
Notations and background ME-390, Fall 2024 Prof. Maryam Kamgarpour

1 Mathematical basics

1.1 Sets, vectors, matrices

A set of k items can be represented as {i1, i2, . . . , ik}. We can also represent this set by {il}kl=1. In
our course, il, for l = 1, 2, . . . , k is often a real number or an integer. The Cartesian product of two
sets S1, S2 is written as S1 × S2 and is defined as {s = (s1, s2) | s1 ∈ S1, s2 ∈ S2}. This definition
can be readily generalized to the Cartesian product of K sets. If we take the Cartesian product of
a set with itself k times, we can use the notation Sk.

The set of real numbers is R. The set of n dimensional real numbers is Rn. An open interval
is represented as (a, b) ⊂ R, with a, b ∈ R, a < b. A vector is an ordered finite list of numbers.
If there are n elements in the list, then the vector is in Rn and it is written as a vertical array,
surrounded by square or curved brackets, e.g. a ∈ Rn is written as

a1
a2
...
an

 or


a1
a2
...
an


In the above, ai, i = 1, . . . , n are referred to as elements, entries or components of the vector a.
The vector a ∈ Rn can also be written as the elements separated by commas and surrounded by
parentheses, a = (a1, a2, . . . , an) ∈ Rn. Observe that this notation for vectors can be confusing, as
(a1, a2) can also refer to an open interval. However, the former is (a1, a2) ∈ R2, whereas the latter
is (a1, a2) ⊂ R. Usually, it is clear from the context which of the two is meant, but it is a good
practice to always write the domain of objects to avoid such confusion.

A matrix A ∈ Rm×n is a rectangular array of numbers with m rows and n columns. It is written
between rectangular brackets or parentheses:

a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 or


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn


The element aij refers to the entry of the matrix at the i-th row and j-th column. AT denotes the
transpose of the matrix A. Observe that a vector in Rn can be interpreted as an n by 1 matrix. A
matrix with only one row, that is, size 1 by n, is called a row vector. The inner product between
vectors a, b ∈ Rn is written as aT b.

You are expected to be familiar with the basics of matrix and vector operations. For a review
of basic linear algebra concepts, see Chapters 1 and 6 here. Furthermore, you are required to be
familiar with eigenvalues, determinant and inverse of a matrix.

Exercise. For a =

[
0
1

]
, b =

[
1
1

]
and M =

[
1 0
1 1

]
, compute the following:

• aT b, bTa, aTM , Ma,
√
aTa,

√
bT b.

• the determinant of M .

• the eigenvalues of M .

• the inverse of M if it exists.
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Solution. The results of the products are

aT b =
[
0 1

] [1
1

]
= 0 ∗ 1 + 1 ∗ 1 = 1,

bTa =
[
1 1

] [0
1

]
= 1 ∗ 0 + 1 ∗ 1 = 1,

aTM =
[
0 1

] [1 0
1 1

]
=

[
(0 ∗ 1 + 1 ∗ 1) (0 ∗ 0 + 1 ∗ 1)

]
=

[
1 1

]
,

Ma =

[
1 0
1 1

] [
0
1

]
=

[
(1 ∗ 0 + 0 ∗ 1)
(1 ∗ 0 + 1 ∗ 1)

]
=

[
0
1

]
,

√
aTa =

√[
0 1

] [0
1

]
=

√
0 ∗ 0 + 1 ∗ 1 = 1,

√
bT b =

√[
1 1

] [1
1

]
=

√
1 ∗ 1 + 1 ∗ 1 =

√
2.

The determinant of a 2× 2 matrix

[
a b
c d

]
is ad− bc. Thus, the determinant of M is

det(M) = 1 ∗ 1− 0 ∗ 1 = 1, (1)

The eigenvalues of M are the values λ, such that the determinant of the matrix M − λI =[
1− λ 0
1 1− λ

]
is equal to zero:

det(M − λI) = (1− λ) ∗ (1− λ)− 0 ∗ 1 = (1− λ)2 = 0. (2)

The only eigenvalue is λ = 1 and it has multiplicity 2.

