
[
z1, z2, z3

]⊤ ∈ R3 to the

predicted probability distribution over the 3 classes ŷ =
[
ŷ1, ŷ2, ŷ3

]⊤ ∈ R3, where

ŷk = softmax(zk) =
ezk∑3
l=1 e

zl
.

The cross-entropy loss over the N = 400 data points is

L(W [1], b[1],W [2], b[2]) =
1

N

N∑
i=1

3∑
k=1

yik · log(ŷik)

(2) Enumeration class encoding

We use yi = 1, 2, 3 to represent the data point i belongs to class A, B, and C respectively.
An alternative representation of the cross-entropy loss is to use the indicator function as in
the class note:

L(W [1], b[1],W [2], b[2]) =
1

N

N∑
i=1

3∑
k=1

1{yi = k} · log( ezk∑3
l=1 e

zl
).

10. Compute the gradient of the output of the last layer with respect to the weight connecting

node 1 of the first layer to node 2 of the last layer, denoted by W
[2]
2,1. (2 points).

Solution: Let’s use subscript m to denote the mth element of a vector. The gradient can be
computed as

∂z2

∂W
[2]
2,1

=
∂

∂W
[2]
2,1

(
4∑

m=1

W
[2]
2,m ·

[
g
(
W [1]⊤a+ b[1]

)]
m
+ b

[2]
2

)
=
[
g
(
W [1]⊤a+ b[1]

)]
1
∈ R,

that is the output of node 1 of the first layer.
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Problem 3 (Naive Bayes, k-Nearest Neighbor) [12points]
Company X is hiring employees and aims to hire those who spend less time watching videos online.
Thus, it wants to predict an applicant’s potential to watch online videos based on past employee
data. In particular, for each of the 1000 past employees, it has recorded whether they have a high
GPA, and whether they watch online videos. Among those who do not watch videos, some play
sports (none of those who watch videos play sports). The survey is summarized below.

Employees Sport No Video

High GPA 600 150 300
low GPA 400 50 100

Let event A denote having a high GPA, event B denote playing sports, and event C denote not
watching videos.

1. Calculate the following: (a) empirical probability of having a high GPA; (b) empirical prob-
ability of having a high GPA and playing sports. (1 point)

Solution.

P (A) =
600

1000
=

3

5

P (A ∩B) =
150

1000
=

3

20

2. Show that the events A and B are not independent. (1 point)

Solution.

P (A) =
3

5

P (B) =
150 + 50

1000
=

1

5

P (A ∩B) =
3

20

Thus

P (A)P (B) =
3

5
∗ 1

5
̸= 3

20
= P (A ∩B)

which shows that events A and B are not independent.

3. Calculate the following: (a) the empirical conditional probability of event A given event C;
(b) the empirical conditional probability of events A and B given event C. (2 points)

Solution.
(a)

P (A|C) =
P (A ∩ C)

P (C)
=

300

400
=

3

4
.
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(b)

P (A ∩B|C) =
P (A ∩B ∩ C)

P (C)
=

150

400
=

3

8
.

4. Show that conditioned on C, the events A and B are independent. (1 point)

Solution.

P (A|C) =
3

4

P (B|C) =
P (B ∩ C)

P (C)
=

150 + 50

400
=

1

2

P (A ∩B|C) =
3

8

Thus P (A ∩ B|C) = P (A|C) ∗ P (B|C) = 3
8 and conditioned on C, events A and B are

independent.

The company aims to have a classifier for an employee by using the exact GPA (x1 ∈ R+) and
the average number of hours of sport played per week (x2 ∈ R+). Based on past data, it fits two
probability density functions conditioned on Y , where Y corresponds to watching videos (Y = 1)
or not (Y = 0). These are denoted by fx1|Y : R → R and fx2|Y : R → R.

5. Formulate the Naive Bayes classifier. (3 points)

Solution. The probability that Y is 1 given x is given by

P (Y = 1|x) =
fx1|1(x1) ∗ fx2|1(x2) ∗ P (Y = 1)

fx(x)
.

