Problem 1. (KNN, cross-validation (15 points])

A political campaign is on the way for the upcoming election between Party A and Party B in city
Z. Party A leader has decided to use machine learning to predict the current trend, based on which
it will further adjust its advertisement. To this end, it has surveyed 600 people in the city, recording
the coordinate of their home (latitude and longitude), and obtaining their political preference as
either A or B. It then has attempted to use the KNN (k-nearest neighbor) approach to predict the
potential outcome of the election by estimating the preference for the rest of the residents, having
knowledge of the voters’ home coordinates.

1. What are the features of the problem? (2 point)
Solution: There are two features the latitude and longitude of the surveyed people.

2. Consider the problem of predicting political preference of a new individual based on the above
data. Is this a supervised or an unsupervised machine learning problem? Justify your answer.
(1 point)

Solution: The problem of predicting the political preference of a new individual is a supervised
machine learning problem since labels (A or B) are given for each data point z* € R?, where
xY specifies the latitude and x4 the longitude of the person’s home.

3. Write the formula for standardizing the first feature vector to zero-mean and unit variance.
(2 point)

Solution: The mean and standard deviation of the first feature are given by

and
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The formula to standardize the first feature vector to zero-mean and unit variance is then
given by: :
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4. You are given a new person’s latitude and longitude (x1, z2).

(a) Write the steps for determining the label of this data point based on K = 3 neighbors
and using the Euclidean distance (3 point).

Solution:

i. Suppose we are given a new data point z. We start by computing the Euclidian
distance of this test data point to each training data point (%, %) fori = 1,...,600:

dist(z,z*) = \/(acl —28)2 + (2o — )2



ii. We then determine the three training data points with the smallest Euclidian dis-
tance to the test data point.

k,l= arg min dist(z, z*).
1,...,.600

iii. Finally we assign the label corresponding to the majority vote of the 3 closest neigh-
bors 4, y* 4 identified in step (i), where y* represent the preference for Party A
or B of person 1.

(b) Specify which step would change and how if you use the Manhattan distance instead of
the Euclidean distance. (1 point)

Solution: The only change comes in the way the distance to each point in the dataset is
computed in step (i), which now relies on the Manhattan distance:

dist(z,z") = |zy — 24| + |zg — 25|,

Steps (ii) and (iii) stay the same since they are independent of the distance function
used to identify the K nearest neighbors.

Party A wants to choose a good K for its prediction. It thus has divided the data into 500
training points and 100 test points. Then, it has done 5-fold cross validation for the values of
K € {1,3,5,7,9}. The following table summarizes the resulting mean and variance of the cross
validation error.

model | mean cross-validation error | variance
K=1 _ 0.43 14.23
K=3 0.33 11.50
K=5 0.29 10.41
K=7 0.30 12.23
K=9 0.39 15.44

5. Let ¢’ be the predicted label for data (%, z3) , y* its true label, and 1(4* = ¥*) be the indicator
function. Write the formula for the mean (over the 5 folds) validation error rate for K = 3.
(2 point)

Solution: The mean cross-validation error € can be computed as the average of the error e ¥
of each of the five folds: !

—
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where Iy gather the indices of the validation points in fold f

6. For which K is it most likely that the test error will be similar to the validation error, and
why? (2 point)

Solution: It is most likely that the model where K = 5 has a test error that is similar to the
validation error since the variance is the lowest. A lower variance indeed indicates that this
model is more robust against different data points being used as trainirig points and hence
more likely to perform similarly on some unseen data points.



7. Based on KNN classification, how. can Party A know in which region it should improve its
advertising campaign? (2 point)
Solution: It is sensible for Party A to increase its advertising campaign in geographic regions
where Party B is getting the majority of votes. To that end, Party A can use the proposed
KNN model’s decision boundaries and overlay them on the city map to find out where Party
B is leading the votes:
This of course assumes that the surveyed people are a representative sample of the true data,
but it is the best we can do with the given information, and it’s certainly not a bad idea to
put more effort in advertising where Party B is dominant!



Problem 2. (Feature vectors and linear regression [12 points])

You have recorded the signal corresponding to the mechanical vibration of a turbine for 1,2, ..., T
time steps as (y!,42, ... ,yT), where 4* € R. You believe that under normal turbine operating con-
ditions, the signal is periodic. In particular, it is approximately the sum of K sinusoidal signals:

K
y' =) ay cos(wt — ),

k=1

where wy’s are known but ay and ¢y are unknown, for £ = 1,2,..., K. Based on the observations
{y }t 1 you want to estimate ag, ¢ so as to Lm.n.umze the mean square error between the prediction
Zk 1 @k cos(wit — ¢k ) and the true value y

1. How many parameters do you need to identify for your approximation? (1 point)
Solution: We need to identify 2K parameters: ay,...,ax and ¢y, ..., dx to approximate the
given signal.
2. Recall the fact that for a sinusoid signal we have:
acos(wt — ¢) = acos(wt) + Bsin(wt),

where @ = acos ¢, 3 = asin(¢). Based on this fact, formulate your predictor § = Zszl ay, cos(wrt—
¢x) as a linear function of the parameters ay, 8, k = 1,2,..., K, corresponding to each si-
nusoid. (3 point).