The inverse of a 2× 2 matrix A =

[
a b
c d

]
exists if det(A) ̸= 0 and is equal to

A−1 =
1

det(A)

[
d −b
−c a

]
.

The determinant of M is different from zero according to (1), and its inverse is equal to

M−1 =
1

det(M)

[
1 0
−1 1

]
=

[
1 0
−1 1

]
.

1.2 Functions and linearity

A function from a domain D to a co-domain C is written as f : D → C. This function takes
an element d ∈ D and returns a unique element f(d) ∈ C. The co-domain is sometimes referred
to as the range of the function. However, in some texts, the range refers specifically to the set
{c ∈ C | c = f(d) for some d ∈ D}. For example, the softmax function, often used in machine
learning, and denoted by σ : RK → RK is given as

σ(z) = (
ez1∑K
i=1 e

zi
,

ez2∑K
i=1 e

zi
, . . . ,

ezK∑K
i=1 e

zi
).
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Its range is (0, 1)K ⊂ RK . Recall: (0, 1)K is the Cartesian product of (0, 1) with itself K times.
A linear function f : Rn → Rm is a function such that for any a, b ∈ Rn, α, β ∈ R, f(αa+βb) =

αf(a) + βf(b). An affine function f : Rn → Rm is a linear function with an offset. That is, f is
affine if there exists c ∈ Rm such that f − c is linear.

Exercise. (a) Verify that for any w ∈ Rd+1, the function f : Rd → R, defined as f(x) =
w0 + w1x1 + w2x2 + · · · + wdxd is affine; (b) verify that the function f : Rd → Rm defined as
f(x) = Ax is linear. And hence, the function f(x) = Ax+ b, with A ∈ Rm×d and b ∈ Rm is affine.

Solution. (a) To prove that the function f is affine, we need to prove that there exists c ∈ R
for which f − c is linear. In this case, the offset is w0, thus we can simply show that f(x)− w0 is
linear:

f(αa+ βb)− w0 =w1(αa1 + βb1) + · · ·+ wd(αad + βbd)

=α(w1a1 + · · ·+ wdad) + β(w1b1 + · · ·+ wdbd)

=α (f(a)− w0) + β (f(b)− w0) .

(b) We need to prove that f(αa+ βb) = αf(a) + βf(b) for any a, b ∈ Rd, α, β ∈ R:

f(αa+ βb) =A(αa+ βb)

=αAa+ βAb

=αf(a) + βf(b).

We showed that f(x) = Ax is linear. To show that f(x) = Ax + b is affine, we need to show that
there exists c ∈ Rm such that f(x)− c is linear. By selecting c = b we obtain f(x)− c = f(x)− b =
Ax+ b− b = Ax, which we proved to be a linear function. Thus f(x) = Ax+ b is affine.

Advanced. Observe that the above exercises shows that every matrix gives rise to a linear
function. For this reason, matrices are also referred to as linear maps. The converse of the above
statement can also be shown. Namely, every linear function mapping finite dimensional domain to
a finite dimensional co-domain can be represented by a matrix.

Linear functions can be defined on more general spaces than the Euclidean spaces (example,
space of continuously differentiable functions, which is infinite dimensional). Linear functions
between infinite dimensional spaces that you have seen before include differentiation and integration.
This is useful for studying linear dynamical systems or optimization problems. However, to verify
this fact and appreciate its usefulness, you would first need to learn about infinite dimensional
vector spaces, which is beyond this course.

1.3 Supervised learning basics

Consider a dataset {(xi, yi)}Ni=1 with N data points.

• The independent variables are denoted by x1, x2, . . . , xN , with xi = (xi1, x
i
2, . . . , x

i
d) being a

vector in Rd. Here, xij for j = 1, . . . , d is referred to as a component, field or a feature of

the vector. The vectors xi ∈ Rd are also sometimes referred to as predictors, covariates,
explanatory variables or feature vectors.