Analogously, the probability that Y is 0 given x is given by

P (Y = 0|x) =
fx1|0(x1) ∗ fx2|0(x2) ∗ P (Y = 0)

fx(x)
.

Naive Bayes classifier classifies Y = 1 given x if

fx1|1(x1) ∗ fx2|1(x2) ∗ P (Y = 1) ≥ fx1|0(x1) ∗ fx2|0(x2) ∗ P (Y = 0)

and Y = 0 otherwise.

6. For an applicant, the company has obtained x1, x2 from which it has evaluated fx1|0(x1) =
0.25, fx2|0(x2) = 2.00, fx1|1(x1) = 0.20 and fx2|1(x2) = 2.20. Based on the Naive Bayes
classifier, would this person be likely to watch online videos at work? (1 point)

Solution. The probability that Y is 1 given x is given by

P (Y = 1|x) ∝ fx1|1(x1) ∗ fx2|1(x2) ∗ P (Y = 1)

∝ 0.2 ∗ 2.2 ∗ 600

1000
∝ 0.264.
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Analogously, the probability that Y is 0 given x is given by

P (Y = 0|x) ∝ fx1|1(x1) ∗ fx2|1(x2) ∗ P (Y = 0)

∝ 0.25 ∗ 2 ∗ 400

1000
∝ 0.2.

Based on the Naive Bayes classifier this person is more likely to watch online videos when
they start the job.

7. On a test set obtained from recently hired employees, it was found that the classifier has
more false positives than false negatives. The company decided to change the prior on the
probability of watching videos (perhaps the new generation has been bored of all the online
videos). What term(s) in your Naive Bayes classifier would you change and how? (1 point)

Solution. You could reduce the prior of class 1, namely decrease P (Y = 1) and in turn increase
the prior on class 0, namely increase P (Y = 0). If the priors are updated based on new data
and the conditional densities are calculated based on this data, then the conditional density
functions fx1|Y and fx2|Y will change. However, since it is not specified how the conditional
density functions fx1|Y and fx2|Y are computed in this problem we can not say whether they
are affected or not by the change in the priors.

8. The error rate of the Naive Bayes classifier was found to be 0.80. The company aims to explore
if the k-nearest neighbor approach could work better with k = 1. For a person with x1 = 5.0
and x2 = 3.0, you are given two neighbors xi = (5.3, 3.0) with Y i = 1 and xj = (5.2, 3.2)
with Y j = 0. Determine the label of the test point in the cases in which (a) the Euclidean
distance; and (b) the Manhattan distance is used. (2 points)

Solution.
(a) Euclidian distance:

d(x, xi) =
√

(5.3− 5)2 + (3− 3)2 = 0.3

d(x, xj) =
√

(5.2− 5)2 + (3.2− 3)2 =
√
0.08 <

√
0.09 = 0.3

1−nearest neighbor using the Euclidean distance labels the test point x = (5, 3) as belonging
to the same class as xj , so to class 0.
(b) Manhattan distance:

d(x, xi) = |5.3− 5|+ |3− 3| = 0.3

d(x, xj) = |5.2− 5|+ |3.2− 3| = 0.4 > 0.3

1−nearest neighbor using the Manhattan distance labels the test point x = (5, 3) as belonging
to the same class as xi, so to class 1.
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Problem 4. (Decision-trees) [14points]
Country X has observed that the number of people who vote in elections has been declining. The
government decides to understand whether certain groups are less likely to vote and hopefully design
schemes to improve this. To this end, it uses data of a population of 1000. For each individual, the
data contains age x1, education (no high school, high school, university) x2, neighborhood (from
10 possibilities) x3, income (low, medium, high) x4, and voting y (yes or no).

1. Consider the problem of predicting whether an individual will vote based on the above fea-
tures. What kind of machine learning problem is this? (1 point)

Solution: This is a supervised classification.