Solution: Defining the weight vector w € R?X and the feature vector ®(t) as follows,

w = (alvﬁlv e )aK)/BK)Tr
®(t) := (cos(wit),sin(wit),. . ., cos(wkt),sin(wgt) ",
we can rewrite our predictor ¥ as a the following linear function:

K.

To(t) = Z ay, cos(wgt) + By sin(wit).
k=1

<
i

3. Formulate the mean-square-error loss function. (2 point)

Solution: The mean-square-error loss function is given by:

=7 Z T‘I’(t v')?.

4. Derive the gradient of the loss function with respect to the linear regression parameters oy, B,
k=1,2,...,K. (4 point)

Iy o L 1 T
Solution: The gradient is VL(w) = (3;{(}::;)7 df’)}éw) — 88[;51”), 8§ﬁ(w)) , where
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5. Provide an approach to compute the optimal set of parameters without using gradient descent.
(2 point)

Solution: Let us define the data matrix

cos(wy) sin(w;) ... cos(wk) sin(wk)
cos(2wy) sin(2wy) ... cos(2wk) sin(2wxk)
cos(Twy) sin(Tw;) ... cos(Twg) sin(Twg)

and the observation vector y := (yl; .,yT). Since we are dealing with a linear regression
problem, which is convex, we can use the Least Squares method to find the optimal parameters
w*:

w = (®'®) ey



Problem 3. (Dimensionality reduction using PCA [15 points])
Consider a dataset {z* fil, where z¢ € R%. Assume the feature vectors are centered so _each feature
vector has zero mean. Let 0’%,0’% denote the variance of features 1 and 2, respectively. Suppose
that the second feature is a constant multiple of the first feature. So, for any data point z* € R2,
we can write z = axl, where o € R is an unknown constant, here assumed to be positivel.

Here, we derive the visually obvious fact that the PCA projects the data onto the line x4 = cz;.

1. Derive the variance of {z}})¥, denoted by Ug,’ in terms of « and o2. (2 point)
Using the variance calculation, show that the correlation between the two features is 1 irre-
.spective of value of a. (2 point). ‘

Solution: We can use the following property of the variance to compute the answer right
away:
2 _ = _ 2 _m m0p 2
oy = Var(zz) = Var(az,) = a’Var(z;) = o’of.

Otherwise, we can see that since both features are centred, their means are g, = po = 0.
Starting from the definition of the variance, we can then write:

N N
1 1 > 1 ; 1
o3 = N (@h — p2)® = N E (az} —m)? = N E (az} — ) = a2ﬁ E (@} — m)? = o®ot.
i i i=1 i=1

The correlation between the two features can then be computed as follows:

Cov(zy,x3)  Cov(xy,ax)  aCov(zy,xy)  Var(z) _ o?

corr(zy, x2) = 2 = k = = = 3 — =1,
Voo  \[a?\[aPal ay/ai\/o? o7 o1
where Cov(z1,x2) denotes the covariance between the two features.
If this formula is unknown, we can alternatively write:
. . 1 N 7 i 1 N i
_ Cov(zy,@z) w2 i (@) —pm)(@h —pe)  § Y, whah
corr(z1,zg) = = =
T2 g102 g109
LN G g 1L N (02 1 5N g 2 2
— N Qi1 Ti0Z) —aX >im1 (1) —aX Yic1(zh— ) _ g 0
0102 0102 0102 0102
Given 02 = a%0?, this indeed gives:
of ot
corr(z1,22) =a—— =« =1.
T109 [alon o8]

2. Derive the matrix C = XTX € R?*? in terms of 67 and a. (1 point)

n practice, due to noisy measurements, zz would only approximately be a constant multiple of x; in the dataset.
Here, to simplify the computations we discard the impact of the noise and assume to have access to “perfect” data.



Solution: We have:

1,1

T zy ... zV R
c=xTx=(2 AN
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where we used the fact that y; = 0 in the definition of o%.

. Let ¢1,cp € R? denote the columns of C. Verify that c; = ac1. (1 point)
Solution: Define ¢; as ¢; = No?(1,a)T. Then

No? aNo? l «o
C = (c1,c2) = (aNal% azNUl%> = No} (a a2) = (c1, acy).

." Using the result of Part 3, show that the vector (1,a) € R? is an eigenvector of the matrix C
and derive its corresponding eigenvalue. (2 point)
Solution: We have:

C ((i) = (¢1,@c1) (;) =c; +o?e; = (14 o®)No? (i) .