• The labels or dependent variables are denoted by y1, y2, . . . , yN . They are also referred to as
targets, outcomes or response variables. In a classification problem yi ∈ {1, 2, . . . ,K} where
K denotes the number of classes, also referred to as categories. In a regression problem,
yi ∈ Rm. However, often we consider the case of m = 1, because we learn a model for each
component of vector y separately.
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• We use the notation Φ : Rd → Rp to denote a so-called feature mapping. This is simply a
transformation of the data. For example, for x ∈ R2, we can define Φ : R2 → R3 as follows.
We can consider Φ1(x) = 1 as the constant feature, Φ2(x) = x21 as a quadratic mapping for
the first coordinate of x and Φ3(x) = sin(x2) as a sinusoidal mapping of the second coordinate
of x. We can represent this feature mapping by Φ : R2 → R3, with Φ = (Φ1,Φ2,Φ3) and
Φ : x 7→ (1, x21, sin(x2)).

• We often use the constant feature to augment our independent variables from x ∈ Rd to
x̄ = (1, x1, x2, . . . , xd) ∈ Rd+1. Thus, an affine function f(x) = w0+w1x1+ · · ·+wdxd can be
written as a linear function with domain Rd+1 by defining w = (w0, w1, w2, . . . , wd) ∈ Rd+1

and writing f(x) = wT x̄. As almost always we consider the extension of the feature vector
by constant feature, with an abuse of notation, we often write f(x) = wTx instead of wT x̄.

Exercise. DefineX ∈ RN×(d+1) as a matrix whose rows are the data vectors: x̄i = (1, xi1, x
i
1, . . . , x

i
d)

for i = 1, 2, . . . , N . With this notation, an affine function f : Rd+1 → R acting on each data point
gives rise to ŷi = wT x̄i, i = 1, . . . , N .

• Let ŷ denote(ŷ1, ŷ2, . . . , ŷN ) ∈ RN . Verify that ŷ = Xw.

Solution: Since each component of ŷ is computed as ŷi = wT x̄i = (x̄i)Tw, we can express ŷ
as:

ŷ =


ŷ1

ŷ2

...
ŷN

 =


(x̄1)Tw
(x̄2)Tw

...
(x̄N )Tw

 =


(x̄1)T

(x̄2)T

...
(x̄N )T

w = Xw.

• Let yi denote the true label of the data xi ∈ Rd. Verify that we can then write the error in
predicting yi using a linear model as ei = ŷi − yi, and thus, the error vector, namely, the
vector of errors for each data point as e = Xw − y.

Solution: The error for predicting yi using the linear model is: ei = ŷi − yi. Therefore, the
error vector e ∈ RN is the difference between the vector of predicted values ŷ and the true
labels y = (y1, y2, . . . , yN ) ∈ RN :

e = ŷ − y = Xw − y

Thus, the error vector e = Xw− y represents the difference between the predicted values and
the actual labels for each data point.

Exercise. If each label yi is a vector in Rm, we would learn an affine function for each ele-
ment of yi. Thus, we would have m weight vectors for our linear predictor. We use the notation
wl,j to refer to the j-th entry of the l-th weight vector wl ∈ Rd+1. Thus, we have j = 0, 1, . . . , d
and l = 1, 2, . . . ,m. Verify that with this notation yil = wT

l x̄
i, for l ∈ {1, . . . ,m} and i ∈ {1, . . . , N}.

Solution: In this case, we are predicting multiple outputs for each data point, which means
that each label yi = (yi1, y

i
2, . . . , y

i
m) ∈ Rm is a vector with m components. The prediction for the

l-th component, ŷil , is given by:

ŷil = wl,0 + wl,1x
i
1 + wl,2x

i
2 + · · ·+ wl,dx

i
d = wT

l x̄
i.

4


	Mathematical basics
	Sets, vectors, matrices
	Functions and linearity
	Supervised learning basics