2. For each of the features, state whether they are numerical, ordinal or categorical. (2 points)

Solution: x1 is numerical (we also accept ordinal), x2, and x4 are ordinal, whereas x3 is
categorical.

3. To design the decision tree, first consider the income. From the 600 people who have high
income, 400 vote. What is the gini impurity of this leaf? (1 point)

Solution: 400/600*200/600*2 = 4/9.

4. (a) For those who do not have high income, what should be the number of people who vote
so that the gini impurity of the leaf will be 1/2? (.5 point) (b) What would be the resulting
gini impurity of the node corresponding to “high income?”? (.5 point)

Solution: (a) (200/400)*(200/400)*2=0.5, hence 200 people vote; (b) 6/10 * 4/9 + 4/10 *
1/2 =7/15

Let us fix the first node as “high income?” Among those with high income, all 400 aged above
36 vote. For those with not high income, 60 of 100 aged above 46 vote, whereas 140 of those aged
below 46 vote.

5. Draw the decision tree with income as the first node and age based on thresholding as de-
scribed above for creating the nodes at depth 2. Ensure to include the classification outcome
at each leaf (2 points)

Solution:,
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6. We have a data from a person whose age is 25 and who has low income, what would the tree
predict regarding whether this person would vote? (1 point)

solution. no vote.

7. What is the accuracy of the above classifier? (1 point)

solution. 1- (40 + 140)/1000 = .82

8. List 4 alternative approaches to decision trees that could be used to address this problem
based on methods you have learned in this course. (2 points)

Solution. logistic regression, k-NN, neural network, Naive Bayes

9. The government finds that a decision-tree is the most interpretable approach. It now wants
to design a tree to choose one neighborhood in which it should strengthen outreach to the
citizens about voting. Draw the tree with a single neighborhood being used as a feature in
depth 3. (2 points)

Solution:, for all nodes that are not pure, we further split the data.

10



10. Consider now another decision tree that uses education and income as features, and a third
one that uses education and age as features. Bootstrapping of the original data set is used
to train each of these 3 trees. If you use the majority vote of the 3 trees for classification, do
you expect the error rate to increase or decrease? (1 point)

solution. should decrease because making an error requires 2 out of 3 classifiers make an error
(see derivation in slides on the probability of this happening)
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Problem 5. (Reinforcement Learning) [15points]
There is a fire in a building, and a robot needs to plan its trajectory to rescue a victim. The building
floor plan is shown in the figure below. The robot starts in state s = (1, 1) with probability 1 and
aims to rescue the victim at state s = (3, 2). At each state s, the robot can choose from any feasible
action As ⊂ A = {up, down, left, right}. So, for example, in s = (1, 1), the robot can choose from
A(1,1) = {up, right}. For an action taken at any state except (2, 1), the robot will end up in the
intended state with a probability 1, e.g. action up at state s = (1, 2) leads to state s′ = (1, 3).
For state (2, 1), the robot ends up in the intended state with probability 70% and there is a 30%
chance the robot might catch fire (as fire is spreading down), and the trajectory terminates. Once
the robot reaches the victim, it gets a reward of 10 and the trajectory terminates. We consider a
discount factor 0 < γ < 1 (since with time, victim’s health decreases). So, if the robot reaches the
state (3, 2) after t steps, she will get the reward of γt × 10.

(1, 3) (2, 3) (3, 3)

(1, 2) Fire victim

(1, 1) (2, 1) (3, 1)

1. Write the transition probability P (s′|s, right) (a) for s = (1, 1); (b) for s = (2, 1). (2 points)

Solution: P ((2, 1)|(1, 1), right) = 1, (consequently, P (s′|(1, 1), up) = 0 for any s′ ̸= (2, 1)).
On the other hand, P ((3, 1)|(2, 1), right) = 0.7, P ((2, 2)|(2, 1), right) = 0.3.