Thus C(1,0)" = M\(1,a)7, where A; = No?(1 + a) is the corresponding eignevalue to the
eigenvector (1,a)7. .

. Using the result of Part 3, show that the vector (—a, 1) € R? is an eigenvector of the matrix

C corresponding to an eigenvalue at 0. (1 point)
Solution: We have:

() = o () = e +0m = () -0 ()

Thus, (—a, l)T is an eigenvector of € with corresponding eigenvalue Ay = 0.

. Scale the first principal component of C to have a unit Euclidean norm. (1 point)

Solution: The first principal component of C is given by the eigenvector corresponing to the
largest eigenvalue, i.e., v; := (1, a)'. In the following the first principal component is scaled
to unit euclidian norm:

o = v 1 (1)
Yl T Vitaz\e/)



7. The projection of the data matrix X € RV*2 onto its first principal component is given by
X© € RN, Write what © is in this problem. (1 point)

Solution: © corresponds to the normalized first principal component, i.e., © = ¢, = (1,a)T.

i
8. Verify that the projection of each data point (x’l, xé) onto the first principal component gives -
the Euclidean distance of (z%, z}) from the origin (0, 0) and draw a visualization of the result.
(3 point).
Solution: On the one hand, the projection of each data point (z%,z%)" onto the first principal
component results in:

) . . ) 1 1
(mll xzz) o= (x’l 3:12) _\/ﬁ (a)
C . 1 1
~ (et eet) = (o)
1 .
= et
= V1+ a2z!.

On the other hand, the Euclidian distance of (z%,z5)" from the origin results in:

& — 0 = /(4 — 0)2 + (wh — 0)2 = 1/(@1)? + (aw})? = V1 + oa,

which indeed confirms that the projection onto the first principal component corresponds to
the distance from the origin.

9. What would look different in your projection if you first standardize the features to unit
variance before PCA computations above? (1 point)
Solution: Since the mean of both features are 3 = pp = 0 and using the result of point 1,

we would get the standardized features for alli=1,..., N:
i
=2,
01

x azi

(2] Qo a1
Since one feature is an exact multiple of the other, standardizing both reduces them to
the same values! There is hence no need to do the PCA anymore, as the data is already

"projected” in one dimension.



Problem 4. (Neural networks [13 points])

1. You want to construct a neural network that takes two binary inputs z1,z2 € {0,1} and gives
the output y = 0 if z; = 22 = 0 and y = 1, otherwise. In other words, the neural network is
implementing the logical “OR” function.

Construct this network using a single hidden layer, with one node in the hidden layer and the
unit step activation function, that is, o(z) = 1 if z > 0 and o(z) = 0, otherwise. Draw your
network and specify its weight and bias values. (5 point)

Solution: We can for example choose: w1 = 1,w12 =1,b = —1.

Now, we consider a robotic obstacle detection problem. You aim to control a robot car so that it
can maneuver in a room while avoiding obstacles. Thus, you first want to design a neural network
classifier that takes a camera image and labels objects identified as obstacle or free space. The car
camera produces images of size 240 x 240 pixels over three {red, green, blue} channels. For training
your neural network, you take 200 images and manually label the objects in the image as obstacle
or free space.

2 In your first attempt, you use a neural network with 4 hidden layers, where each hidden layer
has 10 nodes and an output layer with 1 node. You use a tanh activation function and the
logistic loss function for the output layer. You flatten each image before giving it to your
neural network as an input. For the first layer of the network, how many weights and biases
need to be determined? (2 point)

Solution: The input dimension is nj, = 3 - 240 - 240 = 3 - 57,600 = 172,800, and the first
hidden layer has 10 nodes. Thus, there are 172,800 - 10 = 1, 728,000 weights and 10 biases.

You find that the accuracy of your classifier above is not very good. So, you decide to use a pre-
trained network and simply modify it for your task. You use the EfficientNet network, developed
by Google, which is a convolutional neural network for classifying images into 1000 classes. The
original network has 7.8 million parameters to train, and thankfully, the network has been trained
already. The last layer of EfficientNet has 1000 outputs and the softrmaz activation function. You
simply append one layer with a single output node to the last layer of EfficientNet, and you add
no activation function to this node.

3. You use the logistic loss function for the last layer you added. Write the logistic loss function
in terms of the output of the last layer of the EfficientNet and your newly added parameters.
(2 point)

Solution: Let’s denote the output of the efficient net corresponding to the input z* by 2* €
R'9%, Then, the logistic loss is

(Wzi+b) i Wzitb
L(W,b) = Nz;ylogHe TN+ (1 -y log(l+e75 ™),

where W and b correspond to the weights and biases of the added layer.

4. Do you expect to be able to find the optimal parameters for the above problem using gradient
descent? Justify your answer.s (1 point)

Solution: Yes, because the problem is convex in W and b.