2. For the solid trajectory τl, and the dashed trajectory τd, write the reward. Which trajectory
has a higher reward? (2 points)

Solution: Rewards for these two trajectories are

R(τd) = 10γ5, R(τl) = 10γ3.

Therefore, the solid trajectory has higher reward since 0 < γ < 1.

3. Consider the sequence of deterministic actions leading to the trajectories τl and τd above.
For trajectory τd this sequence is ud = (up, up, right, right, down). What is the sequence ul
leading to trajectory τl? (1 point)

Solution: The sequence of actions for trajectory τl is (right, right, up)

4. Write the probabilities of getting the trajectories τl and τd given the sequence of actions ul, ud,
respectively. (3 point).
Hint: For a sequence of actions u = (a0, . . . , aH−1) the probability of choosing the trajectory
τ := (s0, a0, s1, a1, . . . , sH) is Pr(τ) =

∏H
t=1 P (st|st−1, at−1).
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Solution:

Pr(τl) = 0.7, Pr(τd) = 1.

5. Write the expected reward for the sequence of actions ul and ud. (2 points).

Solution:

E(Rud
) = Rτd × Pr(τd) = 10γ5,

E(Rul
) = Rτl × Pr(τl) = 7γ3.

6. How large should γ be such that the expected reward of ud, leading to the longer but safer
trajectory, becomes greater than the expected reward of ul? (1 point)

Solution: If γ >
√

7
10 , we have E(Rτd) > E(Rτl). Therefore, the expected reward of trajectory

τd becomes larger than the expected reward of trajectory τl if γ is large.

Now, we lay the steps towards learning the optimal softmax policy using policy gradient.

7. Write the softmax policy for s = (1, 1) and a = up. (1 point)

Solution:

πθ(up|(1, 1)) =
exp

(
θ(1,1),up

)∑
a′∈A(1,1)

exp
(
θ(1,1),a′

) =
exp

(
θ(1,1),up

)
exp

(
θ(1,1),up

)
+ exp

(
θ(1,1),right

) .

8. Note that θ ∈ R14 as there are 2 possible actions at every state. Set θ to 0 ∈ R14. Compute
the stochastic policy gradient for the state s = (1, 1) and action up with α = 1 based on the
trajectories τl, τd above (3 points).

Solution: The formula for the component (1, 1), up of the stochastic policy gradient is

(
∇̂θJ(πθ)

)
(1,1),up

=
1

2

∑
i∈{d,l}

R(τi)

(
Hi∑
t=0

∂ log πθ(a
i
t|sit)

∂θ(1,1),up

)
. (0.1)
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Furthermore, the derivative of the log policy is

∂ log πθ(a|s)
∂θ(1,1),up

=
∂

∂θ(1,1),up

(
log

exp (θs,a)∑
a′∈As

exp
(
θs,a′

)) (by the definition of the softmax policy parameterization)

=
∂

∂θ(1,1),up

θs,a − log
∑
a′∈As

exp
(
θs,a′

) (by the additive property of the logarithmic function)

=1(s,a)=((1,1),up) − 1s=(1,1)
exp (θs,up)∑

a′∈As
exp

(
θs,a′

) (basic derivative rules)

=1(s,a)=((1,1),up) − 1s=(1,1)πθ(up|s) (by the definition of the softmax policy parameterization)

=1s=(1,1) (1a=up − πθ(up|s)) . (take 1s=(1,1) outside of the equation) (0.2)

Using above equation, we have

∂ log πθ(a|s)
∂θ(1,1),up

=


0.5 s = (1, 1), a = up

−0.5 s = (1, 1), a = right

0 otherwise.

Here, 1A denotes an indicator function, which equals 1 when A is true and 0 otherwise.
Hence, plugging this back into the formula (0.1) we arrive at(

∇̂θJ(πθ)
)
(1,1),up

=
1

2

(
10γ5 · 0.5 + 10γ3 · (−0.5)

)
.
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