5. You observe the training loss oscillating throughout the iterations of the gradient descent.
Explain why a decrease in the learning rate could result in a monotone decrease of the loss.
(1 point)

Solution: Oscillations typically occur when the learning rate is to high and we overshoot over
the optimal solution. This problem can be avoided by reducing the learning rate.

6. Suppose that a filter of size 3 x 3 is used for convolution in the first layer and on the red
channel of EfficientNet. The filter parameters are as shown in the matrix F below. Consider
a 3 x 3 segment of the image over the channel red as shown in the matrix § below. What is
the result of convolution of F' with S? (2 point)

~1/4 0 1/4 0.3 01 02
F=| 0 o0 o0 |, S=][04 01 02
1/4 0 —1/4 0.4 02 0.3,

Solution: The result of the convolution is:

o~

g 18 12 14 13/ N
FxS=—4% 10 170 110

10



Problem 5. (Probabilistic classification [15 points])
At last, you understood decision trees and decided to make a youtube video to explain it to all
those students who might be confused. Your video is posted and you are receiving many comments.
You want to design an automatic way of analyzing the “sentiment” of the comments, that is, to
understand if the watchers found your video helpful (positive +) or unhelpful (negative -).

So, you classify a few comments as below, and plan to let the machine learning algorithms do
the analysis for the rest of the comments.

class label | comment
+ clear and engaging
- confusing but funny
- boring and many typos
+ engaging and funny
+ highly helpful and clear

Note: For the three points below, ignore the common word “and”. Hence, the 5 comiments
above contain 10 distinct words.

1. Write the prior probability of positive and negative classes. (1 point)

Solution:
P(Positive class) =

P(Negative class) =

(S0 R, Fiy L]

2. Write the probability of the word “funny” given class positive and the probability of the word
“funny” given class negative (2 point).

Solution:
P(funny | Positive class) =

P(funny | Negative class) =

DN o =

3. Write the probability of “helpful and funny” given class positive using the Naive Bayes as-
sumption. (1 points)

Solution:

P(helpful and funny | Positive class) = P(helpful | Positive class) x P(funny | Positive class)
1 1 1

373 9

Now, suppose that you use 100 comments for training so that you encounter many more positive
and negative comments and many more distinct words.

4. Your Naive Bayes approach classifies 3 of the positive comments as negative and 7 of the
negative comments as positive. What is its error rate? (1 point)

S : = s 347 _ 10 _
Solution: The error rate in that case is Tjg = 155 = 10%.

11



5. Your classifier has much more false positives than false negatives. Since you care more about
the critical comments to improve your work, you decrease the prior probability of class
positive. Show that this change could reduce the number of false positives. (2 point)

Solution: Since we care more about critical comments, we want to detect more negative
classes instead of positive classes. Therefore, we need reduce the number of false positives by
decreasing P(Positive class | word) which can be written as

P(word | Positive class)P(Positive class)
P(word) L

Therefore, decreasing the prior probability of class positive will reduce the number of false
positives. ‘

P(Positive class | word) -

Suppose that you now replaced your Naive Bayes classifier with a decision tree, trained on the
same 100 comments above and using the gini criterion. You found that the presence of the feature
“helpful” had the lowest gini index. In particular, all the 20 comments that had the word “helpful”
in them were of class positive. For the remaining 80 comments, you found that the word “funny”
had the lowest gini index. In particular, 20 of the 80 comments did have the word “funny”, and of
these 20, 15 were of class positive; whereas 60 of the 80 comments did not have the word “funny”
and of these 60, 20 were of class positive. Now, you stopped growing your tree, at depth 2.

6. Draw your decision tree. (2 point)

Solution:

i [Negat ive class\!
funny =
Nob

fy L !

helpful?

[Postive class)

m

"(Positive class)

7. What was the gini index of splitting the “not helpful” node into a leaf node corresponding to
“funny” and “not funny”? (2 point)

Solution:

20 <5 15 15 5) 60 (4020 20 40) 123
80

Gini index = 251 5620 3020 ) T 20 \s060 T 6060, — 288

8. What is the false positive and false negative rate of this depth 2 decision tree? ( 2 pé)int)

Solution:
Prediction . .
Truth Negative | Positive
Negative 40 5
Positve 20 20 + 15
5 1
Fal itive = — — =
alse positive R
- 20 4
Fal tive = — = — .
alse negative = 7

12



9. Comment on the advantages and disadvantages of the two classifiers above for this problem.
(2 point)
Remark: Note that this is open question, we will give positive points based on your reasonable -
answers. A

Pl : - (
Solution: A decision tree is more interpretive compared to prebabilistic classification. How-
ever, probabilistic classification has higher accuracy compared to decision tree in this case,

with an error of 10% compared to 25% for the tree.

13
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